
Automated Data Pre-processing via
Meta-learning

Besim Bilalli1, Alberto Abelló1, Tomàs Aluja-Banet1, and Robert Wrembel2

1 Universitat Politécnica de Catalunya, Barcelona, Spain
{bbilalli,aabello}@essi.upc.edu

tomas.aluja@upc.edu
2 Poznan University of Technology, Poznan, Poland

robert.wrembel@cs.put.poznan.pl

Abstract. A data mining algorithm may perform differently on datasets
with different characteristics, e.g., it might perform better on a dataset
with continuous attributes rather than with categorical attributes, or
the other way around. As a matter of fact, a dataset usually needs to be
pre-processed. Taking into account all the possible pre-processing oper-
ators, there exists a staggeringly large number of alternatives and non-
experienced users become overwhelmed. We show that this problem can
be addressed by an automated approach, leveraging ideas from meta-
learning. Specifically, we consider a wide range of data pre-processing
techniques and a set of data mining algorithms. For each data mining
algorithm and selected dataset, we are able to predict the transforma-
tions that improve the result of the algorithm on the respective dataset.
Our approach will help non-expert users to more effectively identify the
transformations appropriate to their applications, and hence to achieve
improved results.

1 Introduction

Recently, more and more non-experts are using data mining tools to perform
data analysis. These users require off the shelf solutions that will assist them
throughout the process. The process itself, a.k.a. knowledge discovery, consists
of several steps, such as data selection, data pre-processing, data mining, and
evaluation or interpretation [5], see Figure 1. One of the most important steps of
this process is the data pre-processing step. Data pre-processing is so important
that usually 50-80% of analysis time is spent on it [13]. The reason for this,
is that, a properly prepared/pre-processed dataset yields better results. One
can apply the best learning algorithm, but if the data is not well-prepared, the
algorithm may perform poorly (e.g., bad predictive accuracy) [3].

Now, if the data pre-processing is so important and in addition it needs to
be performed by a non-expert user, then a way must be found such that pre-
processing becomes easy, i.e., offer assistance to the users in order to perform
this step in a successful way.

In this paper, we propose a solution to this problem. We aim at assisting the
user by recommending transformations i.e., pre-processing operators, that will



Preprocessed
data

Data source Knowledge

Interpretation/
EvaluationData mining

Data
Pre-processing

Data
Selection

Target data
Models/
Patterns

Fig. 1. Data Analysis/Knowledge Discovery process, adapted from [5].

ultimately improve the result of the analysis, that usually happens to be a predic-
tion task. In order to do that, we make use of the concept of meta-learning, which
consists of two phases, such as learning and predicting. For a given dataset and a
selected data mining algorithm we are able to predict transformations that once
applied yield an improved algorithm performance (e.g., predictive accuracy).

Contributions. The main contributions of this paper can be summarized as
follows:

– We leverage ideas from meta-learning to present a technique for ranking pre-
processing transformations depending on their impact on the final result of
the data analysis.

– We show the benefits of our approach by implementing a tool that is capable
of automatically recommending pre-processing transformations to the user.

– We show experiments that demonstrate the effectiveness and quality of our
approach.

The rest of the paper is organized as follows: the related work is discussed in
Section 2. An overview of data pre-processing, together with its benefits is given
in Section 3. Our proposed solution is formally defined and a brief look at the
implementation prototype is given in Section 4. The results of the experimental
evaluations are reported in Section 5. Finally, Section 6 summarizes our work
and outlines some future work.

2 Related Work

A lot of research has been conducted in terms of providing user support for
different steps of data analysis. The focus however, has usually been on the data
mining step, and data pre-processing has generally been overlooked.

Weka [7], an open source tool for data mining, allows users to apply pre-
processing algorithms but it does not provide assistance in terms of which one
to apply. However, since different data mining algorithms have different require-
ments regarding the dataset, some pre-processing is applied by default inside
some of the algorithms. This pre-processing is usually a simple transformation
that does not aim at improving the performance of an algorithm but it aims at
transforming the dataset so that it can fit to the data mining algorithm. Fur-
thermore, note that only few algorithm implementations in Weka contain these
kind of on the fly transformations.



In AutoWeka [16], user assistance is provided, however, only with regard to
the data mining step. That is, the system suggests the best learning algorithm
to use with it’s proper parametrisation without considering the pre-processing
step. Hence, the user needs to deal with the pre-processing on his own.

In AmazonML3, the system recommends an initial recipe for pre-processing,
which is prepared taking into consideration the attributes of the dataset, in-
cluding the response (i.e., the attribute to be predicted). The recipes provided,
however, are pre-formatted instructions for common transformations and do not
guarantee improvements of the final result. Hence, they are recommended only
because they are applicable to the particular dataset. Whereas, we are interested
in performing pre-processing with the only goal of improving the final result of
the analysis.

eIDA [9], which is a product of the eLico4 project, aims to autonomously
construct workflows that are combinations of pre-processing and data mining
algorithms. In order to do that, the problem of workflow construction is viewed
as a planning problem, in which a plan must be built consisting of operators that
transform the initial data into models or predictions. In order to find the plans,
an exhaustive combination of all applicable transformations with all applicable
algorithms is performed. Taking into consideration the number of algorithms
(e.g., hundreds in RapidMiner [12], since the project is built on top of Rapid-
Miner), the search space of the problem is unfeasible to compute, hence, the
optimal solution may not be found. Moreover, in this approach, independent
support, exclusively for pre-processing is not provided. As a matter of fact, a
”take it all, or leave it” solution is given. In contrast, we focus only on pre-
processing, which not only reduces the search space but at the same time allows
independent support, hence, the data mining algorithm can be chosen at will.

There exist some other systems [2, 8, 11], however, they are also focused on
providing support for the data mining step only.

3 Overview

3.1 Data Pre-processing

Traditionally, data mining has been performed on transactional data consisting
of continuous attributes. The continuous scale of these attributes has enabled the
use of conventional statistical methods, such as logistic regression. However, the
advances in computational and storage capacity have enabled the accumulation
of ordinal, nominal, and binary data, giving rise to datasets of heterogeneous
scales. This has induced: 1) advances in the application of data driven methods
(e.g., decision trees, artificial neural networks, suport vector machines) capable
of mining large datasets, 2) challenges in transforming attributes of different
scales into mathematically feasible and computationally suitable formats [3].
Indeed, each attribute may require special treatment, such as discretization of

3 https://aws.amazon.com/machine-learning
4 http://www.e-lico.eu



numerical attributes, rescaling of ordinal attributes and encoding of categorical
ones. Hence, different transformations may be required.

For the sake of this paper, we consider the transformations shown in Table 1.
They are available in the form of open source packages in different data mining
tools (e.g., Weka, RapidMiner). We aimed at selecting some of the most impor-
tant transformations that cover a wide range of data pre-processing tasks, which
are distinguished as data reduction and data projection. Data reduction aiming
at decreasing the size of the dataset (e.g., instances selection or feature selec-
tion) and data projection, altering the representation of the data (e.g., mapping
continuous values to categories or encoding nominal attributes) [14].

In Table 1, a transformation is described in terms of: 1) the Technique it uses,
which can be Supervised — the algorithm knows the class of each instance and
Unsupervised — the algorithm is not aware of the class, 2) the Attributes it
uses, which can be Global — applied to all compatible attributes and Local —
applied to specific compatible attributes, 3) the Input Type, which denotes the
compatible attribute type for a given transformation, which can be Continuous

— represent measurements on some continuous scale, or Categorical — repre-
sent information about some categorical or discrete characteristics, 4) the Output
Type, which denotes the type of the attribute after the transformation and it can
similarly be Continuous or Categorical.

Transformation Technique Attributes Input Type Output Type

Discretization Supervised Global Continuous Categorical

Discretization Unsupervised Local Continuous Categorical

Nominal to Binary Supervised Global Categorical Continuous

Nominal to Binary Unsupervised Local Categorical Continuous

Normalization Unsupervised Global Continuous Continuous

Standardization Unsupervised Local Continuous Continuous

Replace Miss. Val. Unsupervised Global Continuous Continuous

Replace Miss. Val. Unsupervised Global Categorical Categorical

Principal Components Unsupervised Global Continuous Continuous

Table 1. List of transformations.

3.2 Impact of Pre-processing

In the following we devise a brief example that reveals the importance of data
pre-processing for a prediction (e.g., classification) problem. For more in depth
analysis of the impact of pre-processing we refer the reader to [3, 4].

Let us suppose that a user wants to apply the Logistic algorithm to the
Automobile5 dataset. The summary of Automobile is given in Table 2. This

5 https://archive.ics.uci.edu/ml/support/Automobile



Metadata Value

Instances 205

Attributes 26

Classes 2

Categorical Atts. 11

Continuous Atts. 15

Miss. Values 59
Table 2. Summary of autos.

Transformation Attribute PA

Unsup. Discretiz. 1,9,10,11,12,13 0.81

Unsup. Discretiz. 1,9,10 0.80

Unsup. Discretiz. All Cont. Atts. 0.75

Sup. Nom. To Bin. All Cat. Atts. 0.73

Unsup. Normaliz. All Cont. Atts. 0.71
Table 3. Transformations on autos.

dataset specifies autos in terms of their various characteristics like fuel type,
aspiration, num-of-doors, engine-size, etc. The response attribute (i.e., class) is
symboling. Symboling is a categorical attribute that indicates the insurance risk
rate, and its range is: -3,-2,-1,0,1,2,3. Value 3 indicates that the auto is
risky, -3 that it is pretty safe. The problem is to build a model that will predict
the insurance risk rate for a new auto.

Now, if Logistic is applied to the original non-transformed dataset, a pre-
dictive accuracy of 0.71 is obtained with a 10 fold cross-validation. Note that for
this run the Weka implementation of Logistic with default parametrization is
used. On the other hand, if some pre-processing is first performed on Automobile

and then the data mining algorithm is applied, the results shown in Table 3 are
obtained. In Table 3, the first column denotes the transformation applied, the
second denotes the index values of the attributes to which the transformation
is applied and the third is the predictive accuracy obtained after the Logistic

algorithm is applied on the transformed dataset. Note that for instance, if the
transformation Unsupervised Discretization (with default parametrization)
is applied to attributes {1,9,10,11,12,13} an improvement of 14% is obtained
in terms of the predictive accuracy. A non-experienced user would not be aware
of that. Hence, a proper recommendation of transformations would ease user’s
task and at the same time it would improve the final result.

4 Our Solution

4.1 Meta-learning for data pre-processing

Meta-learning is a general process used for predicting the performance (e.g., pre-
dictive accuracy) of an algorithm on a given dataset. It is a method that aims at
finding relationships between dataset characteristics and data mining algorithms.
However, taking into consideration the above mentioned scenario where a user
needs to be provided with some transformations to be applied, meta-learning
can also be used to find relationships between transformations and data mining
algorithms. That is because transformations by nature modify a dataset, and in
turn, the dataset characteristics. As a matter of fact, transformations, through
the changes they cause in the dataset characteristics, can be indirectly linked
to a data mining algorithm. Hence, we can find/learn the relationships between



Establish

Meta-learning

space

Metadata Meta-learner

Perform

learning
Predict

Fig. 2. Tree phases of the ranking process.

transformations and data mining algorithms. Thus, we use meta-learning to rank
transformations according to their capability of improving the final result of the
data mining algorithm.

The process of ranking consists of three phases, see Figure 2. First, a meta-
learning space is established using metadata consisting of dataset characteristics
along with some performance measures for data mining algorithms on those
particular datasets, see Table 4. Then, the meta-learning phase generates a model
(i.e., predictive meta-model) which defines the area of competence of the data
mining algorithm [8]. Finally, when a transformed dataset (i.e., a transformation
was applied on the dataset) arrives, the metadata are extracted and fed to the
predictive meta-model, which predicts the performance of the algorithm — given
the characteristics of the transformed dataset, and ultimately provides a ranking
of the transformations. This concludes the prediction phase.

Name # Instances # Atts. # Miss. Val. # Cat. Atts. # Cont. Atts. PA

autos 205 26 59 11 15 0.71

credit 690 16 9 6 4 0.85

iris 150 5 0 0 4 0.97

vote 435 17 392 16 0 0.96

Table 4. An example (sample) from a meta-learning space. All columns except the last
one, denote dataset characteristics. The last column is the predictive accuracy obtained
if Logistic was applied to the respective dataset. Sign # means ”number of”.

Two necessary ingredients for performing the aforementioned process are the
metadata and the meta-learner. In the following we give details on each one
of them.

4.1.1 Metadata. In our previous work [1], we studied and classified all types
of metadata that can be used by systems that intelligently support the user
during the process of data analysis. These systems may vary in terms of the
methodology they follow (e.g., case based reasoning, planning systems, etc.) [15]
and may use different metadata. When it comes to meta-learning however, only
dataset characteristics and performance characteristics of algorithms runs (i.e.,
predictive accuracies) on those datasets are used as metadata to establish the



meta-space (see Table 4). Hence briefly, metadata in this case are a set of struc-
tural characteristics (e.g., extracted features) — the number of instances, the
number of attributes, predictive accuracies of the algorithms runs on datasets,
precisions of the algorithms runs on datasets, etc. — that jointly represent the
relationships of algorithms with datasets. Different meta-learning systems may
use different characteristics of datasets and different performance measures of
algorithms runs in the meta-space. The metadata used in our approach is shown
in Table 5.

Note that hundreds of metadata could be used and there is no defined
methodology to find the set that will yield the best results. Moreover, their
extraction might be costly and a tradeoff must be made between the amount of
metadata to be used and the accuracy that can be obtained using them in the
meta-learning phase.

In order to determine the metadata to be used, we followed an empirical
approach. That is, we experimented with different combinations of metadata.
Our experiments showed that the metadata in Table 5 give a good tradeoff.
Note that they happen to coincide at a rate of 53% with the metadata used in
the literature [2].

In Table 5, we also show the Importance of each metadata. The Importance
coefficients are computed after generating the models in the meta learning phase,
and they denote how important a metadata is, for creating the model. The
bigger the coefficient, the more important the attribute is. We noticed that
some metadata are assigned value 0, that is, they were not used at all by the
meta-learner. As a matter of fact, we removed them and recreated the models.
Furthermore, in Table 5 column Modifiable indicates whether the metadata is
modifiable through the transformations we use, shown in Table 1. If metadata are
not transformable, we do not use them in the meta-learning phase, because those
metadata remain constant and they do not reflect the impact of transformations.
Hence finally, in the meta-learning phase we use only the metadata that are
indicated with a check mark in the column Used in Table 5. Note, also the
last row in Table 5, i.e., predictive accuracy, is the metadata we use as the
performance measure of the algorithm on a specific dataset. In the meta-learning
phase, this metadata is the one that needs to be predicted (i.e., the response).
Naturally, columns Importance and Modifiable are not applicable to it, because
this measure is not subject to transformations (e.g., transformations do not
modify it directly).

4.1.2 Meta-learner. Having stored an algorithm performance characteristic
(i.e., predictive accuracy) and a set of dataset characteristics, the goal is to pre-
dict the performance of an algorithm in a transformed dataset. Formally, the
problem can be defined as follows. Given algorithm A and a limited number of
training data D = (x1, y1)...(xn, yn), the goal is to find a meta learner with opti-
mal/good generalization performance. Generalization performance is estimated

by splitting D into disjoint training and validation sets D
(i)
train and D

(i)
valid. We

use leave-one-out validation [10], which splits the training data into n parti-



Metadata Importance Modifiable Used

Negative Percentage 0.519947929 No 5

Class Entropy 0.472033619 No 5

Majority Class Size 0.366513463 No 5

Number of Instances 0.327327764 Yes X
Positive Percentage 0.24615823 No 5

Dimensionality 0.147883677 Yes X
Minority Class Size 0.144647803 No 5

Equivalent Number of Attributes 0.140606534 Yes X
Number of Features 0.123255813 Yes X
Percentage of Numeric Attributes 0.091996975 No X
Number of Classes 0.090051421 No 5

Noise to Signal Ratio 0.089608376 Yes X
Mean Kurtosis of Numeric Attributes 0.08734816 Yes X
Mean Means of Numeric Attributes 0.071206736 Yes X
Mean Std. Dev. of Numeric Attributes 0.056879682 Yes X
Mean Mutual Information 0.046159738 Yes X
Max. Nominal Att. Distinct Values 0.042345917 Yes X
Std. Dev. Nominal Att Distinct Values 0.040555858 Yes X
Mean Nominal Att. Distinct Values 0.040086227 Yes X
Mean Skewness of Numeric Attributes 0.025735383 Yes X
Percentage of Nominal Attributes 0.023476599 Yes X
Mean Attribute Entropy 0.021198277 Yes X
Percentage of Binary Attributes 0.009063724 Yes X
Percentage of Missing Values 0.002302323 Yes X
Incomplete Instance Count 0 Yes 5

Number of Instances With Missing Values 0 Yes 5

Min. Nominal Att. Distinct Values 0 Yes 5

Predictive Accuracy NA NA X
Table 5. The list of Metadata.

tions D
(1)
valid, ..., D

(n)
valid, and sets D

(i)
train = D\D(i)

valid for i = 1, ..., n. Note that
x ∈ x1, x2...xn are the dataset characteristics and y1 is the predictive accuracy
of algorithm A run on that particular dataset. Hence, x and y altogether are the
extracted metadata.

The meta-learner we decided to use is a regression tree. Trees have many
good properties, such as: they perform implicit feature selection, require little
effort for data preparation, nonlinear relationships between variables do not af-
fect their performance and they are easy to interpret and explain. Thus, we
created a regression tree for each data mining algorithm or more precisely for
each classification algorithm.

In particular, the classification algorithms for which we generated regression
trees are representative algorithms for all, except three classes of algorithms in
Weka. In Weka, the classification algorithms are classified into: bayes, functions,
lazy, rules, trees, meta-methods, multi-instance methods, and ensemble-methods.



We aimed at considering one algorithm for each one of the first five classes, and
they are: Naive Bayes, Logistic, IBk, JRip, and J48 respectively. The last three
classes were omitted due to the fact that they are more complex and are not
commonly used by non experienced users.

4.2 Solution Prototype

The general architecture of the developed solution prototype is depicted in Fig-
ure 3. The solution’s main processes, the Learning and Recommending are
implemented independently of each other. Below we give detailed explanations
for each one of them.

*

Meta

database

Metadata

Generator
Meta - Learner Model

DM Algorithms

pmml

DM Algorithm

Advice/Ranking

of Transformations

Datasets

New dataset

Transformations

executor

Metadata

Extractor
Predictor

Transformations

Learning phase

Recommending phase

Legend

Data flow Metadata flow Input/OutputStatistical Model flow

Fig. 3. Solution Architecture.

4.2.1 Learning phase. In the previous sections we mentioned that in order to
build a model (e.g., predictive meta-model), we must firstly establish the meta-
space — denoted as Learning phase in Figure 3. In our context, the meta-space
needs to be constructed out of metadata that can be extracted from datasets
and from the executions of algorithms on those datasets. As a matter of fact, we
needed to fetch hundreds of datasets, extract some of their required characteris-
tics, run different algorithms on them and get the predictive accuracies with 10
fold cross validation. Finally, use all of these to feed the Meta-database.

In order to do the aforementioned, we first used OpenML [17] to fetch several
hundred datasets. Next, from each dataset we extracted the 17 dataset charac-
teristics — highlighted with a check-mark in Table 5. Finally, we executed the



classification algorithms (see Section 4.1.2), on the datasets, and extracted the
predictive accuracy values after evaluating with 10-fold cross validation. For each
data mining algorithm, we obtained a meta-dataset that was fed to the Meta-
database. In Figure 3, this is represented via the Metadata creator module and
was developed in Java.

After obtaining the metadata, hence constructing the meta-space, we con-
tinued on building the Models (or predictive meta-models) through the Meta-
learners, which in this case are regression trees. We used the R language to
construct a tree for each one of the algorithms. Hence, we obtained one model
per data mining algorithm. After that, the models were exported to pmml [6]
files, and were next fed to the Predictor in the recommending phase.

Note that this process is not specifically tailored for datasets from the OpenML
repository, but it can work on any collection of datasets. However, the models
obtained are expected to slightly change from one collection to another.

4.2.2 Recommending phase. When a user wants to analyze a dataset,
he/she selects an algorithm to be used for the analysis and then the system
automatically recommends transformations to be applied, such that the final
result is improved. In order to do that, the system first, applies different trans-
formations to the dataset through the Transformation executor module. Then,
the metadata of the transformed dataset are extracted through the Metadata ex-
tractor module and they are fed to the Predictor, which using the model (pmml)
of the respective algorithm (the one selected by the user) predicts the impact of
the transformation. Finally, the Transformations are ranked according to their
impact on the final result (according to whether they improve the final result).
The modules of the Recommending phase are entirely developed in Java.

5 Evaluation

We performed an experimental study of the performance that can be achieved
by our approach on various algorithms and various datasets. After specifying our
experiment environment we evaluate our systems ability to predict the transfor-
mations that will improve the final result of the analysis.

5.1 Experimental setup

Recall that when building the meta-learners, we performed leaf-one-out valida-
tion for evaluating them (see Section 4.1.2). However, in order to enable a larger
number of datasets for performing the experiments, each time we performed the
leave-one-out validation we created a tree using the subset of datasets (i.e., with-
holding the dataset that was left-out). Hence, for each data mining algorithm
we created as many trees (meta-learners, meta-models) as datasets were used
for training the tree of the respective algorithm. As a matter of fact, in order to
perform experiments for an algorithm, we can use the entire set of datasets for



testing, only bearing in mind that for each dataset, in the Predictor, we use the
tree (meta-model) that was built without using that particular dataset.

In our context, an experiment is performed in the following way. We first
select a dataset and a data mining algorithm to be used for performing analysis
(i.e., classification) on the dataset. Next, our system finds the impact of a set
of transformations on the final result of the analysis.

The set of transformations, consists of iteratively applying the transfor-
mations shown in Table 1, however each time changing the set of attributes to
which the transformation is applied. Note that the transformations which are
denoted as Global in the table, are applied only once to the set of all compat-
ible attributes (altogether), whereas the transformations, which are denoted as
Local are applied to: 1) every compatible attribute separately (one by one), and
2) all the set of compatible attributes (altogether).

The impact, is the effect of transformations to the final result (i.e., predictive
accuracy) of the selected algorithm, and it can be, the foreseen/predicted impact
and the real impact.

The foreseen/predicted impact is calculated by applying the set of transfor-
mations, as defined above, and subsequently extracting the characteristics (meta-
data) of the transformed datasets, which are then used for predicting (foreseeing)
the performance of the respective algorithm (on the transformed dataset).

The real impact is calculated by similarly applying the set of transformations,
but then, subsequently applying the respective data mining algorithm for real
to the transformed datasets, and hence obtaining the real performance (e.g.,
predictive accuracy) of the data mining algorithm. In terms of computational
complexity, the latter is a costly process, and it is performed only for the sake
of evaluating the system (experiments).

The experiments were performed on an Intel Core i5 machine, running at
1.70GHz with 8GB of main memory. An experiment for a single algorithm, on
average took approximately 4 CPU hours.

5.2 Results for the improvements obtained by transformations

On each run, the system internally categorizes a transformation, into one of
the following three categories: Good — an improvement of the final result for
the respective algorithm is foreseen if the transformation were to be applied,
Bad — a worsening of the final result for the respective algorithm is foreseen if
the transformation were to be applied, or Neutral — neither improvement nor
worsening is foreseen if the transformation were to be applied. Note that the
latter occurs when the transformed dataset remains in the same leaf within the
meta-learner (i.e., regression tree) or it moves to another leaf which predicts the
same value (i.e., predictive accuracy). This is a limitation of the regression trees
because they contain a discrete number of leaves, and hence a discrete number
of possible predictions.

The aim of the experiments is to verify whether the foreseen categorizations
are so for real. This, as previously mentioned (though costly) is done by executing



N
a
iv

e
B

a
y
e
s

Lo
g
is

ti
c

IB
k

JR
ip

J4
8

0

50

100

150

200

250

300

350

400

N
u
m

b
e
r 

o
f 

d
a
ta

se
ts

Unsuccessful Successful Datasets

Fig. 4. Successful vs Unsuccessful Datasets.

the data mining algorithms on the transformed datasets and examining the real
impact of the transformations.

In this context, we mark as Successful, the cases (i.e., datasets) on which
the real average improvement we get from all the transformations categorized as
Good for a dataset, is greater than the real average improvement we get from
the transformations that were categorized as Bad for the same dataset. That
is, the transformations foreseen as Good, ”beat” on average the transformations
foreseen as Bad.

In contrast, we mark as Unsuccessful, the cases on which the transformations
foreseen as Good cannot ”beat” on average the transformations foreseen as Bad.

In Figure 4, we show the results obtained. We show the comparison between
the number of Successful cases — the green bar, and the number of Unsuccessful
cases — the red bar. In addition, a third bar (i.e., gray) in the figure, denotes
the total number of cases (datasets) for which we performed the experiments on
each respective algorithm. Note that the sum of Successful (green) and Unsuc-
cessful (red) cases does not coincide with the total number of datasets (gray).
This is because, for some datasets we either do not find Good transformations
(54.7%), or we do not find Bad transformations (38.1%), or neither Good nor
Bad transformations (7.2%). On the latter cases we could not find neither Good
nor Bad transformations, but for the rest this happens because the datasets al-



ready belong to the best or the worst leaves of the trees (meta-learners), hence
there can be no transformations that can move them to a better or worse leaf
respectively. As a matter of fact, in those particular cases we cannot compare
the Good versus Bad, hence, they do not appear neither as Successful nor as
Unsuccessful.

In order to understand whether the numbers shown in the figure are sig-
nificant, we performed a binomial distribution test, comparing the number of
Successful cases to the number of Successful + Unsuccessful cases with respect
to the theoretical probability which is equal to 0.5. The results obtained are
shown in Table 6. The column p-val denotes how significant is the difference be-
tween the values of Successful and the population of Successful + Unsuccessful.
We assume the difference to be significant if the value in p-val is below or equal
to 0.05. As a matter of fact, we can observe that our method gives significant
values for all the algorithms considered.

Algorithm Weka class Successful Successful+Unsuccessful p-val

Naive Bayes Bayes 126 190 1.99359E-06

Logistic Functions 112 189 0.004326558

IBk Lazy 131 198 1.57706E-06

JRip Rules 59 94 0.004773905

J48 Trees 79 124 0.000782367
Table 6. Binomial Significance Test for all Algorithms.

6 Conclusions and Future Work

In this work, we have shown that the daunting problem of data pre-processing
can be alleviated by a practical, automated tool. This is made possible through
meta-learning which enables predicting the impact of transformations on the fi-
nal performance of algorithms on the corresponding datasets, and in turn, allows
ranking the transformations according to their impact on the final result.

We built a tool that draws on a range of classification algorithms in Weka
and makes it easy for non-experts to perform data pre-processing. An extensive
evaluation on hundreds of datasets showed that for a set of algorithms even
blindly (e.g., users without any prior knowledge wrt data mining) applying the
recommended transformations improves the final result of the algorithm. We
believe that this can be a handy tool for experienced users as well, because they
can discriminate within the recommended transformations and pick the ones
that are potentially more suitable for their problem at hand.

We see several promising avenues for future work. First, some limitations of
using regression trees as meta-learners were observed (e.g., many transformations
predicted to perform the same, due to the discrete number of leaves), suggesting
the investigation of more sophisticated methods (e.g., neural networks). Second,



we see potential value in customizing the transformations depending on the class
of algorithms (e.g., trees) or even specific algorithms. Finally, we aim at extend-
ing the range of the classification algorithms that we have considered so far.

Acknowledgments.This research has been funded by the European Commis-
sion through the Erasmus Mundus Joint Doctorate “Information Technologies
for Business Intelligence - Doctoral College” (IT4BI-DC).

References

1. B. Bilalli, A. Abelló, T. Aluja-Banet, and R. Wrembel. Towards intelligent data
analysis: The metadata challenge. In IoTBD, 2016.

2. M. Charest et al. Bridging the gap between data mining and decision support: A
case-based reasoning and ontology approach. IDA, 2008.

3. S. F. Crone, S. Lessmann, and R. Stahlbock. The impact of preprocessing on
data mining: An evaluation of classifier sensitivity in direct marketing. European
Journal of Operational Research, 2006.

4. T. Dasu and T. Johnson. Exploratory data mining and data cleaning, volume 479.
John Wiley & Sons, 2003.

5. U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge
discovery in databases. AI Magazine, 1996.

6. A. Guazzelli, M. Zeller, W.-C. Lin, G. Williams, et al. Pmml: An open standard
for sharing models. The R Journal, 2009.

7. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, et al. The weka data
mining software: An update. ACM SIGKDD Explorations Newsletter, 2009.

8. A. Kalousis and M. Hilario. Model selection via meta-learning: A comparative
study. International Journal on Artificial Intelligence Tools, 2001.

9. J. Kietz, F. Serban, S. Fischer, and A. Bernstein. Semantics Inside! But Let’s Not
Tell the Data Miners: Intelligent Support for Data Mining. In ESWC, 2014.

10. R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and
model selection. In IJCAI, 1995.

11. D. Michie, D. J. Spiegelhalter, C. C. Taylor, and J. Campbell, editors. Machine
Learning, Neural and Statistical Classification. Ellis Horwood, 1994.

12. I. Mierswa. Rapid miner. Künstliche Intelligenz, 2009.
13. M. A. Munson. A study on the importance of and time spent on different modeling

steps. SIGKDD Explor. Newsl., 13(2), May 2012.
14. D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999.
15. F. Serban, J. Vanschoren, J. Kietz, and A. Bernstein. A survey of intelligent

assistants for data analysis. ACM Computing Surveys, 2013.
16. C. Thornton, F. Hutter, H. H. Hoos, et al. Auto-weka: Combined selection and

hyperparameter optimization of classification algorithms. In KDD, 2013.
17. J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. Openml: Networked science

in machine learning. ACM SIGKDD Explorations Newsletter, 2014.


