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1 Universitat Politècnica de Catalunya, BarcelonaTech
Barcelona, Spain ({petar|oromero|aabello}@essi.upc.edu)

2 Universite Libre de Bruxelles, Brussels, Belgium (toon.calders@ulb.ac.be)
3 University of Antwerp, Antwerp, Belgium (toon.calders@uantwerpen.be)

Abstract. Today’s distributed data processing systems typically follow
a query shipping approach and exploit data locality for reducing network
traffic. In such systems the distribution of data over the cluster resources
plays a significant role, and when skewed, it can harm the performance
of executing applications. In this paper, we address the challenges of
automatically adapting the distribution of data in a cluster to the work-
load imposed by the input applications. We propose a generic algorithm,
named H-WorD, which, based on the estimated workload over resources,
suggests alternative execution scenarios of tasks, and hence identifies re-
quired transfers of input data a priori, for timely bringing data close
to the execution. We exemplify our algorithm in the context of MapRe-
duce jobs in a Hadoop ecosystem. Finally, we evaluate our approach and
demonstrate the benefits of automatic data redistribution.

1 Introduction

For bringing real value to end-users, today’s analytical tasks often require pro-
cessing massive amounts of data. Modern distributed data processing systems
have emerged as a necessity for processing, in a scalable manner, large-scale
data volumes in clusters of commodity resources. Current solutions, including
the popular Apache Hadoop [13], provide fault-tolerant, reliable, and scalable
platforms for distributed data processing. However, network traffic is identified
as a bottleneck for the performance of such systems [9]. Thus, current schedul-
ing techniques typically follow a query shipping approach where the tasks are
brought to their input data, hence data locality is exploited for reducing net-
work traffic. However, such scheduling techniques make these systems sensitive
to the specific distribution of data, and when skewed, it can drastically affect
the performance of data processing applications.

At the same time, distributed data storage systems, typically independent
of the application layer, do not consider the imposed workload when deciding
data placements in the cluster. For instance, Hadoop Distributed File System
(HDFS) places data block replicas randomly in the cluster following only the
data availability policies, hence without a guarantee that data will be uniformly
distributed among DataNodes [12]. To address this problem, some systems have
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provided rules (in terms of formulas) for balancing data among cluster nodes,
e.g., HBase [1], while others like HDFS provided means for correcting the data
balancing offline [12]. While such techniques may help balancing data, they either
overlook the real workload over the cluster resources, i.e., the usage of data, or
at best leave it to the expert users to take it into consideration. In complex
multi-tenant environments, the problem becomes more severe as the skewness of
data can easily become significant and hence more harmful to performance.

In this paper, we address these challenges and present our workload-driven
approach for data redistribution, which leverages on having a complete overview
of the cluster workload and automatically decides on a better redistribution of
workload and data. We focus here on the MapReduce model [6] and Apache
Hadoop [13] as its widely used open-source implementation. However, notice
that the ideas and similar optimization techniques as the ones proposed in this
paper could be applied to other frameworks as well.

In particular, we propose an algorithm, named H-WorD, for supporting task
scheduling in Hadoop with Workload-driven Data Redistribution. H-WorD s-
tarts from a set of previously profiled MapReduce jobs that are planned for
execution in the cluster; e.g., a set of jobs currently queued for execution in a
batch-queuing grid manager system. It initializes the cluster workload, follow-
ing commonly used scheduling techniques (i.e., exploiting data locality, hence
performing query shipping). Then, H-WorD iteratively reconsiders the current
workload distribution by proposing different execution scenarios for map tasks
(e.g., executing map tasks on nodes without local data, hence performing also
data shipping). In each step, it estimates the effect of a proposed change to the
overall cluster workload, and only accepts those that potentially improve cer-
tain quality characteristics. We focus here on improving the overall makespan4

of the jobs that are planned for execution. As a result, after selecting execu-
tion scenarios for all map tasks, H-WorD identifies the tasks that would require
data shipping (i.e., transferring their input data from a remote node). Using
such information, we can proactively perform data redistribution in advance for
boosting tasks’ data locality and parallelism of the MapReduce jobs.

On the one hand, the H-WorD algorithm can be used offline, complementary
to existing MapReduce scheduling techniques, to automatically instruct redis-
tribution of data beforehand, e.g., plugged as a guided rebalancing scheme for
HDFS [2]. On the other hand, H-WorD can be used on the fly, with more sophis-
ticated schedulers, which would be able to take advantage of a priori knowing
potentially needed data transfers, and leveraging on idle network cycles to sched-
ule such data transfers in advance, without deferring other tasks’ executions.

Contributions. In particular, our main contributions are as follows.

– We present an automatic approach for workload-driven data redistribution
in Apache Hadoop.

4 We define makespan as the total time elapsed from the beginning of the execution
of a set of jobs, until the end of the last executing job [5].
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– We introduce a novel algorithm, H-WorD, which, led by the real workload
in the cluster, decides on a data redistribution that would improve the per-
formance of executing that workload.

– We evaluate our approach using well-known MapReduce benchmarks, for
showing the effectiveness of the H-WorD algorithm.

Outline. The rest of the paper is structured as follows. Section 2 introduces a
running example used throughout the paper. Section 3 discusses the motivation
and presents the problem of data redistribution in Hadoop. Section 4 formalizes
the notation and presents the H-WorD algorithm. In Section 5, we report on
our experimental findings. Finally, sections 6 and 7 discuss related work and
conclude the paper, respectively.

2 Running Example

To illustrate our approach and facilitate the explanations throughout the paper,
we introduce a running example based on a set of three MapReduce WordCount5

jobs, with different input data sets. A MapReduce job executes in two consecutive
phases, namely map and reduce [6]. Map phase processes an input file from
HDFS. The file is split in logical data blocks of the same size (e.g., 64MB or
128MB), physically replicated for fault tolerance, and distributed over the cluster
nodes. Each data block is processed by a single map task.

Table 1. Example MapReduce jobs

job ID file ID size (MB) #tasks durmapTask (s) durmapInTransfer (s)

1 f1 1920 15 40 6.34

2 f2 640 5 40 6.34

3 f3 1280 10 40 6.34

We profiled the example MapReduce jobs using an external tool, called
Starfish [8]. Starfish can create job profiles on the fly, by applying sampling
methods (e.g., while jobs are queued waiting for execution), or from previous
jobs’ executions. The portion of the profiles of the example jobs focusing on
map tasks are presented in Table 1. We trace the number of map tasks, the
average duration of each task (durmapTask), as well as the average duration of
transferring its input data block over the network (i.e., durmapInTransfer).

Furthermore, we consider a computing cluster with three computing nodes,
each with a capacity of 2CPUs and 2GB of memory, connected through the
network with 100Mbps of bandwidth (see Figure 1). We deployed Hadoop 2.x on
the given cluster, including HDFS and MapReduce. In addition, for simplifying
the explanations, we configured HDFS for creating only one replica of each input
data block. In Figure 1, we depict the initial distribution of the input data in
the cluster. Note that each input data block is marked as DBXfid, where X is
an identifier of a block inside a file, and fid is the id of the file it belongs to.

For reasons of simplicity, we configured all example jobs to require con-
tainers (i.e., bundles of node resources) with 1CPU and 1GB of memory for

5 WordCount Example: https://wiki.apache.org/hadoop/WordCount

https://wiki.apache.org/hadoop/WordCount
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Fig. 1. Example cluster configuration and initial data distribution

accommodating each map and reduce task, i.e., mapreduce.map.memory.mb =
mapreduce.reduce.memory.mb = 1024, and mapreduce.map.cpu.vcores = mapr-
educe.reduce.cpu.vcores = 1.

3 The Problem of Skewed Data Distribution

We further applied the default scheduling policy of Hadoop (i.e., exploiting data
locality) to our running example. An execution timeline is showed in Figure
2:left, where the x-axis tracks the start and end times of tasks and the y-axis
shows the resources the tasks occupy at each moment. For clarity, we further
denote a task tji both with the task id i, and the job id j. Notice in Figure 1
that the job ids refer to groups of input data blocks that their map tasks are
processing, which determines the placement of the map tasks in the cluster for
exploiting data locality. First, from the timeline in Figure 2:left, we can notice
that although the distribution of input data is not drastically skewed, it affects
the execution of job 3, since for executing map task m3

4, we need to wait for
available computing resources on node1.

(Baseline) (With data redistribution)

Fig. 2. Timeline of executing example MapReduce jobs

Furthermore, we can also observe some idle cycles on the computing resources
(i.e., node3), that obviously could alternatively accommodate m3

4, and finish the
map phase of job 3 sooner. However, node3 does not contain the needed input
data at the given moment, thus running m3

4 on node3 would require transferring
its input data (i.e., tt31), which would also defer its execution (see alternative
execution of m3

4 in Figure 2:left).
Having such information beforehand, we could redistribute data in a way

that would improve utilization of cluster resources, and improve the makespan.
Such data redistribution could be done offline before starting the execution of
MapReduce jobs. However, note that there are also idle cycles on the network
resource (e.g., between s1 and s2, and between s2 and s3). This is exactly where
having more information about the imposed workload makes the difference. In
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particular, knowing that the higher workload of node1 can potentially affect
the makespan of the jobs’ execution, we could take advantage of idle network
resources and plan for timely on the fly transferring of m3

4’s input data to another
node, in overlap with other tasks’ execution, and hence improve the execution
makespan. Such alternative execution scenario is depicted in Figure 2:right.

We showcased here in a simple running example that in advance data redis-
tribution can moderately improve the makespan. However, typical scenarios in
Hadoop are much more complex, with larger and more complex cluster configu-
rations, greater number of jobs, more complex jobs, and larger input data sizes.
Thus, it is obvious that estimating the imposed workload over cluster resources
and deciding on data and workload redistribution is intractable for humans and
requires efficient automatic means. At the same time, in such real world sce-
narios improving resource utilization and minimizing the execution makespan is
essential for optimizing the system performance.

We further studied how to automatically, based on the estimated workload,
find new execution scenarios that would improve data distribution in the clus-
ter, and hence reduce the makespan. Specifically, we focused on the following
challenges:

– Resource requirements. For obtaining the workload that a job imposes
over the cluster, we need to model cluster resources, input MapReduce jobs,
and the resource requirements of their tasks.

– Alternative execution scenarios. We need to model alternative execution
scenarios of MapReduce jobs, based on the distribution of input data in a
cluster and alternative destination resources for their tasks. Consequently,
alternative execution scenarios may pose different resource requirements.

– Workload estimation. Next, we need an efficient model for estimating
the workload over the cluster resources, for a set of jobs, running in certain
execution scenarios.

– Data redistribution. Lastly, we need an efficient algorithm, that, using the
estimated workload, selects the most favorable execution scenario, leading
to a better distribution of data in a cluster, and to reducing the makespan.

4 Workload-driven Redistribution of Data

In this section, we tackle the previously discussed challenges, and present our
algorithm for workload-driven redistribution of data, namely, H-WorD.

4.1 Resource requirement framework

In this paper, we assume a set of previously profiled MapReduce jobs as input
(see the example set of jobs in Table 1). Notice that this is a realistic scenario for
batched analytical processes that are run periodically, hence they can be planned
together for better resource utilization and lower makespan. For instance, in a
grid manager system, a set of jobs are queued, waiting for execution, during
which time we can decide on a proper distribution of their input data.
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A set of MapReduce jobs is submitted for execution in a cluster, and each
job jx consists of sets of map and reduce tasks.

J := {j1, ..., jn}, jx := MTx ∪RTx (1)

The set of all tasks of J is defined as TJ =
⋃n
x=1 jx =

⋃n
x=1(MTx ∪RTx).

These tasks can be scheduled for execution in the cluster that comprises
two main resource types, namely: computing resources (i.e., nodes; Rcmp), and
communication resources (i.e., network; Rcom).

R := Rcmp ∪Rcom = {r1, ..., rn} ∪ {rnet} (2)

Each resource r (computing or communication) has a certain capacity vector
C(r), defining capacities of the physical resources that are used for accommo-
dating MapReduce tasks (i.e., containers of certain CPU and memory capacities,
or a network of certain bandwidth).

∀r ∈ Rcmp,C(r) := 〈ccpu(r), cmem(r)〉;∀r ∈ Rcom,C(r) := 〈cnet(r)〉 (3)

Each task tji requires resources of certain resource types (i.e., computing and
communication) during their execution. We define a resource type requirement
RTRk of task tji , as a pair [S, d], such that tji requires for its execution one
resource from the set of resources S of type k (S ⊆ Rk), for a duration d.

RTRk(tji ) := [S, d], st. : S ⊆ Rk (4)

Furthermore, we define a system requirement of task tji , as a set of resource
type requirements over all resource types in the cluster, needed for the complete
execution of tji .

SR(tji ) := {RTR1(tji ), ..., RTRl(t
j
i )} (5)

Lastly, depending on specific resources used for its execution, task tji can be exe-
cuted in several different ways. To elegantly model different execution scenarios,
we further define the concept of execution modes. Each execution mode is defined
in terms of a system requirement that a task poses for its execution in a given
scenario (denoted SR(tji )).

M(tji ) := {SR1(tji ), ..., SRm(tji )} (6)

Example. The three example MapReduce jobs (job 1, job 2, and job 3; see Table
1), are submitted for execution in the Hadoop cluster shown in Figure 1. Cluster
comprises three computing resources (i.e., node1, node2, and node3), each with
a capacity of 〈2CPU, 2GB〉, connected through a network of bandwidth capacity
〈100Mbps〉. Map task m1

1 of job 1 for its data local execution mode requires a
container of computing resources, on a node where the replica of its input data
is placed (i.e., node1), for the duration of 40s. This requirement is captured as
RTRcmp(m

1
1) = [{node1}, 40s]. 2

4.2 Execution modes of map tasks

In the context of distributed data processing applications, especially MapReduce
jobs, an important characteristic that defines the way the tasks are executed, is
the distribution of data inside the cluster. This especially stands for executing
map tasks which require a complete data block as input (e.g., by default 64MB
or 128MB depending on the Hadoop version).
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Data distribution. We first formalize the distribution of data in a cluster (i.e.,
data blocks stored in HDFS; see Figure 1), regardless of the tasks using these
data. We thus define function floc that maps logical data blocks DBXfid ∈ DB
of input files to a set of resources where these blocks are (physically) replicated.

floc : DB→ P(Rcmp) (7)

Furthermore, each map task mj
i processes a block of an input file, denoted

db(mj
i ) = DBXfid. Therefore, given map task mj

i , we define a subset of re-
sources where the physical replicas of its input data block are placed, i.e., local
resource set LRji . ∀mj

i ∈MTJ , LR
j
i := floc(db(m

j
i )) (8)

Conversely, for map task mj
i we can also define remote resource sets, where some

resources may not have a physical replica of a required data block, thus executing
mj
i may require transferring input data from another node. Note that for keeping

the replication factor fulfilled, a remote resource set must be of the same size as
the local resource set.

∀mj
i ∈MTJ ,RRji := {RRji |RR

j
i ∈ (P(Rcmp) \ LRji ) ∧ |RR

j
i | = |LR

j
i |} (9)

Following from the above formalization, map task mj
i can be scheduled to run

in several execution modes. The system requirement of each execution mode of
mj
i depends on the distribution of its input data. Formally:

∀mj
i ∈MTJ ,M(mj

i ) = {SRloc(mj
i )} ∪

⋃|RRj
i |

k=1 {SRrem,k(mj
i )}, s.t. : (10)

SRloc(m
j
i ) = {[LRji , d

j,cmp
i ]}; SRrem,k(mj

i ) = {[RRji,k, d
j,cmp
i,k ], [{rnet}, dj,comi,k ]}

Intuitively, a map task can be executed in the local execution mode (i.e.,
SRloc(m

j
i )), if it executes on a node where its input data block is already placed,

i.e., without moving data over the network. In that case, a map task requires a
computing resource from LRji for the duration of executing map function over the

complete input block (i.e., dj,cmpi = durmapTask). Otherwise, a map task can also

execute in a remote execution mode (i.e., SRrem(mj
i )), in which case, a map task

can alternatively execute on a node without its input data block. Thus, the map
task, besides a node from a remote resource set, may also require transferring
input data block over the network. Considering that a remote resource set may
also contain nodes where input data block is placed, hence not requiring data
transfers, we probabilistically model the duration of the network usage.

dj,comi,k =


|RRj

i,k\LR
j
i |

2

|RRj
i,k|

· durmapInTransfer, if on the fly redistirbution (11)

0, if offline redistirbution

In addition, note that in the case that data redistribution is done offline, given
data transfers will not be part of the jobs’ execution makespan (i.e., dj,comi,k = 0).

Example. Notice that there are three execution modes in which map task
m3

4 can be executed. Namely, it can be executed in the local execution mode
SRloc(m

3
4) = {[{node1}, 40s]}, in which case, it requires a node from its local

resource set (i.e., LR3
4 = {node1}). Alternatively, it can also be executed in

one of the two remote execution modes. For instance, if executed in the remote
execution mode SRrem,2(m3

4) = {[{node3}, 40s], [{net}, 6.34s]}, it would require
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a node from its remote resource set RR3
4,1 = {node3}, and the network resource

for transferring its input block to node3 (see dashed boxes in Figure 2:left). 2
Consequently, selecting an execution mode in which a map task will execute,

directly determines its system requirements, and the set of resources that it will
potentially occupy. This further gives us information of cluster nodes that may
require a replica of input data blocks for a given map task.

To this end, we base our H-WorD algorithm on selecting an execution mode
for each map task, while at the same time collecting information about its re-
source and data needs. This enables us to plan data redistribution beforehand
and benefit from idle cycles on the network (see Figure 2:right).

4.3 Workload estimation

For correctly redistributing data and workload in the cluster, the selection of ex-
ecution modes of map tasks in the H-WorD algorithm is based on the estimation
of the current workload over the cluster resources.

Algorithm 1 getWorkload

inputs: SR(tji ); output: W : R → Q
1: for all r ∈ R do
2: W (r)← 0;
3: end for
4: for all [S, d] ∈ SR(tji ) do

5: for all r ∈ S do
6: W (r)← W (r) + d

|S| ;

7: end for
8: end for

In our context, we define a workload as a function W : R→ Q, that maps the
cluster resources to the time for which they need to be occupied. When selecting
an execution mode, we estimate the current workload in the cluster in terms of
tasks, and their current execution modes (i.e., system requirements). To this end,
we define the procedure getWorkload (see Alg. 1), that for map task tji , returns
the imposed workload of the task over the cluster resources R, when executing
in execution mode SR(tji ).

Example. Map task m3
4 (see Figure 2:left), if executed in local execution

mode SRloc(m
3
4), imposes the following workload over the cluster: W (node1) =

40, W (node2) = 0, W (node3) = 0, W (net) = 0. But, if executed in remote execu-
tion mode SRrem,2(m3

4), the workload is redistributed to node3, i.e.,W (node1) =
0,W (node2) = 0,W (node3) = 40, and to the network for transferring input data
block to node3, i.e., W (net) = 6.34. 2

Following from the formalization in Section 4.1, a resource type requirement
of a task defines a set of resources S, out of which the task occupies one for
its execution. Assuming that there is an equal probability that the task will be
scheduled on any of the resources in S, when estimating its workload imposed
over the cluster we equally distribute its complete workload over all the resources
in S (steps 4 - 8). In this way, our approach does not favor any specific cluster
resource when redistributing data and workload, and is hence agnostic to the
further choices of the chosen MapReduce schedulers.
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4.4 The H-WorD algorithm

Given the workload estimation means, we present here H-WorD, the core algo-
rithm of our workload-driven data redistribution approach (see Alg. 2).

Algorithm 2 H-WorD
inputs: MTJ

1: todo←MTJ ;
2: for all r ∈ R do W (r)← 0; end for
3: for all t ∈MTJ do
4: SRcur(t)← SRloc(t);
5: Wt ← getWorkload(SRcur(t));
6: for all r ∈ R do
7: W (r)← W (r) +Wt(r);
8: end for
9: end for
10: while todo 6= ∅ do
11: t← nextFrom(todo); todo← todo \ {t};

12: SRnew(t)← SRx(t)|q(W +∆x,cur) = min
SRj(t)∈M(t)\{SRcur(t)}

{
q(W +∆j,cur)

}
13: if q(W ) > q(W +∆new,cur) then
14: SRcur(t)← SRnew(t);
15: W ← W +∆new;
16: end if
17: end while

H-WorD initializes the total workload over the cluster resources following the
policies of the Hadoop schedulers which mainly try to satisfy the data locality
first. Thus, as the baseline, all map tasks are initially assumed to execute in a
local execution mode (steps 2 - 9).

H-WorD further goes through all map tasks of input MapReduce jobs, and
for each task selects an execution mode that potentially brings the most benefit
to the jobs’ execution. In particular, we are interested here in reducing the
execution makespan, and hence we introduce a heuristic function q(W), which
combines the workloads over all resources, and estimates the maximal workload
in the cluster, i.e., q(W ) = maxr∈R(W (r)). Intuitively, this way we obtain a
rough estimate of the makespan of map tasks executing in the cluster.

Accordingly, for each map task, H-WorD selects an execution mode that im-
poses the minimal makespan to the execution of input MapReduce jobs (Step 12).
The delta workload that a change in execution modes (SRcur → SRnew) imposes
is obtained as:∆new,cur = getWorkload(SRnew(t))−getWorkload(SRcur(t)).

Finally, for the selected (new) execution mode SRnew(t), H-WorD analyzes
if such a change in execution modes actually brings benefits to the execution
of input jobs, and if the global makespan estimate is improved (Step 13), we
assign the new execution mode to the task (Step 14). In addition, we update the
current total workload over the cluster due to changed execution mode of the
map task (Step 15).

Example. An example of the H-WorD execution is shown in Table 2. After
H-WorD analyzes the execution modes of task m3

4, it finds that the remote
execution mode SRrem,2(m3

4) improves the makespan (i.e., 440 → 400). Thus, it
decides to select this remote execution mode for m3

4. 2
It should be noted that the order in which we iterate over the map tasks may

affect the resulting workload distribution in the cluster. To this end, we apply
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Table 2. H-WorD algorithm: example of the improved makespan for task m3
4

Workload Initial ... After task m3
4 ...

W(node1 ) 440 ... 400 ...

W(node2 ) 400 ... 400 ...

W(node3 ) 360 ... 400 ...

W(net) 0 ... 15 ...

Makespan: q(W) 440 ... 400 ...

here a recommended longest task time priority rule in job scheduling [5], and in
each iteration (Step 11) we select the task with the largest duration, combined
over all resources. H-WorD is extensible to other priority rules.

Computational complexity. When looking for the new execution mode to se-
lect, the H-WorD algorithm at first glance indicates combinatorial complexity
in terms of the cluster size (i.e., number of nodes), and the number of replicas,

i.e., |RRt| =
|Rcmp|!

(|Rcmp|−|LRt|)!·|LRt|! . The search space for medium-sized clusters

(e.g., 50-100 nodes), where our approach indeed brings the most benefits, is
still tractable (19.6K-161.7K), while the constraints of the replication policies in
Hadoop, which add to fault tolerance, additionally prune the search space.

In addition, notice also that for each change of execution modes, the corre-
sponding data redistribution action may need to be taken to bring input data to
the remote nodes. As explained in Section 3, this information can either be used
to redistribute data offline before scheduling MapReduce jobs, or incorporated
with scheduling mechanisms to schedule input data transfers on the fly during
the idle network cycles (see Figure 2:right).

5 Evaluation

In this section we report on our experimental findings.
Experimental setup. For performing the experiments we have implemented

a prototype of the H-WorD algorithm. Since the HDFS currently lacks the sup-
port to instruct the data redistribution, for this evaluation we rely on simulat-
ing the execution of MapReduce jobs. In order to facilitate the simulation of
MapReduce jobs’ executions we have implemented a basic scheduling algorithm,
following the principles of the resource-constrained project scheduling [10].

Inputs. Besides WordCount, we also experimented with a reduce-heavy
MapReduce benchmark job, namely TeraSort6. We started from a set of three
profiled MapReduce jobs, two WordCount jobs resembling jobs 1 and 2 of our
running example, and one TeraSort job, with 50 map and 10 reduce tasks. We
used the Starfish tool for profiling MapReduce jobs [8]. When testing our algo-
rithm for larger number of jobs, we replicate these three jobs.

Experimental methodology. We scrutinized the effectiveness of our algo-
rithm in terms of the following parameters: number of MapReduce jobs, initial
skewness of data distribution inside the cluster, and different cluster sizes. No-
tice that we define skewness of data distribution inside a cluster in terms of

6 TeraSort: https://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/

examples/terasort/package-summary.html

https://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/examples/terasort/package-summary.html
https://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/examples/terasort/package-summary.html
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Fig. 3. H-WorD overhead
(skew: 0.5, #jobs: 9)

Fig. 4. Performance gains - #nodes (skew:
0.5, #jobs: 9)

the percentage of input data located on a set of X nodes, where X stands for
the number of configured replicas. See for example 37% skewness of data in our
running example (bottom of Figure 1). This is important in order to guarantee
a realistic scenario where multiple replicas of an HDFS block are not placed on
the same node. Moreover, we considered the default Hadoop configuration with
3 replicas of each block. In addition, we analyzed two use cases of our algorithm,
namely offline and on the fly redistribution (see Section 4.4). Lastly, we analyzed
the overhead that H-WorD potentially imposes, as well as the performance im-
provements (in terms of jobs’ makespan) that H-WorD brings.

Scrutinizing H-WorD. Next, we report on our experimental findings.

Note that in each presented chart we analyzed the behavior of our algorithm
for a single input parameter, while others are fixed and explicitly denoted.

Algorithm overhead. We first analyzed the overhead that the H-WorD al-
gorithm imposes to scheduling of MapReduce jobs. Following the complexity
discussion in Section 4.4, for small and medium-sized clusters (i.e., from 20 to 50
nodes), even though the overhead is growing exponentially (0.644s → 135.68s;
see Figure 3), it still does not drastically delay the execution of input MapRe-
duce jobs. This can also be observed in Figure 4, where we can still see the
improvements brought by data redistribution, including the H-WorD overhead.
However, if we keep increasing the cluster size, we can notice that the over-
head, although tractable, soon becomes severely high to affect the performance
of MapReduce jobs’ execution (e.g., 2008s for the cluster of 100 nodes). While
these results show the applicability of our approach for small and medium-sized
clusters, they at the same time motivate our further research towards defining
different heuristics for pruning the search space.

Performance improvements. We further report on the performance improve-
ments that H-WorD brings to the execution of MapReduce jobs.

– Cluster size. We start by analyzing the effectiveness of our approach in terms
of the number of computing resources. We can observe in Figure 4 that
skewed data distribution (50%) can easily prevent significant scale-out im-
provements with increasing cluster size. This shows another advantage of
H-WorD in improving execution makespan, by benefiting from balancing
the workload over the cluster resources. Notice however that the makespan
improvements are bounded here by the fixed parallelism of reduce tasks (i.e.,
no improvement is shown for clusters over 40 nodes).
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Fig. 5. Performance gains - data skewness
(#nodes: 20, #jobs: 9)

Fig. 6. “Correcting” skewness - entropy
(#nodes: 20, #jobs: 9)

– “Correcting” data skewness. We further analyzed how H-WorD improves
the execution of MapReduce jobs by “correcting” the skewness of data dis-
tribution in the cluster (see Figure 5). Notice that we used this test also
to compare offline and on the fly use cases of our approach. With a small
skewness (i.e., 25%), we observed only very slight improvement, which is
expected as data are already balanced inside the cluster. In addition, notice
that the makespan of offline and on the fly use cases for the 25% skewness
are the same. This comes from the fact that “correcting” small skewness
requires only few data transfers over the network, which do not additionally
defer the execution of the tasks. However, observe that larger skewness (i.e.,
50% - 100%) may impose higher workload over the network, which in the
case of on the fly data redistribution may defer the execution of some tasks.
Therefore, the performance gains in this case are generally lower (see Figure
5). In addition, we analyzed the effectiveness of our algorithm in “correct-
ing” the data distribution by capturing the distribution of data in the cluster
in terms of a Shannon entropy value, where the percentages of data at the
cluster nodes represent the probability distribution. Figure 6 illustrates how
H-WorD effectively corrects the data distribution and brings it very close
(∆ ≈ 0.02) to the maximal entropy value (i.e., uniform data distribution).
Notice that the initial entropy for 100% skew is in this case higher than 0,
since replicas are equally distributed over 3 cluster nodes.

– Input workload. Lastly, we analyze the behavior of our algorithm in terms of
the input workload, expressed in terms of the number of MapReduce jobs.
We observed (see Figure 7) that the performance gains for various input load
sizes are stable (∼48.4%), having a standard deviation of 0.025. Moreover,
notice that data redistribution abates the growth of makespan caused by
increasing input load. This demonstrates how our approach smooths the
execution of MapReduce jobs by boosting data locality of map tasks.

Fig. 7. Performance gains - workload (skew: 0.5, #nodes: 20)
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6 Related Work

Data distribution. Currently, distributed file systems, like HDFS [12], do not
consider the real cluster workload when deciding about the distribution of data
over the cluster resources. By default, data are distributed randomly, without
a guarantee that they will be balanced. Additional tools, namely balancer, are
provided to balance data offline. However, such balancing is still done blindly,
without considering the real usage of such data by the given workload.

Data locality. Hadoop’s default scheduling techniques (i.e., Capacity [3] and
Fair [4] schedulers), typically rely on exploiting data locality in the cluster, i.e.,
favoring query shipping. Moreover, other, more advanced scheduling proposals,
e.g., [9,15], to mention a few, also favor query shipping and exploiting data
locality in Hadoop, claiming that it is crutial for performance of MapReduce
jobs. The approach in [15] in addition proposes techniques that address the
conflict between data locality and fairness in scheduling MapReduce jobs. For
achieving higher data locality, they delay jobs that cannot be accommodated
locally to their data. While we agree that data locality is essential for boosting
the execution of MapReduce jobs, these approaches overlook the fragileness of
such techniques to skewed distribution of data in a cluster.

Combining data and query shipping. To address such problem, other
approaches (e.g., [7,14]) propose combining data and query shipping in a Hadoop
cluster. In [7], the authors investigate on data locality, and claim that having
a global overview of the executing tasks, rather than one task at a time as
in current techniques, gives better opportunities for optimally scheduling tasks
and selecting local or remote execution. [14], on the other side, uses a stochastic
approach, and builds a model for predicting a workload over the cluster resources,
when deciding on data locality for map tasks. We find the ideas and techniques
for estimating resource workload of these approaches motivational for our work.
However, these techniques do not leverage on the estimated workload to perform
in advance data transfers and additionally boost data locality for map tasks.

Finally, the first approach that tackles the problem of adapting data place-
ment to the workload is presented in [11]. We find this work especially interesting
for our research. The authors argue for the benefits of having a data placement
aware of the cluster workload. However, while the authors propose an efficient
framework for load-aware data placement, they consider data placements for sin-
gle jobs, in isolation. In addition, they propose different placement techniques
depending on the job types. We, on the other side, propose more generic ap-
proach relying only on an information gathered from job profiles, and consider
a set of different input jobs at a time.

7 Conclusions and Future Work

In this paper, we have presented H-WorD, our approach for workload-driven
redistribution of data in Hadoop. H-WorD starts from a set of MapReduce
jobs and estimates the workload that such jobs impose over the cluster re-
sources. H-WorD further iteratively looks for alternative execution scenarios
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and identifies more favorable distribution of data in the cluster beforehand. This
way H-WorD improves resource utilization in a Hadoop cluster and reduces
the makespan of MapReduce jobs. Our approach can be used for automati-
cally instructing redistribution of data and as such is complementary to current
scheduling solutions in Hadoop (i.e., those favoring data locality).

Our initial experiments showed the effectiveness of the approach and the
benefits it brings to the performances of MapReduce jobs in a simulated Hadoop
cluster execution. Our future plans focus on providing new scheduling techniques
in Hadoop that take full advantage of a priori knowing more favorable data
distribution, and hence use idle network cycles to transfer data to the tasks in
advance, without additionally deferring their executions.
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