
Big Data Design

Alberto Abelló
Universitat Politècnica de Catalunya - BarcelonaTech

Campus Nord, Carrer Jordi Girona 1-3, E-0834 Barcelona
aabello@essi.upc.edu

ABSTRACT
It is widely accepted today that Relational databases are
not appropriate in highly distributed shared-nothing archi-
tectures of commodity hardware, that need to handle poorly
structured heterogeneous data. This has brought the bloom-
ing of NoSQL systems with the purpose of mitigating such
problem, specially in the presence of analytical workloads.
Thus, the change in the data model and the new analytical
needs beyond OLAP take us to rethink methods and mod-
els to design and manage these newborn repositories. In this
paper, we will analyze state of the art and future research
directions.

Categories and Subject Descriptors
H.2.1 [Information Systems Applications]: Database
Management—Logical Design; H.2.2 [Information Systems
Applications]: Database Management—Physical Design;
H.2.4 [Information Systems Applications]: Database
Management—Systems

General Terms
Design

Keywords
Big Data, NoSQL, Database design

1. INTRODUCTION
Today, it is well known the 3Vs definition of Big Data,

in terms of Volume, Velocity and Variety [11]. The differ-
ence comes from incorporating huge external not necessarily
structured sources to those already existing in our organi-
zation. These data can come from partners (typically struc-
tured), or from completely independent sources like social
networks (completely unstructured and in the form of natu-
ral language). There is indeed some middle ground where we
incorporate to our analysis semi-structured data (like logs).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
DOLAP’15, October 23, 2015, Melbourne, VIC, Australia
Copyright is held by the owner/author(s). Publication rights licensed to ACM. ACM
978-1-4503-3785-4/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2811222.2811235.

This has definitely changed the landscape of tools we need
to benefit from the humungous amount of available data [3],
giving rise to new kinds of data management tools. Most
of these tools are conceived to run on the Cloud and ben-
efit from parallelism and commodity distributed hardware
to be able to scale [1], which is a great limitation in Re-
lational Database Management Systems (RDBMS). Many
assume append-only modification patterns (like in the case
of logs), which is completely different from in-place updates
in OLTP environments; and use a simplified randomized dis-
tribution of data. Also, they neither follow the Relational
model nor support declarative SQL standard, consequently
being tagged as NoSQL. An important consequence is the
lack of an optimizer that releases users from being concerned
with too low-level efficiency issues.

In NoSQL tools, data is not stored into tables and foreign
keys do not exist either. Instead, complex, nested structures
are defined. Rather than as a negation, this should be seen
as complementary to the Relational model [15], where in-
stead of having children pointing to parents, it is the parent
who contains (or points to) the children.

Thus, the design paradigm has to evolve accordingly, and
Star-join Schemas [7] are not appropriate anymore for Data
Warehousing (DW). Alternatives appear, like the Data Vault
[10], which advocate for less structured repositories. This
trend reaches the extreme in the form of Data Lake1 (DL),
which is a repository (potentially distributed and heteroge-
neous), where raw data is stored in waiting for an analytical
purpose being defined.

Of course, the risk of just throwing data into a DL without
keeping track of semantics and structure is that it becomes a
swamp. In order to avoid it, we need clear Data Governance
rules and also store the associated metadata [21]. Thus, to
start with, we should pay attention to how the repository
should be designed and analytical needs modeled. Some
efforts have already been made to extend data models with
such analytical goals [17].

Firstly, in Section 2, we pay a visit to the past knowhow.
Next, in Section 3, we see which are the different storage
tools we have at hand today. Finally, Section 4 concludes
the paper with future directions.

2. IN PERSPECTIVE
Before the Relational model [4], several alternatives co-

existed to store data (e.g., hierarchical, network, etc.). The
big achievement of the Relational model was to provide a

1The term was coined by James Dixon (Pentaho) .

External
schemas

Conceptual
schema

Physical
schema

Figure 1: ANSI-SPARC architecture

higher level of abstraction, that made data management in-
dependent of physical storage.

Also at that time, ANSI (“American National Standards
Institute”) created SPARC (standing for “Standards Plan-
ning And Requirements Committee”) Study Group on Data-
Base Management Systems. The main contribution of that
group was to propose a DBMS architecture [12]. This ar-
chitecture, sketched in Figure 1, defined three different lev-
els for DBMSs to implement. At the bottom, we had the
physical one corresponding to files and data structures like
indexes, partitions, etc. On top of that laid the table accord-
ing to Codd’s Relational abstraction, resulting in Relational
DBMSs. Finally, different views could be defined to provide
semantic relativism (i.e., each user can see the data from her
viewpoint, namely terminology, format, units, etc.).

ANSI-SPARC architecture provided on the one hand log-
ical independence (i.e., changes in the tables should not af-
fect the views from users perspective), and physical inde-
pendence (i.e., changes in the files or data structures should
not affect the way to access data). This Relational feature
was really important, firstly because it made a difference
with regard to predecessors, but also because at the time
it was still not set the best way to store or index relational
data. To store a table, you can clearly consider two options:
Obviously per row, but also per column [5].

On the other hand, from a design perspective, in prac-
tice, there are also three phases: Conceptual, logical and
physical. Physical design would correspond to the physical
schema in the ANSI-SPARC architecture, while the logical
one would encompass both conceptual as well as external
schemas, following the Relational model. Nevertheless, from
an engineering perspective, it is much easier to raise the
abstraction level and use some semantic data model closer
to human thinking. The choice for such semantic model
has traditionally been Entity/Relationship (E/R) or lately
also its descendant UML. The advantage of this approach
is that fairly mechanical transformations exist to translate
from E/R into the Relational model [7]. This together with
normalization theory has provided solid foundations to val-
idate the correctness of Relational database designs.

3. CURRENT LANDSCAPE
Back to the past in the pre-Relational world, we are again

at a crossroad where correctness of database design is not
clear anymore. Big Data analytics demands high efficiency,
specially to achieve Velocity in the presence of high data
Volume. The way to answer such demand has been moving
away from generic RDBMSs and deploy specialized archi-
tectures [19]. Thus, every kind of data set requires differ-
ent features in the management system, and even different
data models (i.e., Sequential files, Key-Value stores, Docu-
ment stores, Wide-Column stores, etc.) and query languages
(usually just APIs), which are neither declarative nor stan-
dardized, resulting in loss of physical independence. Given
the Variety we have to deal with, this ends up in what is
called a (hard to design and manage) Polyglot system [6].

...

...

...

Sequential Tree Hash

Figure 2: Alternative structures

There are different Big Data processing frameworks like
Apache Drill2 and Apache Spark3 which have drivers for dif-
ferent stores. However, the current situation resembles that
in the sixties and seventies, when the burden of optimizing
the storage and access to the data laid on software develop-
ers skills. Today, it is even worse, because it is not software
specialists that use Big Data, but rather Data Scientists
whose expertise must be much broader and generic.

We will now pay attention to existing alternatives to either
store the data (Section 3.1) or ingest the data (Section 3.2).
Then, in Section 3.3, we go through the difficulties that must
be overcome.

3.1 Alternative storage structures
The first thing we should be aware of when dealing with

Big Data is that systems must be able to scale out by adding
new machines to our cluster or cloud (as opposed to scale
up, which upgrades or extends hardware inside the same ma-
chine). Obviating graph and pure columnar storage for the
sake of simplicity, Figure 2 illustrates the three well known
alternatives (namely sequential file, tree or hash structures)
that can be used on distributing data. These are analyzed in
sections 3.1.1 and 3.1.2, while sections 3.1.3 and 3.1.4 show
two extensions to these.

3.1.1 Hadoop Distributed File System (HDFS)
The pioneer in managing Big Data was Google. In order

to be able to store up to petabytes, they moved away from
RDBMSs and created a distributed file system that could
scale to thousands of machines [8]. This evolved into Apache
Hadoop4, more specifically HDFS.

As being a file system, it only provides sequential access
to data. Nevertheless, there are different block formats [9].

SequenceFile provides flat files, without any compression,
and an internal record structure resembling that of
blocks in RDBMSs [7]. However, only two attributes
are defined per record, namely key and value. The for-
mer is used to identify the latter, which in turn packs
together all the related information. From the point
of view of the storage system, the value is treated as a
black box.

Avro provides a richer record structure, where different
typed (potentially complex, like enumerations or ar-
rays) attributes can be defined (an associated schema
must be declared).

ORC provides again attributes in the records, as well as
their corresponding data types, but on top of this, the
file can be vertically partitioned and also benefit from
(run-length) compression, like pure column stores.

2http://drill.apache.org
3http://spark.apache.org
4http://hadoop.apache.org

3.1.2 Key-Value
In RDBMSs, we have the logical concept of Primary Key

(PK), which automatically derives from the conceptual sche-
ma. The implication of defining a PK is two fold: On the
one hand, unicity is enforced, while on the other hand an
associated index is defined to facilitate fast access. The as-
sociated index is typically a B-tree [7].

In the case of Big Data, the only purpose of Key-Value
systems is having fast random access to data. Therefore,
there are two changes with regard to the Relational concept
of PK. First of all, despite the misleading name, they do not
enforce uniqueness (which otherwise would be a problem
in the case of independent sources). On the other hand,
the kind of tree used is Log-Structured Merge-Tree (LSM-
tree) [16], because of being more scalable than the B-tree
in Relational systems. While still keeping the data sorted
and potentially distributed in the cluster of machines, this
structure allows quickly data ingestion. An exemplifying
implementation is Apache HBase5, evolution of BigTable [2].

Alternatively, we find in many systems a Consistent Hash
indexing structure [13]. In this case, data is distributed in
the cluster by means of a hash function. Such hash function
maps every key and also machine to a ring. An exemplifying
implementation is Apache Cassandra6.

3.1.3 Documents
Volume and Velocity are important, but we should not for-

get the Variety. In some cases, the global schema may not
exist a-priori [20]. Even when this is known, some data have
a complex structure which is also highly variable and poten-
tially evolves. Moreover, a well known problem of RDBMS
is the Impedance Mismatch (i.e., the overhead generated by
transforming tabular data into the programming structures).

In order to cope with such problems, some systems phys-
ically store JSON (JavaScript Object Notation) documents
associated to the keys, which then directly map to the pro-
gramming language in-memory structure. This further JSON
structure inside the value allows providing secondary index-
ing capabilities, while keeping schema flexibility. An exem-
plifying storage system following this ideas is MongoDB7.

3.1.4 Wide-Columns
In general, some Key-Value stores allow to dynamically

and flexibly associate values to column names (i.e., there is
not pre-defined schema or data types inside the value). Ter-
minology adopted by these systems can confuse the reader
who tries to find a matching with Relational concepts. In
this case, a table is just a set of pairs Key-Value, and columns
must be interpreted as simple tags that help partial retrieval
of the value.

Some of these stores extend also the concept of column
with that of Column-Families, giving rise to Wide-Columns.
Such grouping of columns directly translates into a verti-
cal partition of the table, and entails the consequent loss
of schema flexibility. However, specially for analytical pur-
poses, this is really convenient if we can identify affinities
between columns that are usually accessed together. This
concept was introduced in BigTable and is implemented in
Apache HBase, too.

5http://hbase.apache.org
6http://cassandra.apache.org
7http://www.mongodb.org

3.2 Ingestion
The only problem of Big Data is not Volume, but also

Velocity. This can be seen from two different perspectives.
Clearly, it refers to response time, but we should not forget
the time to store the data as it arrives (arrival rate can be
high to the point of having streams, e.g., IoT and Smart
Cities sensors). All the structures explained above present
a good performance on insertion, mainly due to distribution
and append-only patterns. Nevertheless, it is not enough,
and specialized tools and techniques must be used [9].

Firstly, true loading (including parsing and formatting) is
simplified into just ingesting (without digesting) data, fol-
lowing a “data-first model-later” approach. Secondly, the
traditional ETL paradigm in DW, needs to become just EL,
with really light-weight transformations and no integration
at all. For this, we can use the λ-architecture [14], which al-
lows analyzing streams (in the speed layer), at the same time
that some data is deviated (to a batch layer), where it is pro-
cessed in more detail. The former must work under a push
protocol, while the latter can use a pull approach. Apache
Flume8 and Apache Sqoop9 are examples of tools that facil-
itate ingestion in a Hadoop ecosystem at a high service rate,
following respectively push and pull approaches.

Thus, it is now the responsibility of analysts to perform
ad-hoc integration and cleaning of data. This can clearly
impact on data quality, which in the form of Veracity is also
recognized by some authors as a fourth “V” for Big Data.

3.3 Zooming into the details
All this diversity in the physical schema raises several de-

sign issues. Some of them where already solved by RDBMSs,
others just gain focus due to the need of scaling out, and
others (like normalization theory) just need to be reviewed
simply because assumptions (i.e., redundancy avoidance) are
not valid anymore.

Store choice: Some Relational systems already offer more
than one storage engine (e.g.,InnoDB and MyISAM in
MySQL). However, diversity in NoSQL is much higher
and continuously changing, and the choice can heavily
impact performance. We would expect they converge
and stabilize to make the selection much easier.

Key design: Also in RDBMSs, deciding the key of each ta-
ble is important, but already solved. However, because
not corresponding to the Relational definition and be-
ing used to distribute (and in some cases physically
sort) data, its choice has consequences in Big Data lo-
cality. Besides balancing workload among machines in
the cluster, where data is located can impact the cost
of many algorithms.

Denormalization: The plain structure of 1NF Relations
has simplified the design for many years. Now, the
popularity of JSON documents not only allows, but
also promotes NF 2, raising the question of which is
the best nested structure for each document. Collaps-
ing one-to-many relationships in one document can re-
duce I/O if they are usually accessed together, but can
also reduce the hit ratio if they are not. Conversely,
replicating data in many-to-one relationships can save
some joins by introducing redundancy, with the corre-
sponding extra storage and update overhead.

8http://flume.apache.org
9http://sqoop.apache.org

Integrity management: Even in RDBMS, referential in-
tegrity and constraint checking is often disabled. In
NoSQL systems, enforcing them is simply not possi-
ble, because they do not provide such functionalities
for the sake of performance gain.

Horizontal partitioning: This is a question one has to
answer in RDBMSs, too. Nevertheless, it is more com-
plex and relevant in Big Data systems where partitions
are distributed in a number of machines that has also
to be decided. The more we distribute the data, the
more we can parallelize. However, we firstly incur in
communication costs, and also economical costs be-
cause of using more hardware.

Vertical partitioning: Again, this is not new or inher-
ent to Big Data, but the nature of analytical queries
and the importance of performance underlines its rel-
evance. In RDBMSs, the choice was disguised in the
form of nested tables in Oracle or inheritance in Post-
greSQL. Although, pure column stores appeared like
Vertica or MonetDB10, or even others like HANA offer
both possibilities, the approach to chose between row
or columnar storage is still purely heuristic.

Besides all that, because of the utmost importance of per-
formance, some physical characteristics like the selectivity
factor of query predicates has to gain relevance in the pa-
rameters of the database design [18].

4. WHAT IS AHEAD
Big Data demands a shift of paradigm in data manage-

ment from generic RDBMSs to more diverse and specific ad-
hoc Polyglot systems interconnecting diverse and complex
NoSQL tools, whose content and features must be seman-
tically annotated. Such an important change in the tech-
nologies brings also an associated challenge in the database
design, where some performance factors that had not been
considered important regain focus, mainly because of data
distribution and lack of data structure. Thus, the existing
tool set (i.e., UML, normalization theory, etc.) and method
prove to be useless in this new context, and need to evolve
to cope with variety and consider access patterns [18]. Spe-
cial attention must be paid in this context to self-tuning and
physical schema evolution (maybe driven by the conceptual
design). Also data migration and integration management
needs to be revisited to reduce the IT burden of Data Scien-
tists, so that they can focus on analytical duties. Summing
up, we should reconsider the corresponding state of the art
in data modeling and management to evolve it consistently
with such technological revolution.

5. ACKNOWLEDGMENTS
Most contents come from long and fruitful discussions

with Oscar Romero and reviewers’ comments pinpointing
important issues. Facts were confirmed by experimentation
done by Victor Herrero and Faisal Munir, while funds came
from the Erasmus Mundus PhD program IT4BI-DC11.

6. REFERENCES
[1] R. Cattell. Scalable SQL and NoSQL data stores.

SIGMOD Record, 39(4), 2010.

10http://www.monetdb.org/
11http://it4bi-dc.ulb.ac.be

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data. Trans. Comput. Syst., 26(2), 2008.

[3] C. L. P. Chen and C. Zhang. Data-intensive
applications, challenges, techniques and technologies:
A survey on Big Data. Inf. Sci., 275, 2014.

[4] E. F. Codd. A relational model of data for large
shared data banks. Commun. ACM, 13(6), 1970.

[5] G. P. Copeland and S. Khoshafian. A decomposition
storage model. In SIGMOD. ACM, 1985.

[6] M. Fowler and P. J. Sadalage. Introduction to Polyglot
Persistence: Using Different Data Storage
Technologies for Varying Data Storage Needs.
Addison-Wesley, 2012.

[7] H. Garcia-Molina, J. D. Ullman, and J. Widom.
Database Systems. Prentice Hall, 2009.

[8] S. Ghemawat, H. Gobioff, and S. Leung. The Google
file system. In SOSP. ACM, 2003.

[9] M. Grover, T. Malaska, J. Seidman, and G. Shapira.
Hadoop Application Architectures. O’Reilly, 2015.

[10] H. Hultgren. Modeling the Agile Data Warehouse with
Data Vault. New Hamilton, 2012.

[11] H. V. Jagadish, J. Gehrke, A. Labrinidis,
Y. Papakonstantinou, J. M. Patel, R. Ramakrishnan,
and C. Shahabi. Big data and its technical challenges.
Commun. ACM, 57(7), 2014.

[12] D. Jardine. The ANSI/SPARC DBMS Model.
North-Holland, 1977.

[13] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin. Consistent hashing and
random trees: Distributed caching protocols for
relieving hot spots on the World Wide Web. In STOC.
ACM, 1997.

[14] N. Marz and J. Warren. Big Data: Principles and
Best Practices of Scalable Realtime Data Systems.
Manning Publications, 2015.

[15] E. Meijer and G. M. Bierman. A co-relational model
of data for large shared data banks. Commun. ACM,
54(4), 2011.

[16] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil.
The Log-Structured Merge-Tree (LSM-Tree). Acta
Inf., 33(4), 1996.

[17] C. Ordonez, S. Maabout, D. S. Matusevich, and
W. Cabrera. Extending ER models to capture
database transformations to build data sets for data
mining. Data & Know. Eng., 89, 2014.

[18] O. Romero, V. Herrero, A. Abelló, and J. Ferrarons.
Tuning small analytics on Big Data: Data partitioning
and secondary indexes in the Hadoop ecosystem.
Information Systems, 2015. In Press.

[19] M. Stonebraker. Technical perspective - one size fits
all: an idea whose time has come and gone. Commun.
ACM, 51(12), 2008.

[20] M. Stonebraker. What does “Big Data” mean?
Blog@CACM, September 2012.

[21] J. Varga, O. Romero, T. B. Pedersen, and
C. Thomsen. Towards next generation BI systems:
The analytical metadata challenge. In DaWaK.
Springer, 2014.

