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Preface

The Third European Business Intelligence Summer School (eBISS 2013) took place in
the Dagstuhl Schloss, Wadern, Germany, during July 2013. Tutorials were given by
renowned experts and covered several recent topics in business intelligence. This
volume contains the lecture notes of the summer school.

The first chapter presents an overview of pattern mining techniques for extracting
knowledge from large databases. Two main strategies for mining frequent itemsets are
discussed, namely, the Apriori and the FP Growth algorithms. The chapter then delves
into the pattern explosion problem and presents some recent techniques to reduce the
redundancy in pattern collections. These techniques use, on the one hand, statistical
methods to model user expectations given background knowledge, and on the other,
the minimal description length principle.

The second chapter introduces process mining, a new scientific discipline on the
interface between process models and event data. Process mining aims at bridging the
gap between business process management and data mining. The challenge is to turn
huge amounts of event data into valuable insights related to process performance and
compliance. The chapter introduces basic process mining techniques that can be used
for process discovery and conformance checking. Then, the chapter discusses
decomposition techniques, which enable process mining in the large.

The third chapter presents an ontology-driven business intelligence approach for
comparative data analysis. This approach has been developed in a joint research
project that involves academia, industry, and prospective users from public health
insurers. This approach employs techniques from knowledge-based systems, ontology
engineering, and data warehousing in order to support business analysts in their
analysis tasks. :

The fourth chapter explores how to integrate traditional business intelligence
systems with the Linked Open Data paradigm. This paradigm enables the sharing of
freely available data on the Web through the use of open standards and formalisms,
such as RDF and ontology languages. Business intelligence systems must meet new
requirements for integrating the Linked Open Data paradigm. This includes, in par-
ticular, to provide on-demand analysis tasks over any relevant data source in right-
time. This chapter discusses the technical challenges behind such requirements, and
describes a new kind of business intelligence system to support this scenario.

The fifth chapter presents an overview of forecasting techniques in database
management systems. Time series forecasting estimates future, not yet available, data
of a time series. After discussing possible application areas for time series forecasting,
the chapter outlines various general strategies of integrating time series forecasting
inside a database and discusses some individual techniques from the database com-
munity. The chapter concludes by introducing a novel forecasting-enabled database
management architecture that natively and transparently integrates forecast models.
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The sixth chapter addresses the issue of optimizing analytical queries by means of
indexes. The chapter starts with an overview of the basic index structures for data
warehouses, namely, bitmap indexes, Join indexes, and bitmap join indexes. Then, the
chapter presents a new index, called Time-HOBI, which can be used for optimizing
queries that address the time dimension and compute aggregates along dimension
hierarchies. Furthermore, the paper shows how the index can be used for answering
queries, and presents experimental results about the performance of. the proposed
index. :

Finally, the seventh chapter presents a novel extension to TARGIT’s patented
meta-morphing called “The Intelligent Wizard”. After presenting the relevant state-
of-the-art, the chapter describes the Intelli gent Wizard as implemented in a real-world
industrial Business Intelligence (BI) application. The paper shows how the Intelligent
Wizard allows a user to navigate a real-world data warehouse using only human
language and knowledge of business terms, thus significantly simplifying the gener-
ation of analytics and reports.

We would like to thank the attendees of the summer school for their active par-
ticipation, as well as the speakers and their co-authors for the high quality of their
contribution in a constant evolving and highly competitive domain. Finally, the lec-
tures in this volume greatly benefit from the comments of the external reviewers.

January 2014 Esteban Ziményi
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Open Access Semantic Aware Business
Intelligence

Oscar Romero®™) and Alberto Abells
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Abstract. The vision of an interconnected and open Web of data is,
still, a chimera far from being accomplished. Fortunately, though, one
can find several evidences in this direction and despite the technical
challenges behind such approach recent advances have shown its feasibil-
ity. Semantic-aware formalisms (such as RDF and ontology languages)
have been successfully put in practice in approaches such as Linked Data,
whereas movements like Open Data have stressed the need of a new open
access paradigm to guarantee free access to Web data.

In front of such promising scenario, traditional business intelligence
(BI) techniques and methods have been shown not to be appropriate.
BI was born to support decision making within the organizations and
the data warehouse, the most popular I'T construct to support BI, has
been typically nurtured with data either owned or accessible within the
organization. With the new linked open data paradigm BI systems must
meet new requirements such as providing on-demand analysis tasks over
any relevant (either internal or external) data source in right-time. In
this paper we discuss the technical challenges behind such requirements,
which we refer to as exploratory BI, and envision a new kind of BI system
to support this scenario.

Keywords: Semantic web + Business intelligence - Data warehousing -
ETL - Multidimensional modeling -+ Exploratory business intelligence -
Data modeling * Data provisioning

1 Introduction

The Internet empowered the interconnection of different systems and contributed
to the bloom of massive and heterogeneous distributed systems that brought
new challenges of data integration. The data integration problem [1] aims at
providing users with a single unified view of different and interconnected data
repositories. This is an old and recurrent topic for the database community and
as such it has been thoroughly studied in the past. As discussed in [2], data
integration must overcome a number of heterogeneities present in the systems to
be interconnected that can be classified in two categories: system and semantic
heterogeneities. On the one hand, system heterogeneities include differences in
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hardware, operating systems, database management systems (DBMS) and so on.
On the other hand, semantic heterogeneities include differences in the way the
real-world is modeled in terms of the database schema.

In the recent past, when the database world was mostly relational, different
architectures were developed for data integration, such as federated databases,
multidatabase systems and wrappers and mediators [3]. However, semantic het-
erogeneities are still an open issue for relational systems. Data semantics gath-
ered (as metadata® in the database catalog) by relational systems (RDBMS)
are not enough as to enable automatic design decisions to overcome semantic
heterogeneities and most of the burden to get rid of such heterogeneities still
relies on the designer’s shoulders.

The arrival of the Internet did nothing but worsen the problem. Massive dis-
tributed scalable Web-systems put the traditional relational systems under stress
and nowadays relational systems co-exist with non-relational systems, commonly
known as NOSQL (to be read Not Only SQL and never as —SQL). The first sys-
tems that coined the NOSQL term were born on the Web but soon the idea
spread to many other areas and currently it claims for specialized database solu-
tions for specific problems. Although NOSQL is mainly a buzzword referring
to a way of doing (perfectly captured in the “one size does not fit all” motto)
rather than new technical solutions, there have been some attempts to classify
and find common aspects of these systems. One of the most spread features
among NOSQL systems is being schemaless. A schemaless database does not
have a explicit schema created by the user (e.g., by means of the CREATE TABLE
statement for RDBMS). Nevertheless, an implicit schema remains. In general,
this situation is not desirable at all, as semantics are lost. In terms of the ANSI
/ SPARC architecture, schemaless databases do not define external and concep-
tual schemas and query languages must access the DBMS internal data struc-
tures, which violates the logical and physical independence principle. Therefore,
data is a black-box with no meaning for the DBMS and, for example, in some
extreme cases such as key-value stores, the value becomes a meaningless chunk of
bytes. As consequence, one gains in flexibility but misses even more semantics as
metadata gathered by most NOSQL systems is almost non-existent.

As consequence, the current picture is that of massive (independent) systems
gathering few metadata, known as data silos, which ideally should intercommu-
nicate in order to solve bigger problems. However, data integration becomes
even tougher as a wider range of system and semantic heterogeneities must be
considered.

Far away from this scenario stands Tim-Berners Lee’s vision of an intercon-
nected and open Web of data [4]. The Semantic Web envisioned by Berners Lee
considered linking data in such a way a machine could process the links and auto-
matically explore the data without human intervention. Relating data opens the
data silos and allows navigating, crossing, exploring and analysing data in order to

! Metadata, or data about data, keeps track of any relevant information regarding
data. For example, a value of 4 means nothing by itself. But if the system knew it
refers to the number of children of a certain person as of 2013 it becomes information.
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produce unexpected results and relevant (hidden) knowledge. Berners Lee referred
to this feature as data fusion [5], and its most popular implementation is by means
of linked open data. On the one hand, enriching data with machine processable
metadata so that machines can understand (i.e., manipulate) data is known as
linked data [5]. On the other hand, similar to the open source concept, open data
describes data that is freely available and can be used as well as republished by
everyone without restrictions from copyright or patents [6].

From the database point of view, the linked open data wave demands new
systems able to store linked data (thus, semantically rich metadata must be
stored together with data) and support the open data initiative (these systems
should be easily identified and accessed by anyone). Such systems would pro-
vide foundations for more elaborated applications such as mashups, linkeable
browsers and semantic-aware search engines. In this paper, we focus on the need
for new generation decision support systems built on top of that, which can also
be used as foundation for any traditional data fusion application on the Web.

2 Business Intelligence: Past, Present and Future

Decision support systems play a key role in many organizations. These systems
provide accurate information (understood as the result of processing, manipu-
lating and organizing data in a way that adds new knowledge to the person or
organization receiving it) that leads to better decisions and gives competitive
advantages. In the past, the ability of decision makers for foreseeing upcom-
ing trends was crucial for any organization but this largely subjective scenario
changed when the world became digital. Actually, any event can be recorded and
stored for later analysis, which provides new and objective business perspectives
to support managers in the decision making process. Hence, (digital) informa-
tion is a valuable asset to organizations and gathering, transforming and exploit-
ing such information is nowadays a technological challenge commonly known as
Business Intelligence (BI). Thus, BI embraces many different disciplines (e.g.,
from databases to data mining) and solutions meant to support decision making
based on (digitally recorded) evidences.

Among all architectural solutions proposed for BI, data warehousing is possi-
bly the most popular one. According to [7], Data Warehousing is a collection of
methods, techniques and tools used to support knowledge workers -sentor man-
agers, directors, managers and analysts- to conduct data analyses that help with
performing decision making processes and improving information resources.

Data warehousing mainly focus on decision making and data analysis, and at
the same time, these systems abstract technical challenges like data heterogene-
ity or data sources implementation. This is a key factor in data warehousing in
particular, and business intelligence in general. Nowadays, many events can be
recorded within organizations but the way each event is stored differs in every
organization and it depends on several factors such as relevant attributes for the
organization (i.e., their business needs), technology used (i.e., implementation),
analysis task performed (i.e., data relevant for decision making), etc. These sys-
tems gather and assemble relevant data available within the organization from
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various and probably heterogeneous sources in order to produce a single, detailed
view of the organization that can be used for enabling better strategic manage-
ment. In other words, data warehousing overcomes the data integration problem
by means of data consolidation.

Although data warehousing ecosystems are highly complex systems, one can
say that data warehousing is mature enough (even if data warehousing projects
are still far away from being well-controlled). After 20 years, several methods
and tools to support the design, deployment and maintenance of such systems
have been introduced (e.g., [8-11]) as long as methodologies and good practices
(e.g., [12,13]). As result, there exist data warehousing experts who have been
working and mastering these problem for several years.

Building a data warehouse system consists of designing the data warehouse
and creating the ETL (Extract-Transform-Load) processes to populate the data
warehouse from the sources. Ideally, the data warehouse schema should sub-
sume any analytical requirement that end-users may pose to the system. Past

experience has highlighted three main challenges that complicate designing and

deploying data warehousing systems [7,8]:

1. Like in any other information system, the design process starts by eliciting
and gathering the end-user requirements. The burden of such process relies
on the DW designer and the end-user does not actively participate in this
task. However, it has been shown that IT people (i.e., the DW designer) and
non-IT people (i.e., the DW end-user) do not understand each other easily
and it is rather common that this step fails to meet the end-user requirements
and, in turn, the whole DW ecosystem fails.

2. After gathering the end-user requirements, the designer proceeds to design
and create the DW. Next, the ETL processes to populate the DW from the
available sources are designed and implemented. In this step, the DW designer
is meant to understand the available data sources, identify the data with
which the requirements gathered can be meet and construct the ETL flows.
This step may take up to 70 % of the whole DW project span of time and they
entail complex and time-consuming transformations. Accordingly, the update
window of a data warehouse (the time it takes to load data into the data
warehouse) can be of hours, and executed daily or even weekly. Also, ETL
constructs are several times directly implemented at the logical or physical
level, which troubles its maintenance.

3. Finally, once the DW ecosystem is running, intuitive and non-technical means
to query the DW are mandatory. End-users tend to be non-IT people and
require ad hoc formalisms to understand and exploit the data warehouse.
For example, one cannot assume that the company CEO masters the SQL
language as to query a database on his / her own.

For all these reasons data warehousing projects are traversal and people from
different areas must work together in order to produce a flexible, powerful, and
successful system. Ideally, the construction of the DW and ETL designs must
undergo several rounds of reconciliation and redesigning, until all business needs —
even some that are not described from the beginning of the project— are satisfied.
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Thus, a DW project is rarely completed. Typically, a DW is an alive ecosystem
and thus, maintainability and evolution aspects should be considered too [14].

Beyond its complexity, a successful DW project is a valuable asset for any
organization that can effectively exploit the objective evidences stored in its data
sources. However, traditional data warehousing techniques have shown not to be
adequate for the next generation of Bl systems. In terms of the previous section,
traditional data warehousing techniques are meant to create independent data
silos, whereas current trends claim for interconnecting different data sources
(including external sources) and provide a global unified view. This evolution
of the data warehousing systems is referred to as DW 2.0, new generation BI
and similar concepts [6,15-20] that have bloomed recently. According to them,
ideally, (i) the end-user should dynamically explore any data source of poten-
tial interest (no matter if it is internal or external to the organization) that is
available and (ii) any desired analysis task should be made in right-time (i.e.,
according to the user needs, which usually means near real-time). A thorough
analysis of these requirements elicit new needs for the next generation BI sys-
tems. Specifically:

1. Any desired task in right-time implies:

— The analysis must be conducted over fresh data and ideally, get rid of
the update window concept.

~ The end-user must be able to state his / her analysis requirements in a
non-technical language. Ideally, the end-user must state what data want
to analyze and from which perspectives without the intervention of the
DW designer. ‘

2. Analyze any source means to reconsider how ETL processes should work:

— Extraction: If any source can be considered, flexible extraction tech-
niques must be able to extract data from structured, semi-structured
and non-structured data.

- Transformation: According to the end-user analytical needs, the extracted
data must undergo different transformation rounds to meet the desired
quality threshold to be agreed with the end-user.

— Load: Loading data into the data warehousing can be costly. For this
reason, and honouring the right-time requirement, next generation sys-
tems may decide not to materialize the consolidated data into a data
warehouse but dynamically consume it.

Of course, all these requirements must be put into perspective and they will
be rarely met. A graphical representation of traditional and new BI flows is
depicted in Fig. 1, and a discussion follows.

As shown in Fig. 1, data sources can be globally divided into two groups:
internal and external data. Internal data is that owned by the company and it
traditionally consisted of relational databases and tabular data (e.g., Excel or
CVS files). With the time, semi-structured data (such as XML} or non-structured
data (e.g., plain text files, pdf files, videos or images) were also incorporated
and, nowadays, NOSQL sources (e.g., graph databases or key-value / document
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Fig. 1. BI Elements and Data Flows

stores) may need to be considered. External data mainly refers to open and
/ or linked data (ideally, open linked data). Open data normally consists of
semi-structured data. Its structure typically depends on who delivers the data.
For example, governmental institutions? usually open tabular data or PDF files,
while social networks such as Facebook or Twitter usually deliver XML or JSON
files®. As special case, external data coming from other organizations after sub-
scribing an agreement may also be considered. This is a typical case in e-science
scenarios where research institutes tend to collaborate and share their data. In
these cases, an agreement is signed and external access to any kind of source
may follow. In any case, a vast amount of heterogeneous data sources may need
to be considered.

Next, after undergoing several transformations, the extracted consolidated
data might be materialized in a DW. In such scenario, smaller, specific data
marts might be modeled. Analytical tools (i.e., data mining, OLAP or query &
reporting) are available on top of the DW (or data marts) to allow non-technical
end-users to query, navigate and exploit the data. This suits traditional data
warehousing techniques. However, next BI systems claim for a more flexible
architecture where the end-user can define a query (what data to be analyzed
and how) and the system would dynamically decide what sources should be con-
sidered, extract data (maybe also from the available DW), do the corresponding
transformations and visualize the results. To stress that this approach is query-
oriented, we refer to it as ETQ (Extract-Transform-Query). Furthermore, given
that the data warehouse could not even exist, it is sometimes meaningless to use
the data warehousing term to refer to this new kind of systems, which are better
defined as Business Intelligence systems. From here on, we will refer to tradi-
tional data warehousing systems as traditional Bl and next generation systems
as exploratory BI. Thus, we stress the fact that in these systems the aim is at
exploring data sources to perform right-time analytical tasks.

2 For example: http://data.gov.uk/ and http://www.data.gov/
3 See http://www.w3.org/Designlssues/LinkedData.html for a detailed description of
the 5-stars of linked data.
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Importantly, note that exploratory BI requires a huge degree of automa-
tion in both design and implementation of the query and ETQ tasks. In tra-
ditional BI systems the designer is responsible for properly understanding the
business requirements, look for the proper data in the sources needed to answer
requirements and produce correct data warehouse / ETL models meeting all
requirements. Similarly, the designer is responsible for a correct integration of
new requirements that may appear. This scenario must change and exploratory
BI systems must support the designer as much as possible, and automate the
most possible tasks. Of course, the designer (ideally, the end-user) will need
to supervise the process and, eventually, accept or disregard different model-
ing options automatically produced. However, automation requires machine-
processable metadata.

2.1 Challenges of Exploratory BI

In the previous section we have just discussed the characteristics of next gen-
eration exploratory BI systems. In this section we further elaborate on the IT
challenges behind exploratory BI and focus on the technical challenges to over-
come in order to (i) allow the end-user dynamically explore any data source of
potential interest (either internal or external to the company) and (ii) perform
any analysis task in right-time. More specifically, we divide the technological
challenges in three, according to the typical life-cycle of IT systems: requirement
engineering, modeling and physical deployment.

Requirement Elicitation and Specification. Exploratory Bl systems are
goal-oriented (one may consider the analysis needs stated by the end-user as the
system goals). Thus, the end-user must express his / her needs without the help
of IT people (requirement elicitation) and should be internally translated into
a machine processable formal specification (requirement specification). By needs
we either refer to information needs (that roughly speaking can be mapped to
a query retrieving data) and quality needs (some quality criteria that the infor-
mation retrieved must fulfill and typically expressed in terms of non-functional
requirements).

In a truly exploratory system, requirements gathered must be used to lead
the next stages (design and implementation of the system) and consequently,
the language used to express the user needs (ideally, close to the domain vocab-
ulary used by end-users) must be also understood by computers (i.e., it must
have precise associated semantics). As later discussed in Sect. 3, semantic-aware
formalisms are the most promising means to describe such reference domain
language.

All in all, these systems must be user-centric and semantic-aware. On the one
hand, the end-user must express analysis needs using his / her own words. On
the other hand, the system must also talk the user language and automatically
process the requirements, which will lead the next two stages. A comprehensive
list of challenges related to this area follows:
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— End-users must state their information and quality analysis needs in terms of
a high-level language close to their own vocabulary (i.e., the reference domain
language).

— The reference domain language must be computer understandable in order to
enable the desired automation described in the next two stages.

Automatic Design. From the end-user requirements gathered in the previou.s
stage, exploratory systems must automatically design the system and make ’C‘hlS
inherent complex task transparent to the end-user. Assuming a data warehousing
architecture, it entails to design the integration layer schema (if any) and the
ETL (ETQ) processes. More specifically, the system must be able to explore the
available (or potential) data sources and, according to the end-user regulremeqts
expressed in terms of the reference domain language and some design quality
criteria, re-arrange the data source schemas in the shape of an integration layer
(which can be thought as a view over the data sources) meeting the analysis n(?eds
at hand. Once the integration schema is available, the schema transformations
identified must be lowered to the instance level and produce the ETL (ETQ)
design needed to populate (answer) end-user analysis needs.

Relevantly, note that this entails that the system must be able to understand
what data and how is stored at each potential data source. Thus, the system
must track the potential data sources and, in order to allow automatic processing,
understand what data and how is stored at each source. Thus, it must be able
to map the data sources to the reference domain language used by the system.
Ideally, such map should follow a local-as-view (LAV) approach (similar to that
followed by linked data) and thus, concepts in the data sources must point to
the reference domain language. In order to automatically consider the end-user
quality needs the data sources should also declare what quality criteria they
might meet.

As consequence, an exploratory system should keep track of potential sources
and understand what data and how is stored in the data sources. In other words,
to open the black box. To achieve such goal, the data sources schema should
be mapped to the reference domain language used by the system. Then, by
considering the end-user needs gathered in the previous stage, the exploratory
system should be able to design the integration layer and ETL (ETQ) flows
needed to answer the analysis needs at hand. A comprehensive list of challenges
related to this area follows:

— Potential data sources must be tracked into the system by mapping.to the
reference domain language both their schematas and the quality criteria they
might meet. Ideally, a LAV approach is needed.

— Automatic algorithms for the design of the integration layer and the ETL’

(ETQ) processes are needed. ‘ '
— Means to express some design quality criteria to lead the automatic creation
of potential designs are mandatory.
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Automatic Deployment. The physical deployment of such systems should
also be transparent to the end-user. Such deployment should consider the design
created in the previous stage and according to some quality needs (either those
explicitly stated by the end-user or introduced by the system administrator)
choose the execution engine to compute the answer to the analysis needs posed
to the system. On the one hand, exploratory systems should explore self-tuning
systems to the limit and dynamically choose the best storage option as well as
auxiliary storage techniques (such as indexing or materialized views) in order to
improve performance. On the other hand, an optimizer should be available to
optimize ETL (ETQ) executions (similar to the query optimizer of a database).
Both issues can drastically benefit from the reference domain language and use
the semantic-aware metadata gathered during the whole process in order to
determine the best design / execution strategies.

Thus, the system should be able to trigger self-tuning tasks in accordance
with the metadata gathered during the whole process, as well as implement an
optimizer to improve the ETL (ETQ) internal processes. A comprehensive list
of challenges related to this area follows:

— Advanced self-tuning techniques are needed.

- ETL (ETQ) optimizers need to be developed.

— Means to express some quality criteria to guide the system self-tuning and
ETL (ETQ) optimization techniques internally carried out are mandatory.

As the reader may note, exploratory systems are user-centered and thus, the
ultimate goal of such systems is to allow the end-user state his / her analysis
needs (both from the point of view of the information needed and the associated
quality metrics associated to it) and accordingly produce the design and physical
implementation of the needed constructs in an automatic fashion. As discussed,
this must be achieved by means of semantic-aware systems that, by means of
a reference domain language, are able to map the end-user requirements and
the data source schemas to a common reference domain language. All in all, the
database expert role may seem to dilute in this new approach. However, nothing
further from the truth. Exploratory systems place the focus on the end-user, who
is the real domain expert, and makes him / her play an active role when building
the system. The database expert, however, is still essential in this approach. The
automatic stages carried out by exploratory systems are responsible for designing
and deploying the system. As discussed, some general quality metrics to guide
the design and deployment are mandatory. Such guidance must be continuously
monitored by a database expert who is expected to react in front of unexpected
changes or system misbehaviour (e.g., by changing the design or deployment
quality criteria to be met by the automatic created solutions). As consequence,
although moved away from the focus, the database expert is still needed to
monitor and tune the system.
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3  An Introduction to Semantic Web Formalisms

Nowadays, we can find several formalisms to capture semantics in a machine-
processable format. Typically, these formalisms come from the Semantic Web
(SW), which is aimed at providing the necessary representation languages and
tools to express semantic-based metadata. Prior to the SW, there were several
efforts to provide metadata formats to the web contents, such as Dubli'n-Core“7
whose main purpose was to improve information discovery and retrieval. How-
ever, these formats were shown very limited mainly due to their poor expressivity
and little Web-awareness. As result, the W3C proposed new representation for-
mats, all relying on XML®, to overcome the limitations of existing metadata
formats. The main idea behind these formats is that any concept or instance
used for describing a Web object must be referred through a unique resource
identifier (URI). Thus, the most basic way to describe an object consists of cre-
ating a link to the URI that represents the intended semantics. With the resource
description framework (RDF)®, we can create more complex metadata elements
allowing the representation of relationships between descriptors (i.e., triples).
Additionally, the RDFS” extension allows users to define a schema for RDF
descriptions. More expressive semantic descriptions have been also proposed by
adopting logic-based frameworks: DAML+OIL® and the Ontology Web Lan-
guage (OWL)®. Contrary to RDFS, all these languages rely on description logics,
which are tractable subsets of the first order logic (FOL). In this context, meta-
data is governed by logic axioms over both classes and instances (assertions).
Like in RDFS, logic axioms in these formats must be defined over Web-based
references (i.e. URIs).

In the next sections we further elaborate in the most popular SW formalisms:
RDF and ontology languages.

3.1 RDF(S)

In RDF there are three kinds of elements: resources, literals, and properties.
Resources are web objects (entities) that are identified through a URI, liter-
als are atomic values such as strings, dates, numbers, etc., and properties are
binary relationships between resources and literals. Properties are also identified
through URIs. The basic building block of RDF is the triple: a binary relation-
ship between two resources or between a resource and a literal. For example,
consider the following triples depicted in Fig. 2.

In this example, the concept (object) eBISS 2013 is represented by the
http://uri-repository/eBISS2013 URI and it is related through the http://

4 http://dublincore.org/

5 http://www.w3.org/XML/

5 http://www.w3.org/RDF/
7 http://www.w3.org/TR/rdf-schema/
8 http://www.w3.org/TR/daml+oil-reference/
9 http://www.w3.org/TR/owl2-overview/
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Fig. 2. A graph representing RDF triples

uri-repository/type property to another resource representing the summer
school concept http://uri-repository/summer-school. Similarly, it is related
to the literal Dagstuhl by the http://uri-repository/venueproperty. The
resulting metadata can be seen as a graph where nodes are resources and liter-
als, and edges are properties connecting them. RDFS extends RDF by allowing
triples to be defined over classes and properties. In this way, we can describe
the schema that rules our metadata within the same description framework. It
is worth mentioning that the semantics of RDFS are based on type systems,
similar to object-oriented formalisms and, for example, we can specify classes,
subclasses and typed properties.

3.2 Ontology Languages

Two main families of logic-based languages currently underlie most of the research
done in this direction: Description Logics (DL) and datalog-related logics (see [21]
and [22], respectively). For example, OWL is founded in DL.

Both, DL and datalog, seek the same objective, but from different points
of view. While DL focuses on representing knowledge, datalog is more focused
on capturing the instances (and, in this sense, closer to the database field). As
discussed in [23], both paradigms can be used to establish ontologies.

On the one hand, DL (or DL-based languages) assume a decentralized app-
roach and information is stored separate from data. Thus, one talks about termi-
nology and instances asserted (in terms of the terminology). DL also follow the
open-world assumption and, accordingly, a DL ontology can have many differ-
ent interpretations. On the other hand, datalog follows a centralized viewpoint,
the closed-world assumption (there is a single interpretation which corresponds
to the current database state) and the unique name assumption (two instances
differing in their identifier are automatically assumed to be different).

A direct consequence is that DL ontologies are more difficult to model (as
“unexpected information” could be inferred from the asserted instances) but
they better deal with incomplete data (such as Web data), whereas datalog
ontologies are more intuitive for the database community but might not be that
interesting for integration cases with missing or partial information.

Modeling in DL and datalog deserve further discussion and basic knowl-
edge on FOL. We address the interested reader to [24] for a discussion on the
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expressivity of two popular ontology languages for data modeling: DL-Lite and
Datalog=.

All in all, the open-world assumption in DL and the fact that these logics
do not follow the unique name assumption suits the essence of Web data (by
definition incomplete and where different repositories could identify the same
real-world instance by means of different identifiers). From the point of view of
BI, DL suits what-if analysis and scenarios with lack of information. In turn,
scenarios where the data gathered is known to be complete (to some extent,
what is stored in a DW) may be better captured in a datalog ontology.

Need vs. Feasibility Besides being very expressive, ontology language pro-
vide reasoning techniques to infer non-explicit knowledge from already asserted
knowledge. Although logic-based languages are very appealing for their semantic-
awareness and reasoning features, it is also true that reasoning is known to be
computationally hard. Nowadays, it is well established that we must balance
the language expressiveness and reasoning services provided according to each
scenario.

The main reasoning services provided by DL are concept satisfiability, sub-
sumption and query answering [21]. Concept satisfiability checks if a concept
is non-contradictory (regarding the ontology terminology) and it may have, at
least, one instance. For example, concept satisfiability (or unsatisfiability) is use-
ful for validating the correctness of the ontology concepts. Subsumption checks
if an ontology concept C is subsumed by another concept D (i.e., if D is more
general than C). For example, subsumption can be used to identify concept tax-
onomies and equivalence (if two concepts subsume each other). Finally, query
answering finds all the asserted instances that satisfy a concept description and
thus, it is extremely useful to pose arbitrary queries over the ontology.

Concept satisfiability and subsumption sit at the terminological level, whereas
query answering also deals with instances. Relevantly, very few DL languages
(e.g., DL-Lite in [25] and the OWL2 QL profile, based on DL-Lite) properly
support query answering which means that, in practice, query answering is pro-
hibitively costly for large data sets, such as those in BI scenarios. Thus, most
DL languages are typically used at the terminological level.

Regarding datalog, since terminology and instances are not separated, its
reasoning services are query-oriented and its most typical inference is query
answering.

4 One Step towards Exploratory Bl

Exploratory BI is, by nature, challenging. However, the current state of the
art on BI systems envision a promising future. In this section, we present a
functional architecture based on existing approaches towards the creation of a
truly exploratory BI. Nonetheless, several challenges remain open but our aim
is to show that exploratory BI is no longer a chimera but a feasible challenge.
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In the recent past, we have been working on bringing new flexible and power-
ful BI capabilities to the end-user. Our focus has been set on accessing different
data sources (inter / intra organizations / open linked data sources) in a flexible
manner: the end-user poses his / her analytical needs and the system is able
to produce data cubes on-demand. Ideally, the end-user should state his /her
analytical needs and some quality criteria and receive the required data, while
the inherent internal complexity of such system should be transparent to him /
her. As consequence, the system would be responsible for identifying the data
sources, extract and transform the data prior to show it to the user. Performing
such tasks on the fly would be extremely costly and therefore, we propose here
our vision of a self-tunable architecture that automatically performs optimiza-
tion tasks to guarantee the feasibility of exploratory BI.

4.1 Narrowing the Focus: Assumptions Made

Before introducing our vision in detail, we need to narrow the focus and prop-
erly define what kind of BI systems we do tackle in this architecture. As the
reader will note we talk about cubes, which is a multidimensional (MD) concept.
The multidimensional model was introduced by Kimball [8]. Specifically, multi-
dimensionality is based on the fact / dimension dichotomy. The fact, or subject
of analysis is placed in the n-dimensional space produced by the analysis dimen-
sions. We consider a dimension to contain an aggregation hierarchy of levels
representing different granularities (or levels of detail) to study data, and a level
to contain descriptors (i.e., level attributes). We differentiate between identifier
descriptors (univocally identifying each instance of a level) and non-identifier.
In turn, a fact contains analysis indicators known as measures (which, in turn,
can be regarded as fact attributes). One fact and several dimensions conform
a star-schema. Several star-schemas conform a constellation. A specific level of
detail for each dimension produces a certain data granularity or data cube, in
which place the measures. Thus, one can think of a cube as a query over a
star-schema. ,

Despite its simplicity, the multidimensional schema has been shown to suit
analytical tasks [26] and for this reason, we consider the multidimensional model
as the de facto standard for BI data modeling. For modeling data flows, such
as ETL processes, we do not use the multidimensional model (data-oriented)
but BPMN (process-oriented). BPMN (Business Process Model and Notation)'0
is an OMG standard that has already been successfully applied to model BI
processes in general, and ETL processes in particular [27]. BPMN is a graphical
notation that provides constructs to control and manage data flows with enough
detail as to be easily translated into an executable flow (for example, using
BPEL, Business Process Execution Language). ’

All in all, the assumptions made in this architecture are as follows:

~ A new generation data warehousing system is considered (i.e., we will talk
about the integration layer and the ETL/ETQ layer).

10 See http://www.bpmn.org/
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_ We consider the multidimensional model as the de facto data model for data

analysis.
_ We consider BPMN as the de facto data model for data workflows.

Obviously, other similar assumptions could be made for alternative solutions.

4.2 Functional Architecture

Figure3 sketchs our proposal for an open-access semantic-aware platform for
exploratory business intelligence.

First, note that our system is built following two principles previously dis-
cussed and motivated in this paper: open data and semantic-aware systems.
We say our system is open-access because we aim at providing foundations for
exploratory BI on top of freely available and accessible data sources, whereas it
must be semantic-aware to enable automation. In our case, the common semantic
framework is provided by a reference ontology.

In this system, the user is meant to interact by providing a seed or key
concept for his / her analysis needs. This concept reaches the first module,
AMDO (Automating Muldimensional Design from Ontologies) that looks for this
concept in the reference ontology. Next, AMDO exploits the knowledge captured
in the ontology to propose a list of potential facts, dimensions, measures and
descriptors of interest related to the seed concept. This information is shown to
the user in a comprehensive way. In short, most relevant concepts (according
to some internal rules) are properly ranked and shown to the user, who selects
those of his / her interest in a dynamic, interactive manner.

The choices made by the user out of AMDO’s suggestions (from now on,
the end-user requirement) are forwarded to the GEM module (Generating ETL
and Multidimensional Models), which is responsible for producing the data cube
design (both the conceptual data cube schema and the conceptual design of ETL
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flows to provision the cube with data). As consequence, GEM needs to be aware
of the end-user non-functional requirements (such as freshness or quality thresh-
olds for the data retrieved) and the candidate sources from where to extract
data. Non-functional requirements are expressed in terms of SLAs (service-level
agreements), whereas data sources are identified from the registry module. In
our system, any data source to be federated into the system must be properly
registered. In our vision, we should follow a local-as-view (LAV) approach (sim-
ilar to that followed by linked data) and thus, concepts in the data sources must
point to the reference ontology (thus we also assume semantic-aware sources).
Accordingly, when registering, the sources must declare what ontology concepts
they refer to. From now on, we will refer to these ontology concepts as linked
concepts (as, at least, one source is linking them). Furthermore, some quality
criteria about the data source (again, as SLAs) must be provided and finally,
the registry also must keep trace of the source technical capabilities (such as
underlying technology -e.g., relational, triple-store, key-value-, query language,
etc.), which will be needed to later query the source. GEM queries the registry
to know what sources may provide the required data and the available sources
are presented to the end-user together with the quality metrics (extracted from
the SLAs) gathered for each of them.

As output, GEM designs a data cube schema and the corresponding ETL
flows, as well as SLAs for the query at hand. Note, however, that some non-
functional requirements may not be met and at this point the user would be
prompted to relax, reinforce or disregard them. Next, the data cube schema is
forwarded to the ORE module and the ETL flow to the COAL module. Now,
COAL could query the sources and retrieve the needed data according to the
ETL flow received. On the contrary, our system performs some optimizations to
avoid data shipping (from the sources) whenever possible by materializing some
queries in order to improve performance. The ORE module selects relevant pieces
of information worth to materialize (e.g., if they are queried regularly) and iter-
atively consolidates them to produce a complete MD star-schema!! (potentially,
a constellation) subsuming all the cube schemas to be materialized so far. ORE’s
goal is to create the minimal MD design (e.g., by fusing adjacent facts and /or
dimensions, hiding irrelevant concepts, etc.) meeting some tuneable quality cri-
teria. Similarly, COAL is an incremental cost-based method for consolidating
individual ETL designs into a unified ETL flow (from now on, the reference
ETL) minimizing the execution cost. As result, ORE and COAL generate and
maintain a data warehouse.

The system control flow goes to COAL once GEM has generated its outputs.
There, COAL is responsible for deciding either to query the data sources or
the data warehouse. Whenever possible, the latter will be prioritized. To do
s0, COAL checks if the new ETL at hand is subsumed by the data warehouse
ETL flows. We say the new ETL is subsumed by the reference ETL if after

11 Note we clearly differentiate between a data cube schema and a star-schema. The
first one describes the schema of a query, whereas the second one describes a data
warehouse schema that can answer many different queries.
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Fig. 4. TPC-H diagrammatic representation

consolidating both of them the output exactly coincides with the reference ETL.
In other words, if no changes must be made in order to incorporate the new ETL.
In practice, COAL does not look for a full matching but also partial matchings
to identify what parts of the new ETL flow can be answered from the data
warehouse and what parts must be queried from the sources (in the figure, this
has been represented as a set of cubeIDs and sourceIDs). Intuitively, one may
say that COAL tries to rewrite the new ETL in terms of the already available
ETL flows.

Finally, the cube builder module can be thought as a query executor. It
gathers the data retrieved from the sources and the data warehouse and, accord-
ing to the ETL conceptual schema produced by GEM, builds the cube. If a
source must be queried, the source connector triggers a query to retrieve the
data according to the registered data source capabilities and capability-based
optimization techniques [28]. Note the data sources are black-boxes for our sys-
tem and, beyond ORE and COAL, we pass the responsibility for optimizing the
query to the underlying system. To some extent, one may say ORE and COAL
are responsible for the global optimization, whereas data sources are responsible
for the local optimization of queries.
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Once the cube has been shown to the user, the system (or the user) might
decide to materialize it. Then ORE and COAL come into action to integrate
the data cube at hand into the data warehouse. Obviously, any visualization or
analytical tool might be used to further analyze the produced data cube from
the end-user point of view.

Last, but not least, note some relevant features of our approach. According
to Fig. 1, our ultimate goal essentially corresponds to an ETQ scenario, but the
internal optimization techniques enable other data flows besides ET'Q. Specifi-
cally, COAL and ORE correspond to the ETL arrow and the data warehouse
repository respectively, whereas the ETL rewriting technique (i.e., the CubelID
list produced by COAL) corresponds to the materialized data arrow. From the
point of view of use cases, the user is meant to interact with AMDO and GEM,
whereas the system administrator (the former DW designer) is meant to interact
with ORE and COAL (for example, tuning the internal metrics used by ORE
and COAL to consolidate the designs). Furthermore, both ORE and COAL gen-
erate and store valuable metadata of interest for the end user. For example, the
data warehouse MD schema and ETL processes can be retrieved and visualized.
This feature has many applications and, for example, the ETL flows can be used
to tackle traceability and show what sources were considered, what transforma-
tions applied and how it was combined and visualized as a data cube, whereas the
star-schemas can be used to tackle collaborative BI and query recommendation
(based on past evidences).

4.3 A (Toy) Usage Example

Prior to detailing each of the modules contained in our system (see next sections),
we introduce an example to show how such a system would work from the point
of view of the end-user. For this example we will consider the TPC-H benchmark
[29]. In our approach, we need an ontology (our common semantic framework)
whose diagrammatic representation is depicted in Fig.4. Suppose now an end-
user interested in orders lineitems. It may start dropping a query by writing
the word lineitem in the GUI. Immediately, AMDO looks for this word in the
system reference ontology and proposes a set of dimensions, facts and measures
of potential interest. For example, let assume the output shown in Tablel (in
brackets, the relevance computed by AMDO).

Table 1. An Example of AMDO’s outputs

Proposed fact: lineltem (100 %)

Measures Dimensions
ExtendedPrice (100%) Orderdate (93 %)
Quantity (95 %) Shipdate (90 %)

Discount (80 %) Nation (of the customer) (87 %)
e Supplier (83 %)
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Usually, AMDO will propose different facts (not only one) ranked by rele-
vance (see Sect. 5.1 for further details) and for each fact it will propose different
measures and dimensions. Similarly to most BI dashboards, the user may drag
and drop the concepts to build the desired cube schema. For example, sup-
pose the user chooses extendedPrice and discount as measures and the customer
nation as single dimension. At this point, AMDO will allow the user to add
slicers (e.g., nation = ‘Serbia’) and specify derivation functions (e.g., price =
extendedPrice*(1—discount)) and aggregation functions (e.g., compute the aver-
age price). Once done, GEM creates the data cube schema. For example, consider
the example depicted in Fig. 5. GEM identifies the ontology subset (bolded in
colours) needed to satisfy the end-user requirement forwarded from AMDO (in
words, the average price paid (measure) by Serbian customers (dimension)). For
further information on GEM see Sect. 5.2 but note that additional ontology con-
cepts (e.g., orders in our running example, which is bolded in green), not chosen
by the end-user, may be needed to properly relate the concepts at hand (bolded
in orange) and produce a single data cube. Once the schema has been created,
GEM looks for those registered sources linked to the ontology concepts partic-
ipating in the cube. These sources are presented to the user together with the
data source quality evidences registered as SLAs. Suppose now three sources:
A, B and C, but B presents some quality issues: its servers are frequently down
and data provided is generated by a small community that cannot guarantee
its correctness. For this reason, the user decides not to consider B and proceed
with the other two sources. Next, GEM designs the needed ETL processes to
provision the data cube schema with data from the selected sources.

Next, COAL is launched to check what parts of the new ETL flow can
be rewritten in terms of the data warehouse ETL flows and what others need
to query the data sources. Suppose we need to query a source. Then, accord-
ing to the metadata regarding A and C it asks the source connector to wrap
a query to obtain the needed data. For example, if A is a relational data-
base that contains a table M(orderkey, partkey, suppkey, extendedPrice,
discount, ...) (like the one provided in the TPC-H schema for lineitem) and
we want to obtain the measures needed from it, it would trigger an SQL query
such as SELECT orderkey, partkey, suppkey, extendedPrice, discount FROM
M (where the set {orderkey, partkey, suppkey} is considered to be the table
primary key). Data gathered from the data warehouse and the data sources is
properly assembled according to the ETL flow created by GEM.

Once the data cube is ready any visualization or analytical tool can be used
to show it to the user. If the user eventually decides to integrate this data cube
into the data warehouse, our system would launch first ORE and then COAL
to perform the needed evolution tasks in the data warehouse (further details in
the next section).

Finally, suppose now that we decided to materialize the current query and,
in the future, the user is interested in the discount (measure) obtained for
each customer (dimension). Clearly, this query can be rewritten in terms of the
inputs needed for the query discussed above. Thus, the COAL module will use
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Fig.5. GEM example

equivalence rules to rearrange the ETL operations in both flows (always pre-
serving the semantics) and maximize the overlapping area. In this case, the new
ETL is completely subsumed by the reference one and therefore, COAL will find
a full match (i.e., complete overlapping). See Sect. 5.4 for further details.

5 An Open-Access Semantic-Aware System

Our system sets a common semantic framework by means of an ontology. Note
that, up to now, we have assumed a single reference ontology. However, in prac-
tice, several ontologies may co-exist. Ontology matching techniques can be used
to combine such ontologies and, in the end, the more inter and intra-relationships
captured, the better. Regarding the sources, by now, we only assume semantic-
aware repositories (e.g., linked data). Nevertheless, it might be possible to wrap
other sources with additional semantics and enable their integration into our
system. For example, tools like Triplify'? can be used to semi-automate such
task. This opens the door for a polyglot system consisting of heterogeneous data
sources.

2 See http://triplify.org/Overview
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In the rest of this section we will focus on the main modules of our proposal
(i.e., AMDO, GEM, ORE and COAL) and we present them in more detail.

5.1 The AMDO Module

AMDO [30] looks for ontology concepts that together with the seed concept
(provided by the end-user) may produce meaningful data cubes. In practice, it
looks for concepts likely to play a valid multidimensional role (with regard to
the seed concept). Specifically, dimensions arrange the multidimensional space
where the fact of study is depicted. Each instance of data is identified (i.e., placed
in the multidimensional space) by a point in each of its analysis dimensions.
Conceptually, it implies that a fact must be related to each analysis dimension
(and by extension, to any dimensional concept) by a many-to-one relationship.
That is, every instance of the fact is related to, at least and at most, one instance
of an analysis dimension, and every dimension instance may be related to many
instances of the fact.

AMDO looks for potential facts, dimensions, measures and descriptors by
means of topological patterns guaranteeing the MD constraints above discussed.
Importantly, AMDO does not perform a blind search but a guided search from
the seed concept. Furthermore, some internal metrics are used to rank concepts
found. For example, a fact containing many measures and dimensions, closeness
to the seed concept, etc.

Internally, AMDO exploits standard reasoning services to compute the topo-
logical patterns.

5.2 The GEM Module

GEM [31] receives the facts, dimensions, measures and descriptors identified by
AMDO, which we will refer to as the input requirement from now on.

The process of creating the MD and ETL designs for the input requirement
is a semi-automatic process comprising four main stages (see Fig.6). The out-
come of each stage is validated and then, either it is propagated to the next
stage or undergoes a correction process. The correction process may be done
automatically, it may suggest changes, or it may require user feedback.

Stage 1: Requirement verification. First, the system checks if there is a
mismatch among the input requirement and the ontology linked concepts. For
each concept in the input requirement, GEM checks if, at least, there is a source
linked to it. In case of mismatch, it may suggest relaxation of the requirement
or alternatives (e.g., choosing subclasses).

Stage 2: Requirement completion. After mapping the input requirement

onto the ontology and verifying it, the system complements it with needed
additional information. This stage identifies intermediate concepts that are not
explicitly stated in the business requirement, but are needed in order to retrieve
data. Intuitively, it identifies all the ontology concepts needed to eventually build
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Fig. 6. GEM in a Nutshell

a query (or access plan) to answer the requirement. User feedback is welcomed for
ensuring correctness and compliance to the end-user needs in case of ambiguity.

Stage 3: Multidimensional verification. Next, we look for a MD interpreta-
tion of the ontology subset identified in the previous stage. To do so, we check the
MD integrity constraints and verify the correctness of the requirement according
to MD design principles. Hence, we check two issues: (i) whether the factual data
is arranged in a MD space (i.e., it forms a data cube and thus, if each instance of
factual data is identified by a point in each of the analysis dimensions [32]); and
(ii) whether data summarization performed is correct by examining whether the
following conditions hold [33]: (a) disjointness (the sets of objects to be aggre-
gated must be disjoint); (b) completeness (the union of subsets must constitute
the entire set); and (c) compatibility of the dimension, the type of measure being
aggregated and the aggregation function.

Stage 4: Operator identification. The ETL operations are identified in three
phases. First, we use the annotations generated by the previous steps for extract-
ing schema modification operations. Then, the cubes are built. And finally, we
complement the design with additional information that might be found in the
sources and with typical ETL operations such as surrogate key and slowly chang-
ing dimensions. Similar to Stage 1, once the sources have been identified, this
step looks for mismatches between the end-user and data source SLAs and may
suggest alternatives or relaxation of some non-functional requirements.

5.3 The ORE Module

ORE [34] is responsible for integrating new data cube schemas into the data
warehouse. It comprises four stages, namely matching facts, matching dimen-
sions, complementing the MD design, and integration (see Fig.7). The first three
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stages gradually match different MD concepts and explore new design alterna-
tives. The last stage considers these matchings and designer’s feedback to gen-
erate the final MD schema that accommodates a new information requirement.

In all stages, we keep and maintain a structure, namely traceability metadata
(T'M), for systematically tracing everything we know about the MD design inte-
grated so far, like candidate improvements and alternatives. With T'M, we avoid
overloading the produced MD schema itself.

Stage 1: Matching facts. We first search for different possibilities of how to
incorporate the data cube schema at hand (i.e., the MD interpretation produced
by GEM) to T'M. The matching between factual concepts is considered —i.e., the
system searches the fact(s) of TM producing an equivalent set of points in the
MD space— as the one in the given MD interpretation. Different possibilities to
match the factual concepts results with the appropriate sets of integration oper-
ations. The costs of these integration possibilities are weighted and prioritized.

Stage 2: Matching dimensions. After matching facts, we then conform the
dimensions of the paired facts. Different matchings between levels are considered
(ie, “=",1-17, “1-*" and “* - 17) and thus, the different valid conformation
possibilities are obtained. With each possibility, a different set of integration
operations for conforming these dimensions is considered and weighted.

Stage 3: Complementing the MD Design. We further explore the reference
ontology and search for new analytical perspectives related to the new concepts.
Different options may be identified to extend the current schema with new levels,
descriptors, and measures). The user is then asked to (dis)approve the integration
of the discovered concepts into the final MD schema.

Stage 4: Integration. The MD schema is finally obtained in two phases of this
stage. First, possible groupings of the adjacent concepts containing equivalent
MD knowledge is identified to minimize the MD design. Finally, the final MD

schema is produced by folding and collapsing grouped concepts to capture only

the minimal information relevant to the user. Nevertheless, the complete T'M
is still preserved in the background to assists further integration steps (e.g., to
handle future evolution events).
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Example: The general idea behind ORE can be visualized in the example
depicted in Fig.8. This figure shows two outputs produced by GEM for two
given requirements (IR1 and IR2) over the TPC-H example. As output, ORE
will produce an integrated schema meeting the two cube-schemas of the require-
ments at hand.

5.4 COAL

COAL [35] is responsible for integrating the new ETL flow at hand with the data
warehouse ETL flows. Typically, an ETL design is modeled as a directed acyclic
graph. The nodes of the graph are data stores and operations, and the graph
edges represent the data flow among the nodes. Intuitively, for consolidating
two ETL designs, a referent G1 and a new G designs, we need to identify the
maximal overlapping area in G and Gg. However, this is not a typical graph-
matching problem, as the MD interpretation of the ETL flow must be preserved.
Therefore, we proceed as follows. First, we identify the common source nodes
between G and G». For each source node, we consider all paths up to a target
node and search for common operations in both designs. In these paths, we
search for common operations that could be consolidated into a single operation
in the resulting design.

Deciding what operations can be consolidated and how is not an easy task.
If two operations, each placed in a different design, can be matched, then we
have a full match (e.g., the very same or equivalent operations). If two oper-
ations, one in the reference design and the other in the new design, partially
overlap, then we have a partial match (e.g., one operation subsuming the other).
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To detect the maximum number of full and partial matchings, we should also
look at the operations performed before the ones considered for the matching;
i.e., COAL must consider restructuring both designs by moving operations to
maximize the number of overlapping operations. Restructuring the ETL designs
must be performed by guaranteeing the same semantics as result and this is
achieved by means of a set of predefined equivalence rules between operations
(e.g., selections can always be pushed down a join operation, but a selection
cannot be pushed down a projection if the selection attribute coincides with the
projected attributed).

Example: The general idea behind COAL can be visualized in the example
depicted in Fig.9. There, a new and a reference ETL flow are presented. In
general, these two designs may have a number of common operations. COAL’s
internal algorithms look for a minimal resulting integrated ETL such that com-
mon operations are executed once and the semantics of both flows are preserved
by means of the above discussed equivalence rules. What minimal exactly means
depends on the quality criteria determined by the system administrator.

5.5 Open Questions

In our functional architecture we have shown the feasibility of some of the chal-
lenges behind exploratory BI (see Sect.2.1). However, several challenges still
remain open for exploratory BI and deserve further attention. More specifically,
the most important ones can be summarized as follows:

— Integration of schemas: In practice, it is unfeasible to assume that a single
common semantic framework (where any potential data source of interest

is mapped) does exist. Indeed, several reference languages may co-exist and.

automatic mappings should be discovered (ideally, by means of reasoning).

— LAV vs. GAV: Clearly, a LAV approach is desired for mapping the data
sources to the semantic framework but nowadays most approaches follow a
GAV approach (i.e., the mappings are in the ontology concepts). Further
research on semantic-aware formalisms to allow LAV is desirable.
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— Reasoning: Tightly related to the previous item, computationally feasible
reasoning techniques are needed in order to infer knowledge not explicitly
stated in the reference layer. In our work, we used the DL-Lite family [25],
which provides a good trade-off between expressivity (similar to that of UML)
and computational complexity. However, only basic inference algorithms (such
as subsumption) were feasible in practice. Others, like computing the tran-
sitive functional closure, needed ad-hoc algorithms to be computed. Thus,
creating reasoning facilities over DL / datalog families especially designed to
capture the multidimensional model is a must. In this sense, how to exploit
parallelism and benefit from distributed computation when computing rea-
soning is also an open challenge.

— ETL Operators: The ETL flows automatically generated in our approach
mainly consider the relational algebra and a bunch of additional operations
(create surrogates, dictionary look-ups, etc.). Ideally, any transformation
should be able to be specified and automatically considered by our frame-
work in an automatic way (right now, the ETLs produced need to be manually
enriched).

— Non-Functional Requirements: How to specify non-functional require-
ments in a machine readable format and include them all over the
process is still also an open challenge. Traditionally, non-functional require-
ments are considered and the database is correspondingly tuned by database
administrators.

6 Semantic Aware Business Intelligence: State of the Art

In the recent past there has been a bloom of new techniques and methods for
BI relying on semantic-aware formalisms. Semantic-aware data warehouses are
nowadays hot topics of research (e.g., among many others [36-39]). These works
can be understood as the cog wheels forming the exploratory BI machine and
they span from requirement engineering, conceptual design to physical design
in many and disparate areas. Surveying all these works is completely unfeasible
and, for this reason, in this section, we will focus on those approaches present-
ing similar systems to what we have called exploratory BI (i.e., the big picture)
and how they propose to combine different techniques to produce similar sys-
tems. Indeed, in the literature we can find several equivalent or similar terms to
exploratory BI. For example, “live BI” [15], “on-demand BI” [16], “ad-hoc BI”
[17], “open BI” [18], “situational BI” [19], or “fusion cubes” in [20].

Mazén et al. [18] presents a platform to analyze linked open data and, sim-
ilar to our approach, they assume semantic-aware sources. Data modeling and
provisioning are achieved by means of a traditional data warehouse architecture
(which is loaded with data from the sources) following model-driven techniques
and their focus is on providing advanced support to non-technical users to trigger
data mining algorithms over the gathered data. To support non-expert data min-
ing users, a knowledge base conforming quality criteria of the sources is created
and used as main source to recommend the user data explorations.
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Essaidi [16] presents on-demand BI services and adopt models related to
Software-as-a-Service (SaaS) as technical solution. Their approach consists of
a multi-layered architecture to support different business intelligence needs,
namely: the designer tasks (designing the environment, perform data integra-
tion and manage metadata) based on a model-driven approach and the end-user
analytical needs. They add a third tier of services related to security (which
includes authorities, roles, users, groups and grants). From the point of view of
BI, this solution embeds and supports traditional BI into a SaaS architecture.

Berthold et al. [17] focuses on the technical challenges of ad-hoc BI, namely,
a global business data model, data source integration and enrichment (in which
they distinguish between business configuration at design time, and data provi-
sioning at run time) and finally, support for ad-hoc (self-oriented) and collabo-
rative BL.

Castellanos et al. [15] presents a unified data management and analytics
platform for live BI. This paper presents a flexible architecture that allows to
specify and define ETL flows from highly heterogeneous sources. They introduce
the concept of extraction operators so that unstructured or semi-structured data
can be extracted and integrated with structured data. In this paper, the data flow
is defined in terms of a pipeline transforming input streams into analytics results.
It is presented in terms of an event discovery stage {based on historical evidences)
from the input stream and a second stage of further analysis of the events to
detect and predict non-explicit patterns. Special emphasis is put on the need
of a powerful physical design and optimizer that could deal with heterogeneous
and mixed data flows.

Loser et al. [19] presents a platform to correlate data from an organization
data warehouse with external sources. This platform is database-inspired and
enables traditional BI queries (ad-hoc and aggregate queries) over cloud archi-
tectures. Their approach consists of a common algebraic core to describe, plan,
optimize and execute queries, and similar to the previous approach, they focus
on unstructured sources and how to extract and integrate data from them. Also,
an optimizer and a parallel executor engine are introduced.

Finally, [20] envisions a highly heterogeneous BI system where a query is for-
mulated, then relevant sources are discovered and selected and data provisioning
and integration flows are triggered before presenting the resulting data to the
user. An abstract architecture is also presented and data from external and inter-
nal sources is ETL-ed into stationary (i.e., pre-defined cubes) and fusion cubes
(similar to the ETQ term in this paper) before querying them. Different from
the rest of approaches, this is a visionary paper presenting future research trends
and priorities for data modeling and provisioning for BI processes but no specific
solution is discussed.

Allin all, these approaches present a similar ultimate goal and some common.

trends can be identified. For example, they agree on the need to make transparent
to the end-user all the technical complexity behind advanced BI solutions and
provide flexible and intuitive conceptual formalisms in order to allow end-users
specify and design their queries. These solutions mainly differ though in the
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assumptions made. We can identify a key assumption that conditions the solution
presented: loosely coupled - tightly coupled data sources. In this aspect, we can
find a very wide range of solutions but the consequences are clear: the more tight
the data sources are the better internal optimizations can be made.

Regarding our approach, we present an instance of the abstract architecture
envisioned in [20] and use a reference ontology to relate loosely coupled sources
and, at the same time, enable some global optimizations. Furthermore, special
emphasis is put on automatic MD discovery, design and deployment.

7 Conclusions

In this paper we have motivated the need for new generation BI systems and
coined the exploratory BI term, which should enable end-users to trigger right-
time analytical tasks over disparate and heterogeneous sources. The challenges
behind exploratory BI are manifold, but we have focused on two key aspects:
open-access (following the open data movement) and semantic-aware repositories
to enable automation.

As a proof of concept, we have sketched the architecture of an open-access
semantic-aware system to support exploratory BI and highlighted the main areas
of research for enabling exploratory BI.
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