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Abstract. Object identification is a crucial step in most information systems. Nowa-
days, we have many different ways to identify entities such as surrogates, keys and
object identifiers. However, not all of them guarantee the entity identity. Many works
have been introduced in the literature for discovering meaningful identifiers (i.e., guar-
anteeing the entity identity according to the semantics of the universe of discourse),
but all of them work at the logical or data level and they share some constraints in-
herent to the kind of approach. Addressing it at the logical level, we may miss some
important data dependencies, while the cost to identify data dependencies purely at
the data level may not be affordable. In this paper, we propose an approach for discov-
ering meaningful identifiers driven by domain ontologies. In our approach, we guide the
process at the conceptual level and we introduce a set of pruning rules for improving
the performance by reducing the number of identifier hypotheses generated and to be
verified with data. Finally, we also introduce a simulation over a case study to show
the feasibility of our method.
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1. Introduction

Object identification is a crucial step in most information system engineering
processes. Identification mechanisms guarantee that a real world entity will be
uniquely identified in the system and distinguished from the others. However,
not all mechanisms guarantee the object identity (Wieringa and de Jonge, 1995).
As example, the uniqueness of the system controlled surrogates (a common way
to implement identifiers, IDs from now on, in relational databases) is useless
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RentalAgreement
id: integer basicPrice: Money
rentalDurationTimeUni: Period bestPrice: Money
lastModification: Date rentalDurationName: String
minimumRentalDuration: Integer maximumRentalDuration: Integer
pickUpExpectedTime: Date assignedCar: String
pickUpBranchName: String pickUpBranchType: String
pickupBranchCountry: String pickUpBranchMechReq: String
pickUpBranchEmissionEq: String pickUpBranchCarTax: Float
pickUpBranchServiceDepotName: String pickUpBranchServiceDepotCapacity: String
dropOffBranchName: String dropOffBranchType: String
dropOffBranchCountry: String dropOffBranchMechReq: String
dropOffBranchEmissionEq: String dropOffBranchCarTax: String
dropOffBranchServiceDepotName: String dropOffBranchServiceDepotCapacity: String
customerName: String customerId: String
customerBirthDate: Date customerAddress: String
customerTelephone: String customerDrivingLicenseNumber: Integer
. . .

Figure 1. Example of identifiers

for data quality, because they are internal IDs with no semantics regarding the
universe of discourse. Thus, surrogates remain useless in any context where in-
stances extracted from different systems need to be asserted as equal. For ex-
ample, consider the table depicted in figure 1. The relation identifier is the id
attribute (a surrogate). In this case, the {pickupExpectedTime,customerId} or
even {pickupExpectedTime,assignedCar} would be a much better identifier,
since every person is supposed to have only one rental agreement for a given date
and, from the point of view of the company, they can only assign the same car
to one person the same day. Meaningful IDs (compound by the attributes -i.e.,
features- of the entities) guarantee the entity identity according to the semantics
of the universe of discourse (or system domain), and they are crucial for assuring
the quality of data in many reengineerning processes; e.g., for ensuring the qual-
ity when migrating, converting and merging systems, for data cleansing, data
integration or for building data warehouse (DW) systems. In this paper, we will
focus on the latter to outline the relevance of providing meaningful identifiers on
such systems and exemplify the multipurpose characteristic of our approach by
adapting it to two different usages in this kind of environment.

According to (Golfarelli and Rizzi, 2009), a DW is a collection of methods,
techniques, and tools used to support knowledge workers -e.g., senior managers,
directors, etc.- to conduct data analysis that help with performing decision mak-
ing processes and improving information resources. Typically, relevant data for
decision making is extracted from the organization data sources, transformed
(i.e., cleaned and homogenized) and finally integrated within a huge repository
of data (the DW), in what is known as the ETL (Extraction / Transform /
Loading) process. The DW provides a single and detailed view of the organiza-
tion, and it is intended to be exploited by means of the exploitation tools, which
provide different mechanisms to navigate and perform analysis tasks over the
DW. Among the different kinds of exploitation tools, On-line Analytical Pro-
cessing (OLAP) tools have gained relevance in the last years so much so that
the concepts of DW and OLAP are now tightly related.

OLAP tools are intended to facilitate information analysis and navigation
through the business data based on the dimensional paradigm. The dimensional
view of data is distinguished by the fact / dimension dichotomy, and it is char-
acterized by representing data (i.e., the fact of interest) as if placed in an n-
dimensional space (with as many axis as dimensions of analysis of interest).
This paradigm allows to easily understand and analyze data showing the differ-
ent points of view from where a subject can be analyzed. In consequence, the
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dimensional model fits for non-expert users like knowledge workers. For exam-
ple, a typical fact of interest would be the business sales, whereas its typical
dimensions of analysis would be the item sold, where it was sold (i.e., the place)
and when (i.e., the time). One fact and several dimensions to analyze it give rise
to what is known as the data cube1 and the conceptual representation of this
data structure is known as dimensional schema.

Like in most information systems, the DW design has been typically carried
out manually, and the experts’ knowledge and experience are crucial to identify
relevant dimensional knowledge contained in the sources. However, there is an
important difference from other systems, since creating a DW does not require
the addition of new information but rearrange that already existing (indeed, the
DW is nothing else than a strategic view over the organization data). Conse-
quently, some research efforts have proposed the automation (to some extent)
of the DW design in order to free this task of being (completely) performed by
an expert, and facilitate the whole process. In this way, in those scenarios where
the analysis capabilities of the data sources are not (fully) known, it is possible
to help the DW designer to identify and elicit unknown analysis capabilities.
These unknown capabilities may potentially provide strategic advantages for the
organization. Anyway, it will always be up to the users to select those facts of
interest to their business. For example, note that what is a fact for a user may
be just an analysis dimension to another.

In this scenario, it is important to provide tools like the one presented in
this paper, because DW systems design will benefit from knowledge about IDs
in the following ways: (i) identifying facts (since good candidates are precisely
those with compound IDs; i.e., those thought as a set of entity attributes), (ii)
identifying analysis dimensions for a given fact (since they are precisely the
components of the IDs), (iii) generate metadata to inform the user of the different
dimensional spaces where data can be placed (in case of different compound IDs
for the same fact), (iv) avoid sparse cubes (since, by definition, IDs are minimal
sets), and (v) find overlapping cubes (to potentially improve the physical design
by storing together those data that can be easily analyzed together). Moreover,
meaningful IDs play a crucial role to extract the instances from several, potential
heterogeneous sources, transform and homogenize them and eventually load them
in the DW. All in all, discovering meaningful IDs is essential to support the DW
design task.

In the context of DW, current semi-automatic approaches mostly carry out
the design task from relational OLTP (On-Line Transaction Processing) sys-
tems, assuming that a RDBMS is the most common kind of data sources we
may find, and taking as starting point a relational schema (i.e., starting from
a logical design). Thus, they aim at deriving dimensional schemas from the re-
lational sources. As previously discussed, in dimensional design the dimensions
produce the dimensional space (i.e., the analysis perspectives) where the fact
will be placed. Conceptually, it entails that the fact is related by means of to-one
relationships to the dimensions, which in turn identify the fact. Discovering this
kind of relationships is crucial in the design of the DW, and the most common
way to represent them at the relational level is by means of “foreign” (FK) and
“candidate key” (CK) constraints. Briefly, these methods try to produce, from

1 The data cube refers to the placement of factual data in the dimensional space. And thus,
it can be thought as a mathematical function.
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the relational sources, star-shaped schemas (Kimball, Reeves, Thornthwaite and
Ross, 1998), which are the relational counterpart of dimensional schemas where
the central fact table has not an atomic ID but one compound by foreign keys
(FKs) pointing to the dimension tables. Thus, discovering such compound IDs
is a must.

These dimensional design methods require that the relational schema explic-
itly captures the to-one relationships (i.e. functional dependencies) existing in
the domain. We may find several approaches to discover functional dependencies
(FDs or “→”) and/or IDs2 (in the relational context, candidate keys (CKs)), see
Section 2. Nevertheless, these approaches still work either at the logical or data
level, and they share some inherent constraints. Those working over the logical
schema are tied to the design decisions made when devising the system (for ex-
ample, denormalization of data) and these decisions have a big impact on the
data semantics captured in the schema. For this reason, these approaches make
some unrealistic assumptions such as completeness of the data structures (i.e.,
all the constraints of the domain of interest are captured at the logical level).
Consequently, most automated approaches for identifying IDs address this task
at the instance level. These methods, however, have various drawbacks: they tend
to overlook compound IDs (essential when dealing with dimensional databases,
for example), propose solutions that are computationally expensive, and regis-
ter drops in performance when a large number of attributes or instances are
processed.

Due to the prohibitive cost of discovering compound IDs at the instance
level, current dimensional design approaches rely on heuristics to identify entities
as potential facts and from them, identify dimensional data by identifying FK
- CK relationships. In any case, the degree of normalization (ranging from a
completely denormalized relation to 3NF) of the relational schema may affect
the output quality and performance of current dimensional design methods, since
they would need to look for FDs at the instance level, if the logical schema lacks
this semantics.

In this paper3, in order to conduct a more informed search and reduce the
output obtained in the analysis of the data sources when discovering IDs, we
work over a conceptual formalization of the domain (instead of a logical one).
Specifically, we propose an approach to discover meaningful IDs driven by do-
main ontologies. The software engineering area has claimed to use conceptual
representations of the domain on top of systems to have an up-to-date and accu-
rate formalization of the system domain (Olivé, 2004). This approach has given
rise to concepts such as OBDA (Ontology-Based Data Access) (Poggi, Lembo,
Calvanese, De Giacomo, Lenzerini and Rosati, 2008) and nowadays, ontologies
are used in many fields such as data integration, conceptual modeling, the se-
mantic web, among others (Francisco, Gervás and Peinado, 2010; Assawamekin,
Sunetnanta and Pluempitiwiriyawej, 2010).

In our approach, we guide the process at the conceptual level and introduce
a set of pruning rules for improving the performance by reducing the number of
ID hypotheses generated and to be verified with data. Our algorithm is relevant
since, despite the importance of object identification, most description logics
(DL), the most extended ontology languages and also the basis of the OWL

2 Note that the traditional ID concept is just a specific case of FD. For example, see (Abiteboul,
Hull and Vianu, 1995).
3 Short version published in (Abelló and Romero, 2010).
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(W3C, 2009), which is a W3C recommendation, do not provide identification
mechanisms, and only very expressive DL (that are not suitable for real world
applications due to the computational complexity of their reasoning algorithms)
incorporate them (Calvanese, De Giacomo, Lembo, Lenzerini and Rosati, 2008).
For instance, the only way to specify IDs in OWL DL is by means of one-to-one
binary relationships which are clearly not enough in most (if not all) domains.
Furthermore, the fact that most DLs do not consider n-ary relationships makes
impossible to assert compound IDs in ontologies. In short, there is no way to
express that {A,B} → C holds (where A, B and C are concepts), because in
most ontology languages, roles are binary predicates relating one class to another
class.

All in all, an algorithm to discover meaningful IDs benefiting from the se-
mantics of an ontology is a relevant issue for many real world systems. To our
knowledge, this is the first approach introduced in the literature proposing to
lead this task at the conceptual level. As result, it is able to generate less hy-
potheses to be validated with data and therefore, it performs better than current
approaches.

Section 2 points out some related work, and Section 3 sketches the process we
follow. Section 4 establishes the foundations, and Section 5 explains the details of
the algorithm. Section 6 contains the proofs of its soundness and completeness,
while Section 7 exemplifies other cases where it can be used. Finally, Section 8
gives some statistics of a simulation over a middle-sized ontology to show the
feasibility of our method. Section 9 concludes the paper.

2. Related Work

Manual discovery of IDs is an unfeasible task for most systems, and current
automatic methods need to address this task at the logical or instance level.
To avoid missing some important data dependencies, those approaches working
at the logical level assume the completeness of the data structures (i.e., all the
constraints of the domain of interest are captured at the logical level) or try to
infer them by exploiting the semantics of additional structures such as triggers,
procedures or transactions (e.g., (Hainaut, Chandelon, Tonneau and Joris, 1993;
T. and Zhao, 2004)). The former assumption may not hold and the latter uses
to be too complex.

Addressing this issue at the data level (e.g., (Demetrovics and Thi, 1995; Huh-
tala, Kärkkäinen, Porkka and Toivonen, 1999; King and Legendre, 2003; Lopes,
Petit and Lakhal, 2000; M. Kantola, H. Mannila, K.-J. Räihä, and H. Siir-
tola, 1992; Novelli and Cicchetti, 2001) among others) though, would imply such
an effort that may not be worth (as explained in (Jensen, Holmgren and Peder-
sen, 2004)). If the logical schema lacks semantics, we may need to sample such
amount of data that for a large number of attributes (since we have to blindly
test any possible combination) it would rise an unaffordable computational com-
plexity (e.g., (Soutou, 1998) generates an exponential number of queries). Indeed,
the best of these approaches yields a quadratic computational cost regarding the
size of data. Yet they have been proved not to scale properly for big loads of data,
which is the most common scenario in DW systems, as pointed out, for example,
in (C. Monash, 2008; Golfarelli and Rizzi, 2009). For this reason, this is still
a research topic giving rise to new proposals, like (Sismanis, Brown, Haas and
Reinwald, 2006; Yao and Hamilton, 2008; Yeh, Li and Chu, 2008). Furthermore,
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note that these approaches exclusively work over instances and they cannot eas-
ily tolerate erroneous data (that may generate fake IDs that do not really hold
or overlook real ones).

Specifically, the automation of the DW design process from relational schemas
has been thoroughly addressed in the literature (e.g., (Golfarelli, Maio and Rizzi,
1998; Giorgini, Rizzi and Garzetti, 2005; Phipps and Davis, 2002; Jensen et al.,
2004; Romero and Abelló, 2010) among others). All these methods rely on a
thorough analysis of the relational sources. In these cases, a first step aimed at
discovering facts is mandatory. Instead of using the IDs of the tables (which
may be missing), these methods propose the usage of heuristics in this task
(such as the relation cardinality or number of numerical attributes each table
has). From facts identified in this first step, these methods discover dimensional
data by means of design patterns based on FK and CK constraints (which again
may be missing). In general, these methods avoid sampling data (neither for
discovering compound IDs for facts nor to identify dimensional data) and the
accuracy of results obtained purely depends on the existence of CK and FK in
the schema (maybe disabled by the DBA to improve performance, maybe lost
due to denormalization below 3NF).

To our knowledge, there are only two exceptions to this general rule. On
the one hand, (Romero and Abelló, 2010) requires the analytical requirements,
expressed in the form of SQL queries, besides the input relational schema. In
this way, the join information in the user requirements is used to infer inclusion
dependencies and avoid analyzing the data (in other words, requirements over-
come the lack of semantics in the relational schema). On the other hand, (Jensen
et al., 2004) presents a method aimed at exploiting the instances semantics to
complete the relational schema metadata, and give support to the dimensional
design. Assuming that the DB does not contain compound keys, this method
derives valuable metadata such as functional and inclusion dependencies and
key information not stated in the schema. To do so, they take advantage of data
mining techniques over the data sources. In short, they assume that a functional
or inclusion dependency that holds in the data holds in the schema as well (i.e.,
two attributes of two different tables are analyzed to know if a to-one relation-
ship holds between them when a FK-CK relationship is not explicitly stated in
the schema). Thus, they are able to identify hidden inclusion dependencies, but
clearly the cost is computationally high, since they check all pairs of attributes
in the DB.

The approach presented in this paper is the first work addressing the issue of
discovering meaningful IDs at the conceptual level. Unlike previous approaches,
we use ontological knowledge to guide the search and we do not exclusively
rely on data. It has two main benefits. On the one hand, we rely on a clear
picture of the domain of interest free of logical/physical design decisions and we
are able to considerably improve the performance by reducing drastically the
number of hypotheses to be verified with data. On the other hand, this approach
may be used for assuring the quality of data, as the feasible IDs found for each
concept are extracted from knowledge in the domain ontology. Thus, it opens
new perspectives, since we may also use this information to detect erroneous
data in the database (i.e., those feasible IDs discovered at the conceptual level
refuted by data).
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3. Overview

To automate the process as much as possible, we choose ontologies instead of
other conceptual formalizations, since ontology languages provide reasoning ser-
vices that will facilitate the automation of our task. Specifically, we used OWL
DL in our implementation. Nowadays ontology languages are widely used in
different areas like data integration (Lenzerini, 2002) and the Semantic Web
(Berners-Lee, Hendler and Lassila, 2001), but in other areas, like software engi-
neering, UML (OMG, 2010) and ER (Chen, 1976) are the most common choices.
In these cases, our approach requires a pre-process to generate an OWL DL on-
tology from the UML or ER diagram. As discussed in the literature (see, for ex-
ample, (Artale, Calvanese, Kontchakov, Ryzhikov and Zakharyaschev, 2007; Be-
rardi, Calvanese and Giacomo, 2005; Gaševic, Djuric and Devedžic, 2007)), this
process can be automated.

Nevertheless, were a domain ontology available, it should be enriched with
the end-user requirements in order to properly capture both the domain vocabu-
lary and the data sources, and produce a user-centered domain ontology (i.e., an
ontology capturing the necessary knowledge about our domain and the underly-
ing sources). In these cases, or even if there is not any conceptual formalization of
the domain available we can use integration and reverse engineering techniques
for building the needed ontology. For example, (Skoutas and Simitsis, 2007)
shows that structured as well as unstructured data stores can be elegantly rep-
resented as graphs, and it describes how an ontology for such data stores can
be semi-automatically constructed by integrating a domain vocabulary with the
data sources’ vocabulary. An alternative to the previous approach is presented
in (Dánger and Berlanga, 2009). There, a tool for the extraction of complex
instances from free text on the Web is presented. The approach is based on non-
monotonic processing, and by means of entity recognizers and disambiguators,
it adequately helps to create and combine instances and their relations. The
complementary works in (Berlanga, Jiménez-Ruiz, Nebot and Sanz, 2010; Nebot
and Berlanga, 2009) enable the customized use of available knowledge resources
such as thesaurus or ontologies to assist in the annotation process. Both meth-
ods above discussed focus on providing support for building tailored, ad hoc
ontologies (i.e., user-centered) from large repositories (indeed, both approaches
focuses on building ontologies to support integration tasks for data warehousing
so they can be regarded as a pre-process of our method). Finally, note that both
processes are semi-automatic and thus, they demand some manual workload in
order to adapt the automatic output they are able to produce to our scenario
and requirements.

To start our process, the user should choose some of the concepts from the
ontology. The novelty of our approach to avoid incurring in a high computational
cost is that all the concepts functionally determined by current studied concept
will be analyzed to check whether they form an ID or not (for further details on
the formal definition of ID, we address the reader to Section 4). The different
phases are depicted in figure 2.

1. The first phase generates sets of concepts than can give rise to an ID of the
concept chosen by the user. They are compound only of concepts that, based
on the ontological knowledge available, are functionally determined by the
input concept. Moreover, we use those properties introduced in Section 4.1,
derived from the well-known FD theory, to avoid the generations of useless
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Figure 2. Process Overview

combinations. Thus, just a reduced subset of all possible combinations is gen-
erated.

2. Since accessing data can be really expensive, we save it for some combinations
by querying only the catalog/metadata of the database/system and comparing
the maximum cardinality of the ID against that of the concept.

3. Finally, for those combinations of attributes with enough cardinality to be able
to identify the concept, we check whether they actually do it or not accessing
the data. We assume that these data are in a relational DBMS, however it could
be easily adapted to access any other kind of repository by just providing the
sentences equivalent to those SQL statements we show in Section 5.1.

4. The result of the whole process will be a list of possible IDs. This list can
be ranked by the maximum cardinality each ID would admit. The closer the
cardinality of the ID to that of the concept we want to identify, the more likely
it corresponds to a truly meaningful ID.

The IDs identified at this point might be used to support the dimensional
design task (as previously discussed in Section 1), evaluate data quality, etc.

4. Foundations

Importantly, our approach discovers IDs guided by the domain knowledge cap-
tured in the ontology. First, we formally discuss the implications of the ID con-
cept at the conceptual level. We make use of a generic conceptual notation: by
concepts we refer to an ontology concept (classes in OWL notation) or a datatype,
and by relationships to ontology roles (or properties in OWL notation). We de-
note concepts by uppercase letters from the beginning of the alphabet (such as
A and B) and sets of concepts by uppercase letters from the end of the alphabet
(such as Y and Z).

Definition 4.1. We say that a set of concepts Z is a Super-ID (SID) of a concept
A, if there is a complete injective function from A to Z (i.e., a mandatory one-
to-one relationship).

Note that we do not ask for a mandatory participation of Z in A (i.e., a bi-
jective function), since some values of the SID could not have a correspondence
into the identified concept. This is sound with relational model literature, where
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Figure 3. FD-tree for EndDurationPrice

a superkey is defined as a specific kind of FD. Moreover, according to the rela-
tional model assumptions, each relation row is supposed to represent a different
instance (Codd, 1990), giving rise as a whole to a one-to-one relationship (fur-
thermore, since a CK does not allow NULL values, it is also mandatory). This
definition would be equivalent or give rise to others previously introduced in the
literature, like the generic one-to-one relationships introduced in (Chen, 1976) or
the reference mode (mandatory one-to-one relationships) in ORM (Halpin and
Morgan, 2008), as well as the base concept in (Abelló, Samos and Saltor, 2006)
and group by set in (Golfarelli and Rizzi, 2009), specifics for dimensional mod-
eling.

Def. 4.1 entails that both, the concept identified functionally depends on the
SID, and the SID functionally depends on the concept. Thus, we can formulate
the following proposition:

Proposition 4.2. A set of concepts Z is a SID of a given concept A if and only
if Z uniquely or functionally determines the values of A (i.e., Z → A) and A
functionally determines the values of Z (i.e., A → Z).

Thus, we will search the SID of A only among the attributes determined by
A. When looking for SIDs, the searching space is formed by all the attribute com-
binations up to size N, where N is the number of attributes in the database (i.e.,
2N combinations), but by using ontological knowledge we reduce the searching
space to 2P , where P is the number of concepts functionally dependent on A.

To do this, we require the asserted FDs in the domain ontology, i.e. for
each domain concept we need a tree of FDs (FD-tree). Note that retrieving
this information from the ontology is cheap in general (linear on the number
of assertions, in the worse case) and even cheaper compared to doing it over
data. Once we have the FD-tree of A, we aim to find the set of concepts Z in
it such that Z is a SID of A (according to Prop. 4.2, we only need to generate
combinations of concepts among those functionally determined by A).

Figure 3, shows an example of FD-tree for the EndDurationPrice concept of
the EU-Car Rental ontology (see (Frías, Queralt and Olivé, 2003)), that we will
use throughout this paper. It represents the final price charged to the customer’s
account for the car renting. As shown in the figure, it has 10 FD’s: the car group
(i.e., kind of car rented) and the car group name, the beginning and ending
date of the rental agreement, the final price (i.e., money) and the rental agree-
ment duration (which consists of the rental duration name and a time unit
used to express the minimum and maximum duration allowed for that rental).
All SIDs of EndDurationPrice are combinations of these concepts represented
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Concept #FD concepts

DamageCost 81
Prepared 81

AssignedCar 80
LateReturn 78

PaidWithPointsRental 74
ClosedRental 74
EarlyReturn 74

Table 1. Number of concepts functionally depending on each concept

in the figure. Note that it is truly a tree, because despite EndDurationPrice has
two associations to Date concept (i.e. BeginningDate and EndingDate), this
generates two nodes in the FD-tree. We will use the term root-children to de-
note those concepts in the first level of the FD-tree (in our example: CarGroup,
BeginningDate, EndingDate, Duration and Money).

4.1. Necessary Conditions

A naive approach for discovering IDs would entail generating all the combinations
of potential dimensions in our searching space (i.e., 2P combinations) and sample
data to verify them. However, despite we have considerably reduced the searching
space, we may still have computational problems for concepts having many FDs,
since the searching space is still exponential. For example, in a middle-sized
ontology like the EU-Car Rental, we obtained concepts with more than 80 FDs
(see Table 1). Furthermore, querying the data may be expensive for large tables.
This becomes more relevant given that the first petabyte DWs have turned into
a reality. For this reason, we further exploit the conceptual knowledge we have
before verifying ID hypotheses with data. Specifically, we take advantage of the
well-known FD theory.

Given a set of FDs F, a minimal cover (Abiteboul et al., 1995) of F is a set
F’ of FDs such that (being C a single concept):

(i) Each dependency in F’ has the form Z → C,
(ii) F’ ≡ F,
(iii) no proper subset of F’ implies F and
(iv) for each dependency Z → C in F’ there is no W ⊂ Z such that F |= W → C.

In our approach, for every ontology concept A, we define F as the set of
FDs of the kind Z → A, (where Z is compound of concepts in the FD-tree of
A). Essentially, we look for a minimal cover of F, because we aim to minimize
the number of queries posed to the database (i.e., it is the minimum set of FDs
to be verified as SIDs with data). The rest of FDs in F could, if necessary, be
generated and verified from F’ in polynomial time by the Armstrong axioms
(Ramakrishnan and Gehrke, 2003) (i.e., an FD of the kind Z → A holds if and
only if FD ∈ F’+). Nevertheless, as discussed later, we will not be interested
in this kind of FDs either, since they are not minimal and thus, they are not
IDs (e.g., in the relational model, only minimal sets of attributes that uniquely
identify the whole tuple use to be of interest).

Prop. 4.2 guarantees (i). As discussed in previous section, the FDs we may
find in an ontology are of the kind A → B, (where A and B are concepts), and in
our algorithm we only generate combinations of concepts in the left-hand-side of
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the FD (i.e., LHS multi-attribute FDs). Regarding (ii), F will be equivalent to
the set of FDs determining A that we can infer from knowledge contained in the
ontology (from where we compute the initial knowledge that guides the search)
and data (from where verify combinations proposed). Thus, if an ID cannot be
inferred from the ontology and verified with data, we will not be able to identify
it. Finally, (iii) and (iv) guarantee that the set of FDs in F’ is minimal. Note that
these two conditions are desirable for our purpose, as they avoid redundancy of
IDs. Consequently, those FDs in the minimal cover are the only ID candidates
to be considered, among all possible SIDs.

In our approach, these two items (i.e., (iii) and (iv)) lead to two necessary
conditions a FD must fulfill prior to be verified as an ID with data. Before
introducing them, we recall the Armstrong axioms used to infer all the FDs that
can be computed from a given set F of FDs (i.e., the F closure or F+) (Abiteboul
et al., 1995), since we will need them to proof our propositions:

– (reflexivity) If Y ⊆ X, then X → Y,

– (augmentation) If X → Y, then X ∪ Z → Y ∪ Z

– (transitivity) If X → Y and Y → Z, then X → Z.

Here, we also introduce the pseudo-transitivity rule (Abiteboul et al., 1995) (that
can be easily derived from the three inference rules discussed above), since we
will also need it later:

– (pseudo-transitivity) If X → Y and YW → Z, then XW → Z.

Since testing over data is really expensive, we introduce the novelty of using
the ontological knowledge to only generate and test those concepts and com-
binations that fulfill the three necessary conditions introduced below (derived
from (iii) and (iv) and Armstrong axioms. These properties apply to IDs and
FDs (note that FDs come from the ontological knowledge, not needing to access
instances).

Proposition 4.3. Let Z and W be sets of concepts functionally dependent on
a given concept A (i.e. A→Z and A→W). If Z ⊆ W and Z is an ID of A then,
W, despite functionally determining A, is not considered an ID, since it is not
minimal; there exists a subset of W (i.e., Z) that is already an ID of A.

This proposition is directly formulated from (iv). Intuitively, this enforces the
minimality property of IDs. If one concept (or combination) is found to be an ID,
we do not need to check all other combinations containing it. For example, it is
useless to check whether {RentalDuration, BeginningDate, Money} is an ID
of EndDurationPrice or not, if {RentalDuration, BeginningDate} is known
to be an ID.

Proposition 4.4. Let Z and W be two sets of concepts functionally dependent
on a given concept A (i.e. A→Z and A→W). If two concepts B ∈ Z and C ∈ W
exist such that B → C or C → B, then ZW is not an ID of A.

Intuitively, this property says that the combination ZW needs not to be
checked if those concepts in Z and W are not pairwise independent. For example,
pair {RentalDuration, MinDuration} must not be considered as a potential ID,
since RentalDuration→ MinDuration. Checking separately {RentalDuration}
and {MinDuration} would be enough.
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Figure 4. Searching space for EndDurationPrice given a partial FD-tree

Proposition 4.5. Let W be a set of concepts functionally dependent on a con-
cept A (i.e. A→W), and C a concept such that C ∈ W. Let I be the set of
intermediate concepts giving rise to the to-one path from A to C (∀Ci ∈ I : A →
Ci ∧Ci → C). If W is an ID of A, then for each Ci ∈ I, (W − {C})∪ {Ci} is an
SID of A. We call (W − {C}) ∪ {Ci} an intermediate set of W.

Intuitively, if one concept (or combination) is not an ID, those functionally de-
pendent on it will not be an ID, either. Since RentalDuration→ MinDuration,
if {EndingDate, RentalDuration} is known not to be an ID then, it is not
possible for {EndingDate, MinDuration} to be an ID.

Only those combinations satisfying all the conditions are feasible IDs and
have to be verified with data (proofs in Section 6). Thus, we only generate and
verify with data those combinations that fulfill them. In this way, we reduce
drastically the searching space and the number of combinations to be checked
against the database (i.e., minimizing the number of queries posed to the DBMS).

4.2. Searching Space

As discussed, a naive approach for discovering IDs would be to generate all the
combinations of concepts and for each one of them query the data to test whether
they have repetitions or not. Clearly, this is unfeasible due to the exponential
number of potential IDs each fact may have (second column in Table 1 shows the
exponents in our case study). For this reason, we further exploit the properties
we have at the conceptual level before verifying hypothesis with data.

Our searching space can be characterized as a directed graph like the one
shown at the left side of Figure 4. Two combinations of dimensions in this graph
can be related by two different kinds of edges:

SS-edges (Subset) link two nodes of size i and i+1 such that the first is a
subset of the second one. For instance, the edge between {RD} and {RD, CG}
(we say that {RD, CG} is an SS-descendant of {RD}). Note that these edges
link combinations in consecutive depth levels. Therefore, a 3-sized combina-
tion such as {minDur, RD,CG} would be directly related to {minDur,maxDur},
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{minDur, CG}, and {maxDur, CG} and only transitively to {minDur}, {maxDur},
or {CG}, since they are not placed in consecutive depth levels.

FD-edges (Functional Dependency) link two nodes of the same size such
that there is exactly one concept in the first one functionally determining one
concept in the second one. For instance, {RD,CG} is related to {RD,CGn}, since
CG → CGn (we say that {RD, CGn} is an FD-descendant of {RD,CG}). Note
that these edges directly relate combinations of the same size where only one
concept changes. For instance, {RD, CG} is not directly related to {maxDur, CGn}
despite CG → CGn and RD → maxDur, since we must substitute two concepts of
{RD,CG} to obtain {maxDur,CGn}. Indeed, they are related by transitivity.

In our example, we show a piece of the searching space for EndDurationPrice
(EDP). Note that for the sake of simplicity, we use a partial FD-tree of only five
concepts (right side of Figure 4). Moreover, we only draw the first two depth
levels of the searching space (left side of Figure 4)4. On level i we depict those
combinations of size i, and SS-edges link combination in two different levels.
Inside a depth level we only find FD-edges, and vice-versa.

5. An algorithm to discover IDs

SS and FD-edges introduce a partial order in the searching space that our algo-
rithm will follow when generating combinations. It takes advantage of previous
generated and tested combinations to decide if we have to explore further alter-
natives according to the necessary conditions introduced in Section 4.1 (notice
that SS-edges will be either explored or pruned based on Props. 4.3 and 4.4
whereas FD-edges will be either explored or pruned based on Prop. 4.5). Three
sets are used in the iterations:

Feasible_IDs: In the ith iteration, this set represents those combinations of
size i, satisfying the three properties introduced in Section 4.1.

Candidate_sets: In the i
th iteration, this set contains those feasible IDs of

size i refuted as IDs by querying data.
IDs: In the ith iteration, this set contains those feasible IDs of size up to i

verified as IDs by querying data.

The algorithm (sketched in Figure 5) has two inputs: a concept A we are
looking IDs for, and its FD-tree. Given them, it starts considering each root-
child of A as a Feasible ID (Step 4). Thus, these are verified (see Step 5.c.i and
Section 5.1) to see if, according to data they identify A. This is sound, since root-
children generate unary sets trivially fulfilling the necessary conditions, because
they do not have proper subsets different form the empty set (and thus, we can
directly consider them feasible IDs). If any of them is an ID, it is added to the
IDs set (Step 5.c.i.A). Otherwise, if it is not, it is added to the Candidates_sets
(Step 5.c.ii).

Note that we only explore the FD-descendants of a combination Z if this
is an ID for A (see Step 5.c.i and Section 5.1). This is a direct application of
Prop. 4.5: the FD-descendants of a given combination Z are not an ID for A if
Z is not and ID for A. A combination will be generated by gen_comb_by_FD

4 Talking about depth levels is meaningless in most graphs, but in this case we can still talk
about graph depth levels according to SS-edges.
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function seek_IDs (Concept A, FdTree M) returns Set<Set<Concept>>

1. Set<Concept> Comb;
2. Ordered Set<Set<Concept>> Candidates_Sets, Feasible_IDs;
3. Set<Set<Concept>> IDs := {};
4. int i:=1; Feasible_IDs := Get_Children(A,M);
5. while(Feasible_IDs != Ø)

(a) Candidates_Sets := {};
(b) Comb := Get_First_Combination(Feasible_IDs);
(c) while(Comb != null)

i if(determines(Comb,A)) then

A IDs ∪= Comb;
B if (Has_FD-Descendants(Comb,M)) then

Feasible_IDs ∪= Gen_Comb_by_FD(Comb, IDs, M);

ii else Candidates_Sets ∪= Comb;
iii Feasible_IDs -= Comb;
iv Comb := Get_Next_Combination(Feasible_IDs);

(d) Feasible_IDs := Gen_Comb_by_SS(i, IDs, Candidates_Sets, M);
(e) i++;

6. return IDs;

Figure 5. Algorithm finding IDs

function iff all its direct FD-ancestors are IDs for A (i.e., {minDur,CGn} will only
be generated if {minDur,CG} and {RD,CG} are in IDs set). Note that we only
need to explicitly check the FD-parents, as other ancestors already fulfill Prop.
4.5 transitively (all were generated either in the gen_comb_by_FD function
or in gen_comb_by_SS, and both functions guarantee that new combinations
generated do fulfill the three necessary conditions).

The number of new combinations added to the feasible_IDs by applying
gen_comb_by_FD for each ID found, is, at most, the number of direct FD-
descendants the ID has. For instance, if {RD,CG} is an ID, and restricted to the
partial FD-tree in Figure 4, then we would add to the feasible_IDs : {minDur,CG},
{RD,CGn}, and {maxDur,CG}. Each one of the new combinations generated satisfy
Props. 4.3, 4.4, and 4.5 and for this reason we directly add them to the feasi-
ble_IDs (thus, each new combination is eventually verified as an ID). If any of
them results to be an ID then, we apply again gen_comb_by_FD and explore
its FD-descendants.

Note that a combination generated by gen_comb_by_FD that is refuted
as an ID (i.e., determines function returns false and therefore, it is queued in
the Candidate_sets) may give rise to IDs of size greater than i that involve
other orthogonal concepts (following SS-descendants in Step 5.d). For example,
if {minDur,CGn}, and {maxDur,CGn} are in the candidate sets, they will pro-
duce {minDur,maxDur,CGn}. In general, function gen_comb_by_SS (see Figure
6) generates (i+ 1)-sized combinations chosen among the SS-descendants of the
i-sized candidate sets obtained in the previous iteration. A feasible ID of size
i+1 is only generated if it fulfills those properties in Section 4.1 (as explained
in Section 5.2). The algorithm iterates until we are not able to generate feasible
IDs of size i+1.

As explained in Section 4.2, the size of the searching space is exponential on
the number of concepts in the FD-tree. However, this algorithm is only exhaustive
for root-children combinations, and only until it finds an ID. Just when an ID is
found the algorithm explores deeper levels in the FD-tree, but at the same time
it does not explore more combinations including the attributes being part of this
ID. Thus, the worst-case scenario (i.e., the one generating 2P combinations) is
that having P root-children concepts and all of them together resulting in the
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only ID (if any). We consider that the larger P is, the more unlikely this is to
happen.

For example, executing the algorithm for EDP, considering the whole FD-tree
in Figure 3 (with 10 concepts), we would generate 53 feasible IDs (far from
210). And after testing only 29 of them with data, we would find among the
results {CG,RD,EndingDate} and {CG,RD,BeginningDate}.

5.1. The determines Function

This function is called when the three necessary conditions are guaranteed (i.e.,
we have identified a feasible ID). Then, we verify if this combination determines
fact A by querying data. Below, we exemplify it with relational queries by as-
suming a RDBMS, but we may consider any other kind of repository or testing
method (just replacing the SQL queries by the proper access technology). Prior
to query the instances, we first introduce a final pruning rule:

Proposition 5.1. Let Z be a feasible ID, it is able to identify all instances of A
if the cardinality of A is less than (or equal to) the product of the cardinalities

of the concepts in Z (i.e.,
∏

Zi∈Z

|Zi| ≥ |A|)

Note that this rule discards combinations by just querying the RDBMS cat-
alog (or system metadata, if available, if other kind of sources are considered) as
follows (Oracle syntax):

SELECT NUM_ROWS FROM USER_TABLES WHERE TABLE_NAME = t;

SELECT NUM_DISTINCT FROM USER_TABS_COLS WHERE TABLE_NAME = t AND COLUMN_NAME = c;

At this point, we need to use the mappings from the ontology to the data
sources, which we assume are available. As discussed in section 3, it is important
to remark that, if we started working from a generic domain ontology instead
of a user-centered one, generating such mappings may be a hard task as, for
example, discussed in (Miller, Haas and Hernández, 2000). Being t the name of
a table and c that of a column, if the ontology concept maps to a relational table
then by means of the first query we get the cardinality of t, and if the ontology
concept maps to a relational attribute by means of the second query we get the
number of different values it has. Those combinations satisfying this rule are still
candidates to be an ID, and we verify it by the following query (Oracle syntax):

SELECT "ID" FROM DUAL WHERE NOT EXISTS(
SELECT attrSet FROM tables WHERE joinConds
GROUP BY attrSet HAVING COUNT(*) > 1)

Where DUAL is the dummy table in Oracle, attrSet are the attributes forming
the feasible ID to be verified, tables the list of tables containing those attributes
and joinConds the join clauses needed to join tables involved in the query. If
we are able to find two rows with the same values for the ID hypothesis then,
according to data, it is not an ID.

5.2. The gen_comb_by_SS Function

Once the i-sized combinations have been verified (i.e., either proved to be IDs,
and thus added to the IDs set, or refuted, and thus, added to the candidate sets),
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function Gen_Comb_by_SS (int i, Set<Set<Concept>> IDs, Ordered Set<Set<Concept>>

Candidates_Sets, FdTree M) returns Set<Set<Concept>>

1. Set<Set<Concept>> Combs := {};
2. For(int j = 0; j < sizeof(Candidates_Sets); j++)

(a) CS1 := get_element(Candidates_Sets, j);
(b) For(int z = j+1; z < sizeof(Candidates_Sets); z++)

i CS2 := get_element(Candidates_Sets, z);
ii if (|CS1∩CS2|=i-1 and (i != 1 or independent(CS1,CS2))

and (check_Subsets(CS1,CS2, IDs, Candidates_Sets))) then

A Combs ∪= {CS1∪CS2};

3. return Combs;

function check_Subsets (Set<Concept> CS1, Set<Concept> CS2, Set<Set<Concept>> IDs,
Set<Set<Concept>> Candidates_Sets) returns Boolean

4. For each(subSet in Generate_All_i_Subsets(CS1, CS2)) do

(a) if(subSet in IDs) then return false;
(b) else if(subSet not in Candidates_Sets) then

i if(all_root-children(subSet)) then return false;

5. return true;

Figure 6. Generating (i+1)-sized combinations

the function gen_comb_by_SS (see Figure 6) generates (i+1 )-sized combina-
tions from the i-sized candidate sets obtained in the previous iteration. It looks
for pairs of candidate sets having i-1 concepts in common (Step 2.b.ii). From
every pair identified sharing i-1 concepts, a (i+1 )-sized combination is generated
(Step 2.b.ii.A) fulfilling the necessary conditions (see Section 4.1):

Prop. 4.3: guaranteed in Step 2.b.ii by the check_Subsets function. This func-
tion generates all the i-sized subsets of the current (i+1)-sized combination
treated, and verifies them as follows:

(a) If an i-sized subset of the (i+1)-sized set is in the IDs set (Step 4.a) then,
it must not be considered a (i+1)-sized feasible ID, since it is not minimal.

(b) If an i-sized subset is in the Candidate_sets (Step 4.b), the (i+1)-sized
combination can still be minimal and some of its concepts have been
checked to be pairwise orthogonal (eventually, all will be checked in the
loop).

(c) Alternatively, due to our pruning rules, it may happen that a subset is
neither in the Candidate_sets nor in the IDs set. If the subset is only com-
pound of root-children (Step 4.b.i), the (i+1)-sized combination must be
refuted, since our algorithm checks all root-children combinations fulfilling
Props. 4.3 and 4.4.

(d) Otherwise, the i-sized subset is a transitive FD-descendant (remember that
gen_comb_by_FD function only generated direct FD-descendants) of an
i-sized feasible ID refuted with data and therefore, fulfilling Props. 4.3 and
4.4.

Prop. 4.4: guaranteed, for 2-sized combinations, in Step 2.b.ii (i.e., checking
that they are independent, which means they are not present in the FD-tree
of one another) and, for bigger combinations, similarly to 4.3 in check_Subsets
function.

Prop. 4.5: actually guaranteed by gen_comb_by_FD function and (i+1)-sized
combinations coming from the union of two i-sized feasible IDs.
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For example, suppose that we try to combine the sets {BeginningDate,
MinDuration} and {BeginningDate, Money} to get {BeginningDate, MinDu-
ration, Money}. Then, function check_Subsets will generate its three 2-sized
subsets: {BeginningDate, MinDuration}, {BeginningDate, Money} and also
{MinDuration, Money}. According to (a), if any of them is an ID then, the 3-
sized combination is not generated (since it is not minimal). Oppositely, accord-
ing to (b), if all of them are in the candidate sets, we can guarantee that the 3-
sized combination is minimal and it is generated. Consider now that {Beginning-
Date, Money} and {BeginningDate, MinDuration} are neither in the candi-
date sets nor in the IDs set. According to (c), since the first one is compound
of root-children, if fulfilling Props. 4.3 and 4.4, it should have been in either
IDs or candidate sets (since our algorithm is exhaustive for root-children) and
thus, it means that either {BeginningDate} or {Money} is an ID. In the second
case, since {BeginningDate, MinDuration} is an FD-descendant of the node
{BeginningDate, RentalDuration} it does not invalidate the 3-sized combi-
nation. The reason is that {BeginningDate, RentalDuration} is a feasible ID
refuted with data. Consequently, since it was refuted as an ID, according to Prop.
4.5, we could foresee that {BeginningDate, MinDuration} would not be an ID
and then, it was not even generated by the gen_comb_by_FD function (had
it been generated by the gen_comb_by_SS function, this subset would have
been included in the IDs set or candidate sets and thus, considered by either (a)
or (b)). However, this set fulfills Props. 4.3 and 4.4 and therefore, it does not
invalidate the 3-sized combination.

6. Algorithm Correctness

Our algorithm is sound and complete with regard to the domain ontology and
data, as it generates sets from knowledge captured in the ontology and verifies
them with the data. In this section we show that we generate all the sets of
the searching space that fulfill the three necessary conditions, and that we do
not generate any set that does not fulfill them. Thus, our proofs of soundness
and completeness rely on the three necessary conditions discussed and justified
in section 4.1. Note that, without considering our pruning rules, our algorithm
would generate all the possible combinations of the searching space. For this
reason, we just need to show that our pruning rules do not miss any ID nor
generate combinations not being ID. In other words, in our algorithm we generate
all the combinations of the searching space that (i) all its subsets are not IDs
(i.e., all its SS-ancestors are not IDs), (ii) its components are pairwise orthogonal
(i.e., we cannot find two elements in the ID such that one is in the FD-tree of the
other) and (iii) its intermediate sets are, indeed, IDs (i.e., all its FD-ancestors
are IDs). If we are able to generate all the sets meeting the necessary conditions
and no other sets, it is easy to see that by verifying them with data (see section
5.1) our algorithm is still sound and complete.

We proved it by induction on the size of the combinations, and divided our
proof in two parts. The first part shows that our algorithm is sound and complete
for root-children (i.e., those combinations only consisting of concepts that are
direct descendants of the root of the FD-tree). Then, we show that it is also
sound and complete for FD-descendants (i.e., those combinations that contain,
at least one concept whose distance to the root of the FD-tree is greater than 1).
In each case, for the sake of understandability, we only provide proof of iterations
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1 and 2. To find the proof of the induction step, which is a generalization from
the second iteration, please see (Romero, 2010).

6.1. Root-children

In this section we show that we generate all the root-children satisfying the three
necessary conditions (completeness) and no other root-child (soundness).

– First Iteration:
soundness: In the first iteration, each concept functionally determined by A

(not considering transitivity) is considered a set by itself, and they trivially
satisfy Props. 4.3 and 4.4.

completeness: In this iteration, every one of these concepts is considered a
feasible ID, as they are the smallest set to be verified as an ID (see figure
5, step 4).

– Second Iteration:
soundness: 2-sized root-children are generated by combining all the 1-sized

candidate sets found in the previous iteration. By definition, those 1-sized
sets in the candidate sets have been refuted as IDs (i.e., fulfilling Prop. 4.3),
and only those 2-sized sets consisting of orthogonal concepts are generated
(i.e., fulfilling Prop. 4.4. See figure 6, step 2.b.ii).

completeness: We generate all the 2-sized combinations between concepts
except for (i) those consisting of a concept being an ID, and (ii) those
consisting of two concepts such that one is functionally determined by the
other.

Finally, note that we have not justified Prop. 4.5 in this section. This is
because root-children do not have intermediate sets by definition.

6.2. FD-descendants

In this section we show that we generate all the FD-descendants satisfying the
three necessary conditions (completeness) and no other combination (soundness).

– First Iteration:

soundness: 1-sized FD-descendants are generated following FDs from combi-
nations verified as IDs and thus, fulfilling Prop. 4.5. These new generated
combinations are of size 1 and they also fulfill Props. 4.3 and 4.4.

completeness: All the 1-sized FD-descendants are generated iteratively fol-
lowing FD-edges (i.e., it follows the FD-edges until it finds FD-descendants
that are not an ID). Therefore, those FD-descendants not explored will not
be a feasible ID since they do not fulfill Prop. 4.5.

– Second Iteration:

soundness: 2-sized FD-descendants can be generated from gen_comb_by_SS
function (see figure 6) or by following FD-edges from 2-sized combinations
verified as IDs. In the first case, they fulfill the necessary conditions by
the same proof introduced for 2-sized root-children. In the second case, it
trivially guarantees Prop. 4.5. Furthermore, this also guarantees Props. 4.3
and 4.4. Let W, Z be two 2-sized sets of concepts such that W is related



Ontology Driven Search of Compound IDs 19

to Z by FD-edges (maybe transitively) (i.e. Z was generated by following
FD-edges). By definition of the FD-edges (see section 5) there is a concept
B such that B ⊂ Z and B ⊂ W, and two concepts A, A1 such that A → A1,
and A ⊂ W, and A1 ⊂ Z. Z satisfies Prop.4.3 because if W is generated,
B is not an ID (since it is in the candidate sets), and if A1 is an ID, then
A is an ID as well. Thus, A would have been verified as an ID in the first
iteration, and, by following FD-edges, A1 as well (so that, A1 would be in
the IDs set and Z would not be generated). Prop. 4.4 is guaranteed because
2-sized sets are generated if concepts on it are orthogonal (see figure 6; step
2.b.ii).

completeness: We show that our algorithm finds all the 2-sized FD-descend-
ants by contradiction. Let Z be a 2-sized FD-descendant not found by
our algorithm. If we have not been able to generate Z, at least one of its
concepts (i.e., A1) must not be among the 1-sized candidates. Therefore, A1

is not a root-child (as every concept being a descendant of the root in the
FD-tree will be present in the candidates set or in the IDs set; see second
iteration in previous section). By definition of our searching space, a 2-sized
root-child W exists such that W is an intermediate set of Z (see section 5).
In other words, W is related to Z by FD-edges (maybe transitively). Thus,
by Prop. 4.5, if Z is an ID then W is also an ID. Since our algorithm is
exhaustive for root-children combinations, W would have been generated,
and Z as well by following FDs.

7. Actually a Generic Algorithm

Despite it looks like a specific algorithm to discover IDs, it can actually be used
to speed up the checking of any property fulfilling the three necessary condi-
tions described in section 4.1. For example, in the DW area, most methods that
automate the dimensional design process focus on identifying the dimensional
knowledge contained in the sources. It is well known that these approaches tend
to generate too many results, unnecessarily overwhelming the users with blindly
generated combinations whose meaning has not been analyzed in advance. For
example, (Phipps and Davis, 2002) identifies 6 facts in the TPC-H benchmark
and proposes (out of 61 attributes in the source) 51, 13, 31, 35, 21, and 17 dimen-
sional concepts to analyze each one of them; with our approach in (Romero and
Abelló, 2010) we found for the 6 more promising facts (out of 170 properties and
65 concepts in the exemplifying ontology) 81, 78, 81, 80, 74, and 74 dimensional
concepts. Clearly, these are too many results to be shown to the user for such
small schemas.

In the data mining area, incorporating prior knowledge about the attributes
has long been known to profoundly influence the effectiveness of analysis. This
has been demonstrated by many authors, like (Kira and Rendell, 1992) and
(Kohavi and John, 1997), using various heuristics that filter the attributes to
be used on building a model. Thus, we could just redefine the acronym ID so
that it stands for statistically interesting analysis dimension. In this way, using
our algorithm we should be able to filter and prioritize the dimensional concepts
found in the sources for a given fact, so that the user can focus on these to decide
and define his/her requirements for an OLAP application. All we need now is
to redefine the test we have to perform over data in this case (the rest of the
algorithm remains exactly the same).
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Figure 7. ANOVA graphical example

Shannon entropy quantifies the information contained in a variable. In this
sense, it is used in (Yang, Procopic and Srivastava, 2009) to choose the most
important tables in a relational schema. In our case, we do not want to decide
the absolute importance of a concept, but its importance when it partitions
a measure. Thus, we should choose the IDs5 based on the gain of entropy on
partitioning each measure (this would show how much information we gain on
analyzing the measures from a given point of view). Unfortunately, entropy only
applies to discrete variables and measures in a DW use to be continuous. Thus,
we propose to measure the interest of partitioning the values of a concept by
analyzing the consequences in the variance.

In (Wonnacott and Wonnacott, 1990) we can see how to perform an analysis
of variance (ANOVA). This is a test designed to decide whether the difference in
the means of several samplings are due to differences in the populations or can
be reasonably attributed to chance fluctuations alone. Figures 7 and 8 sketch the
idea behind ANOVA test. Figure 7 shows a measure partitioned by a potential
dimensional attribute in two sets, while Figure 8 shows it partitioned by another
potential analysis dimension in six sets. The “×” marks the average for either the
total (i.e. “All”) or each partition, and the rectangle containing it displays the
interval defined by the standard deviation. Even though in both cases the average
of some subsets differ from the total, in Figure 7 it is statistically plausible
being just by chance, while in Figure 8, within a 99% confidence interval, the
difference in the distribution of the measure in each category really comes from
the partitioning concept.

Thus, in our case, the hypothesis of “no difference” in the population of the
different subsets is the null hypothesis. If this is rejected in our statistical analysis
with a given confidence level, we will propose this concept (or set of concepts)
generating the partition as an Interesting Dimension (ID) to the user. Nev-
ertheless, regardless of the statistical conclusions, it will still be up to the user to
decide whether a given ID is truly interesting for the organization or not. Note
that not only individual concepts, but also sets of concepts could give rise to a
single ID.

5 We recall the reader that, in this section, IDs stands for Interesting Dimensions.
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Figure 8. ANOVA graphical example

Again our search space are all combinations of concepts in the ontology, but
since the same properties in Section 4.1 apply again to this new relationship, we
can reuse the same algorithm. All we need is to adapt the function that performs
the final checking over data.

7.1. The interesting Function

This function is called, instead of “determines” (Section 5.1), when the three
necessary conditions are guaranteed (i.e., we have identified a feasible ID). Then,
we verify whether this combination of dimensional concepts is interesting to
analyze the measure by querying data.

Similar to Proposition 5.1, prior to perform the statistical analysis, we may
first introduce a final pruning rule over the catalog:

Proposition 7.1. A concept with too many instances is not interesting as a
dimension.

Statisticians consider that useful categorical variables must have, at most,
some tens of values. Thus, non-numerical concepts with more than, for exam-
ple, one hundred values may be discarded in the experiments, while numerical
concepts with more than one hundred values should be discretized to reduce the
number of values (when used as a dimensional concept), see for example (Bondu,
Boullé and Lemaire, 2010). Those combinations satisfying this rule are still can-
didates to be an ID, and we verify it by performing a one-way ANOVA test with
the following query:

SELECT (SUM(gr.s)/(#distinct -1))/(SUM(POWER(A-grAvg,2))/(#tuples -#distinct ))
AS fFisher

FROM t, (SELECT attrSet AS id,
avg(A) AS grAvg,
POWER(AVG(A)-(SELECT avg(A) FROM t ),2) AS s

FROM t

WHERE joinConds

GROUP BY attrSet ) gr
WHERE attrSet =gr.id;

Where attrSet are the concepts conforming the feasible ID to be verified,



22 A. Abelló and O. Romero

Figure 9. Main concepts in the Rental Agreement ontology

t the table or tables containing the corresponding attributes (join conditions
should be added if necessary), #distinct is the number of different values for
attrSet and #tuples the number of tuples in the fact table. Then, the credibility
of the null hypothesis is obtained by placing the result of this query in a Fisher
distribution with the corresponding degrees of freedom. For example, for an
fFisher value obtained in the query of 2.19, given 8 degrees of freedom (i.e.
#distinct=9) for numerator and 379 (i.e. #tuples=388) for denominator results
in a 97% of confidence, which should be interpreted as the confidence of the
current combination of concepts being statistically interesting.

8. Case Study

In this section, we introduce results got after carrying out our algorithm over
the EU-Car Rental case study (Frías et al., 2003). This ontology refers to a car
renting domain 6 and it has 65 concepts and 170 relationships (Figure 9 shows
the main ones).

6
The whole ontology is available in OWL DL notation at www.essi.upc.edu/∼ oromero/EUCarRental.owl
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Figure 10. Process overview

Specifically, we used the implementation of the method in (Romero and
Abelló, 2010) and included this work interleaved in the process. Figure 10 de-
picts a schematic overview. Throughout three well-differentiated tasks, it iden-
tifies concepts likely to play multidimensional roles and therefore, likely to give
rise to dimensional schemas. The first task looks for potential subjects of anal-
ysis (i.e., facts). In the literature we can find different approaches to discover
facts but most of them are hardly automatable. Identifying facts automatically
is a hard task, and most methods rely on heuristics such as table cardinalities
or numerical attributes. We assumed that an ontology concept is likely to play
a fact role if it has as many measures as possible and it can be analyzed from
as many different perspectives as possible. A fact with these characteristics may
not be of interest to the user (this will be considered later in our approach), but
objectively, it will provide many different measures to be analyzed from many
different perspectives. This task, therefore, is divided in two main subtasks; (1)
discover potential dimensional concepts and (2) point out potential measures.
Now, for each ontology concept we can estimate its likelihood of being a fact.
In general, those concepts with most potential dimensional concepts and mea-
sures are good candidates, but we should weight each input according to our
preferences. In our approach we define f as a function that, given the number of
dimensional concepts and measures of a concept c, it evaluates it as a promising
fact. This quality function will prune those concepts below a given threshold.
Potential facts not pruned are ranked according to its f value and presented to
the user as in the following table.

Concept #Dimensional #Potential f = #D + 2#M

Concepts Measures

LateReturn 78 5 88

DamageCost 81 3 87

Prepared 81 3 87

AssignedCar 80 3 86

PaidWithPointsRental 74 4 82

ClosedRental 74 4 82

EarlyReturn 74 4 82

Lets suppose now that the user selects ClosedRental, which is a subclass of
RentalAgreement representing those agreements that have been already closed
(lets say “historic rental agreements”). The second task uses the algorithms in
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Figure 11. Dimensional schema

this paper to show to the user the different potential IDs of the chosen fact.
We get its FDs (from knowledge asserted in the ontology) and later, by means
of the algorithm introduced in Section 5, its feasible IDs. In this case, the al-
gorithm generates only 149 feasible IDs to be tested with data, out of the
more than 1021 combinations of the 74 dimensional concepts. Afterwards, the
user will validate which IDs are meaningful to the business. Among the re-
sults, the user would find, IDs like {Beginning,Customer}, {Beginning,Car},
{InitialEnding,Customer}, {InitialEnding,Car}, {AgreedEnding,Customer},
and {AgreedEnding,Car}.

With this, the system would generate metadata to inform the user of the
different dimensional spaces where data can be placed and avoid sparse cubes
(since, by definition, IDs are minimal sets). Moreover, it would allow to identify
analysis dimensions for the fact (since they are precisely the components of the
IDs). Lets suppose, now, that the user selected the first four IDs out of those
mentioned. The last task gives rise to dimension hierarchies for these concepts.
In other words, we aim to identify relevant aggregation paths looking for typical
part-whole relationships. In this step, graphs giving shape to each dimension
hierarchy are built up. The user may again tune them up to his/her needs.

Finally, Figure 11 shows the dimensional schema obtained for ClosedRental.
The analysis dimensions found show the Car and the Customer involved in the
agreement, together with the time of the agreement and the pickup time of the
car. We claim that to derive all the multidimensional knowledge contained in the
ontology and let the user just filter results got according to his/her requirements
is much easier than doing it completely manually without any assistance.

If we apply the second task in the process to each and every concept in
the ontology, we have an average of 31.83 concepts in the FD-tree (i.e., in our
algorithm we have an average searching space of 231.83 combinations), the average
degree of these nodes was 6.67 (i.e., the average number of combinations we start
with in the first iteration of our algorithm) and the average depth was 2.91 (with
a minimum of 1 and a maximum of 5). As a result, when computing IDs we get
an average of 156.53 feasible IDs per concept (i.e., we would query the database
only 156.53 times per concept; in front of the 3,817,550,246 times if we would
have generated all the combinations in the searching space, i.e., 231.83). Figure
12 puts these numbers in a bar chart of logarithmic scale.

In general, considering all the queries posed to the database for all the con-
cepts we have a total of 10,018 queries, of which 15% are answered by just query-
ing the catalog (see Section 5.1) and the rest, by queries over data. This is the
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Figure 12. Summary of results

minimum number of queries we must pose to find all the IDs of the domain (ex-
actly the combinations fulfilling the conditions stated in Section 4). Furthermore,
it is interesting to realize that about 30% of n-sized feasible IDs are generated by
combining (n-1)-sized candidate sets whereas the rest are generated by following
FD-edges. The execution time of our algorithm is insignificant in front of the cost
of querying data. Indeed, all the feasible IDs for all the concepts in the ontology
were generated in less than 10 seconds (Intel Core2Duo 1.33 GHz processor, 1.99
GB of RAM running a JVM 1.4.2 accessing the ontology through Protégé-OWL
API (Stanford Center for Biomedical Informatics Research, 2009)).

We do not compare our approach against those other methods testing the
existence of an FD, because ours would be a pre-process for the others. We
would just need to substitute our naive SQL query in Section 5.1 by any other
smarter method that allows to determine whether or not a set of attributes are an
ID of a given class of objects (as demonstrated in Section 7.1). Our improvement
is on reducing the amount of times we need to execute those other methods by
using knowledge not at the data level, but at the conceptual level.

9. Conclusions

We have proposed an algorithm for finding compound IDs (i.e., compound keys)
using domain ontologies. We take advantage of knowledge captured in the ontol-
ogy to generate IDs hypotheses that are later verified with data. Unlike previous
approaches that addressed this task at the data level, we benefit from ontolog-
ical knowledge that allows to better depict and prune the searching space. As
consequence, our approach does not completely rely on data and it opens new
perspectives for data quality processes. Even if an ontology is not available, it
would be easier to generate it (which can be automatized to some extent, as
shown in the literature) than testing only over data. We have shown soundness
and completeness proofs with regard to the knowledge captured in the domain
ontology and the data, and presented the feasibility of our method by means of
the statistics raised by the implementation of our algorithm over a case study.
Despite we focus on the usage of the algorithm in data warehouse design prob-
lems, it can also be used in other areas such as data cleansing, integration, or
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any other reengineering process where would be necessary to discover meaning-
ful IDs. Moreover, we also explained how this same algorithm can be adapted
to other different problems where the three properties we use still hold (intu-
itively, when defining another characteristic sharing the properties of the FDs).
We exemplified it by testing whether the combination of a set of concepts is
statistically interesting to analyze a given measure (where interesting is defined
in terms of passing ANOVA tests).

As future work, we plan to adapt the algorithm to look for keys for all the
domain concepts at the same time instead of performing this task one by one.
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