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ABSTRACT
Designing a data warehouse (DW) highly depends on the in-
formation requirements of its business users. However, tai-
loring a DW design that satisfies all business requirements
is not an easy task. In addition, complex and evolving busi-
ness environments result in a continuous emergence of new
or changed business needs. Furthermore, for building a cor-
rect multidimensional (MD) schema for a DW, the designer
should deal with the semantics and heterogeneity of the un-
derlying data sources. To cope with such an inevitable com-
plexity, both at the beginning of the design process and when
a potential evolution event occurs, in this paper we present
a semi-automatic method, named ORE, for constructing the
MD schema in an iterative fashion based on the information
requirements. In our approach, we consider each require-
ment separately and incrementally build the unified MD
schema satisfying the entire set of requirements.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administra-
tion—Data warehouse and repository

Keywords
Data Warehouse, Multi-Dimensional Design, ETL Design

1. INTRODUCTION
Data warehousing ecosystems have been widely recognized

to successfully support strategic decision making in com-
plex business environments. One of their most important
goals is to capture the relevant organization data provided
through different sources and in various formats and to en-
able analytical processing of this data. The most common
design approach suggests building a centralized decision sup-
port repository (like a DW) which gathers the organization’s
data and which, due to its analytical tasks, follows a multi-
dimensional (MD) design. The MD design is distinguished
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by the fact/dimension dichotomy, where facts represent the
subjects of analysis and dimensions show different perspec-
tives from which the subjects can be analyzed. Furthermore,
the design of the extract-transform-load (ETL) processes re-
sponsible for managing the data flow from the sources to-
wards the DW constructs, must also be considered.

Complex business plans and dynamic, evolving enterprise
environments often result in a continuous flow of new infor-
mation requirements that may further require new analyt-
ical perspectives or new data to be analyzed. Due to the
dynamic nature of the DW ecosystem, building the com-
plete DW design at once is not practical. Also, assuming
that all information and business requirements are available
from the beginning and remain intact is not realistic either.
At the same time, for constructing a DW design –i.e., its MD
schema– the heterogeneity and relations among the existing
data sources need to be considered as well.

The complexity of the monolithic approach for building a
DW satisfying all information requirements, has also been
largely characterized in the literature as a stumbling stone
during the DW projects (e.g., see [9]). As a solution to this
problem, the Data Warehouse Bus Architecture has been
proposed as a step-by-step approach for building a DW [9].
This approach starts from individual data marts (DM) de-
fined over single data sources and continues exploring the
common dimensional structures, which these DMs may pos-
sibly share. To facilitate this process, a matrix as the one
shown in Table 1 is used, which relates information require-
ments to facts of the selected DMs and dimensions implied
by each DM. Such a matrix is used for detecting how the
dimensions are shared among different facts and based on
that, for combining different DMs into the DW dimensional
model. However, such design guidelines assume a tremen-
dous manual effort from the DW architect and hence, they
still encounter the problem of burdensome and time-lasting
process of translating the end-user’s information require-
ments into the appropriate MD schema design.

In our work, we follow a different approach to DW design
with the goal of automating the process of building the MD
schema of a DW by incrementally integrating the informa-
tion requirements into a unified MD schema design.

In practice, information and business requirements may
come from different business users and may span various
data sources. For each requirement, a data sources’ subset
may be identified and translated into the valid multidimen-
sional context that corresponds to the analytical need of such
a requirement. Various approaches have both manually and
automatically tackled the issue of producing an MD design
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Table 1: The DW Bus Architecture for IR1-IR5
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ship. qty.(IR1)
√ √ √ √ √

profit(IR2)
√ √ √

revenue(IR3)
√ √ √ √ √

avil. stock val.(IR4)
√ √ √

ship. prior.(IR5)
√ √ √

from data sources, taking into account the end-user require-
ments. Our method is generic and does not depend on the
approach used to accomplish such task.

In a previous effort, we have worked on automating the
translation of a single information requirement into the ap-
propriate MD interpretation of a subset of the sources [16]
(i.e., interpreting sources’ concepts as either factual or di-
mensional). In addition, such MD interpretations undergo
the process of MD validation to ensure the satisfaction of
the MD integrity constraints, like those discussed in [10].
However, such MD interpretations as is cannot serve as a
single, unified MD schema.

In this paper, we start from such MD interpretations of in-
dividual requirements and present an iterative method that
consolidates the various MD interpretations (that resemble
the rows of Table 1) into a single, unified MD schema design
that satisfies the entire set of information requirements.

Our method, ORE, is useful for the early stages of a DW
project, where we need to create an MD schema design from
scratch, but it can also serve during the entire DW lifecycle
to accommodate potential evolution events. (As we discuss
later on, in the presence of a new or changed requirement,
our method does not require creating an MD design from
scratch, rather it can automatically absorb the change and
fix an existing MD schema.) In both cases, ORE processes
the MD interpretations of the sources for a single informa-
tion requirement and aims at producing the complete MD
schema satisfying all the requirements so far, while also en-
abling the minimal MD design by fusing the adjacent facts
and dimensions and hiding irrelevant concepts. To achieve
better integration into existing MD structures (facts and
dimensional hierarchies), ORE benefits from the semantics
and relations of data sources as these are captured by an ap-
propriate ontology; e.g., synonyms, functional dependencies,
taxonomies, and so on.

Outline. The rest of the paper is structured as follows.
Section 2 presents an abstract overview of our approach
through an example case based on the TPC-H schema [1].
Section 3 formally presents our method for integrating new
or changed information requirements into an MD schema de-
sign. Finally, Section 4 and Section 5 discuss related work
and conclude the paper, respectively.

2. OVERVIEW OF OUR APPROACH
In this section, we first describe an example case and then,

we present an overview of our iterative approach to create
an MD design from a set of MD interpretations each one cor-
responding to a single information or business requirement.

Figure 1: TPC-H Schema

2.1 Example and Background
Our example scenario is based on the TPC-H schema [1],

an abstraction of which is illustrated in Figure 1. For the
sake of the example, let us assume a set of five informa-
tion requirements related to the TPC-H schema. We first
discuss how we translate these requirements into appropri-
ate MD interpretations (a task which is the focus of a pre-
vious work [18]) and then, we discuss how we consolidate
these individual MD interpretations into a single, unified
MD schema (a task which is the focus of this paper). Our
example information requirements are as follows:

• IR1: The total quantity of the parts shipped from
Spanish suppliers to French customers.

• IR2: For each nation, the profit for all supplied parts,
shipped after 01/01/2011.

• IR3: The total revenue of the parts supplied from East
Europe.

• IR4: For German suppliers, the total available stock
value of supplied parts.

• IR5: Shipping priority and total potential revenue of
the parts ordered before certain date and shipped after
certain date to a customer of a given segment.

In addition to the information requirements, we use a do-
main ontology that corresponds to the TPC-H data stores.
There are several methods for creating such an ontology
(e.g., see [20]) and thus, due to space considerations, we
do not elaborate on this topic in this paper. Having such
an ontology at hand, we benefit from the ontology features
during the integration process.

Starting from the given set of information requirements
and data sources, we may map these to a domain ontology
for obtaining the corresponding MD interpretations of these
requirements [16]. Figure 2 illustrates the MD interpreta-
tions for each example requirements IR1, ..., IR5.

These interpretations include exactly the subset of source
concepts labeled with the appropriate MD roles (i.e., fac-
tual, dimensional) to fetch the required data. This means
that besides the concepts explicitly related to a requirement,
an interpretation may also include concepts relating to the
sources (intermediate concepts) in order to correctly fetch
the data needed. Therefore, for example, even though IR1
does not explicitly require data for customer’s orders, the
corresponding MD interpretation of the sources for IR1 (see
Figure 2) does include the Orders concept, since this is the
only way to relate the Lineitem instances with their corre-
sponding Customers.

Taking into account the analytical nature of the given in-
formation requirements, which typically include one or more
concepts to be analyzed –facts (e.g., revenue, profit)– con-
sidering different perspectives –dimensions (e.g., Supplier,
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(IR1) (IR2)

(IR3) (IR4)

(IR5)
Figure 2: Single MD interpretations for IR1-IR5

Customer, Nation)– a given interpretation may be labeled
with the corresponding MD information (i.e., source con-
cepts may be either factual or dimensional). For each re-
quirement, we obtain the valid MD-like structure that sat-
isfy the analytical needs of this requirement. Nevertheless,
these resulting MD interpretations cannot be considered yet
as the final MD schemas, since they may contain unnecessary
and/or ambivalent knowledge (e.g., intermediate concepts).

We distinguish two kinds of MD concepts, namely dimen-
sional (L) and factual (F) concepts; graphically these are
represented as white and gray rectangles, respectively. A
concept may contain MD attributes (measures and descrip-
tors), which are identified in the domain ontology from the
input requirements. A concept may have two MD roles (fac-
tual and dimensional), which in turn are shown in the MD
interpretation of a requirement.

In terms of our example, in the IR2 requirement (see Fig-
ure 2), the attributes l_quantity, l_discount, and l_ex-

tendedprice are identified as measures, while the attribute
l_shipdate is identified as dimension. Hence, a new di-
mensional concept Lineitem_dim is created and added to
the final MD interpretation for IR2. Furthermore, dimen-
sion attribute (l_shipdate) is relocated from Lineitem into
Lineitem_dim concept and Lineitem may then be tagged
with a factual MD role.

2.2 Problem
Starting from a set of input requirements and data sources,

we create a set of MD interpretations, one for each require-
ment. The problem at hand is to identify the common MD
knowledge among these interpretations and incrementally
integrate them, in order to obtain a single MD schema sat-
isfying all information requirements.

Example. Figure 2 shows the MD interpretations corre-
sponding to the example requirements IR1, ..., IR5. Having
as inputs these MD interpretations, we first integrate those
obtained for IR1 and IR2 and generate an MD schema sat-
isfying both IR1 and IR2 (see Figure 3). Then, iteratively

Figure 3: MD schema satisfying IR1&IR2

Figure 4: MD schema satisfying IR1-IR5

we integrate the remaining MD interpretations. Finally, we
produce an MD schema satisfying all input requirements, as
shown in Figure 4. 2

2.3 Our Solution, ORE
This section presents the core components of our method

for Ontology-based data warehouse REquirement evolution
and integration (ORE), which are the inputs to our system
and the processing stages of ORE.

2.3.1 Inputs
Data sources. To boost the integration of the new in-

formation requirements into the final MD schema design,
we capture the semantics (e.g., concepts, properties) of the
available data sources in terms of an OWL ontology. The
use of an ontology allows us to automatically infer relations
such as synonyms, functional dependencies, taxonomies, etc.
among the concepts. Such ontology features provide more
semantically meaningful integration of new information re-
quirements. If an ontology capturing the concepts and prop-
erties of the data sources is not available, we create it as
described in the literature (e.g., [20]).

Multidimensional interpretations (MDI). The in-
formation requirements posed throughout the organization
(similar to the example ones presented in Section 2.1) are
validated against the available internal or external sources.
The source subset satisfying the given requirements is inter-
preted with the identified MD knowledge (e.g., as in [16]).
Hence, we consider as inputs the MD interpretations satisfy-
ing the given set of information requirements (see Figure 2).
A single information requirement may be mapped to differ-
ent MD interpretations due to possible ambivalence of the
MD knowledge of the source concepts obtained from this
requirement (e.g., intermediate concepts).

For example, for the IR1 requirement (see Figure 2) the in-
termediate concepts Orders and Partsupp may have two dif-
ferent MD roles (factual and dimensional) and thus, for IR1
there are four different MD interpretations, since all combi-
nations of the MD roles for Orders and Partsupp are valid.
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Figure 5: General overview of approach

2.3.2 Stages
An abstract schematic flow of our approach is depicted in

Figure 5. Our iterative integration method semi-automatica-
lly integrates new information requirements and produces
the MD schema satisfying the requirements so far. At the
same time, the set of operations that illustrates such inte-
gration step is identified (i.e., integration operations) and
further weighted to assist designer’s choice. The needed in-
tegration operations are shown in Table 2. (Table 2 also
contains weights accompanying the integration operations;
we discuss this further in Section 3.1.)

Our method, ORE, comprises four stages, namely match-
ing facts, matching dimensions, complementing the MD de-
sign, and integration (see Figure 6). The first three stages
gradually match different MD concepts and explore new de-
sign alternatives. The last stage considers these matchings
and designer’s feedback to generate the final MD schema
that accommodates a new or changed information require-
ment. Here, we give a high-level description of these stages
and in the next section, we formally present our method.

In all stages, we keep and maintain a structure, namely
traceability metadata (TM), for systematically tracing ev-
erything we know about the MD design integrated so far,
like candidate improvements and alternatives. With TM , we
avoid overloading the produced MD schema itself. For ex-
ample, this structure keeps the information about all alter-
native MD interpretations for a single information require-
ment, while only one is chosen to be included in the final
MD schema. Iteratively, the traceability metadata grows
with the integration of each requirement and, along with
the user feedback, it provides the basis for obtaining the
final MD schema.

Stage 1: Matching facts. We first search for differ-
ent possibilities of how to incorporate an information re-
quirement (i.e., its MD interpretation) to TM . The match-
ing between factual concepts is considered –i.e., the system
searches the fact(s) of TM producing an equivalent set of
points in the MD space– as the one in the given MD inter-
pretation. Different possibilities to match the factual con-
cepts results with the appropriate sets of integration opera-
tions. The costs of these integration possibilities are further
weighted and the prioritized list is proposed to the user, who
is expected to choose the one most suitable to her needs.
Stage 2: Matching dimensions. After matching the

factual concepts of the new MD interpretation and TM ,
we then conform the dimensions implied by the matched
concepts. Different matchings between levels are considered
(i.e., “=”, “1 - 1”, “1 - *” and “* - 1”) and thus, the dif-
ferent valid conformation possibilities are obtained. With
each possibility, a different set of integration operations for
conforming these dimensions is considered and weighted.

The designer decides on what the next integration action(s)
should be.

Stage 3: Complementing the MD Design. We fur-
ther explore the domain ontology and search for new ana-
lytical perspectives. Different options may be identified to
extend the current schema with new MD concepts (i.e., lev-
els, descriptors, and measures). The designer is then asked
to (dis)approve the integration of the discovered concepts
into the final MD schema.

Stage 4: Integration. The MD schema is finally ob-
tained in two phases of this stage. First, possible group-
ings of the adjacent concepts containing the equivalent MD
knowledge is identified to minimize the MD design. Both
the matchings identified through the previous stages and
user feedback are considered, in order to incorporate new
requirements into the final MD schema and possibly extend
it with the MD knowledge discovered in the ontology and
approved by the user. Furthermore, the final MD schema is
produced by folding the knowledge and collapsing grouped
concepts from previously upgraded TM , to capture only the
minimal information relevant to the user. Nevertheless, the
complete TM is still preserved in the background to assists
further integration steps (e.g., to handle evolution of require-
ments).

3. THE ORE APPROACH
In this section, we formally present ORE, our approach to

integration of MD interpretations for individual information
requirements. After we formalize the problem, we formally
describe each stage of ORE.

3.1 Notation and Formalization
Each input information requirement (IR) results into one

or more MD interpretations (MDI) of the sources. Along
with that, for each requirement the choices made by the user
during the integration of that requirement are stored in an
ordered list γ, containing the selected ontological relation-
ships. Formally:

IR = {MDIi|i = 1, ..., n1} ∪ γ
The iterative integration method starts from a current MD

schema (it can be null at the beginning), whose details are
captured in TM . At any given moment, TM contains the set
of schemas satisfying IRs so far. Without loss of generality,
for the sake of presentation, let us assume that these are
star schemas (e.g., snowflakes could also be generated). A
single star schema (S) is obtained by integrating one or more
information requirements. Formally:

S = {IRi|i = 1, ..., n2}
The traceability metadata are formally defined as:

TM = {Si|i = 1, ..., n3}
TM is also used for handling evolving requirements. When

a requirement changes, we update TM (i.e., TMnew=TMold-
IRold + IRnew) and generate a new MD schema, taking into
account previously registered user feedback as stored into γ.

In each iteration, our method semi-automatically identi-
fies a set of integration operations necessary to incorporate
the new IR into the current MD schema obtained from TM .
The complete set of integration operations is given in Ta-
ble 2. Each operation comes with a weight representing the
significance of the operation. These weights are used for pri-
oritizing the alternative matching options before presenting
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Figure 6: ORE : iterative integration method

Table 2: Integration operations

Operation name Weight
insertLevel 0,21
insertFact 0,31
insertRollUpRelation 0,27
renameConcept 0
insertDimDescriptor 0,04
insertFactMeasure 0,36
MergeLevels 0,04×(]insertDimDescriptor)
MergeFacts 0,36×(]insertFactMeasure)

them to the designer (see also Section 3.3). The weights
refer to the correlation between DW quality factors (e.g.,
the structural complexity, understandability, analizability,
maintainability, etc.) and different structural characteris-
tics (e.g., number of dimensions, number of facts, number
of dimensional/factual attributes, number of functional de-
pendencies, etc.), according to [19]. However, note that the
choice of their values is orthogonal to our approach.

3.2 Pre-processing
While matching the different concepts or exploring new

analytical perspectives, we take into account the character-
istics and relationships among the concepts captured by the
domain ontology. This allows a more effective integration
of the heterogeneous hierarchies and factual concepts by ex-
ploiting different ontology features, e.g., taxonomies, many-
to-one (i.e., “* - 1”), one-to-many (i.e., “1 - *”), and one-to-
one or synonym (i.e., “1 - 1”) relationships. Note, that we
do not explore many-to-many (“* - *”) relationships because
such associations violate MD integrity constraints and thus,
they cannot be considered for MD design [10]. To automate
the search for different relationships among the concepts we
take advantage of the ontology inference engine. At the same
time, the transitive closure of the different relationships (“1
- 1”, “1 - *” or “* - 1”) in the ontology is considered. As it
has been shown in the past, it is feasible to automate the
search of such closures for discovering functional dependen-
cies in the ontology [17]. To enhance the performance of our
iterative method, we consider pre-computing the transitive
closure of functional dependencies for the concepts currently
present in the TM and the ones coming with new MDI.

3.3 Matching facts
ORE starts from the MDIs obtained for a given infor-

mation requirement and it explores TM to find the existing
star schema(s) Si∈TM with the matching facts. To match
two facts, the condition that these facts should produce an
equivalent set of points in the MD space must be satisfied.
This condition is formally defined as follows:

Figure 7: Matching the MD Interpretation for IR2

(C1): The fact Fmdi∈MDI matches the fact Fsi∈Si iff
there is a bijective function f such that for each point xmdi

in the MD space arranged by the dimensions {d1,d2,..,dn}
implied by Fmdi, there is one and only one point ysi in the
MD space arranged by the dimensions {d′1,d′2,..,d′m} implied
by Fsi, such that f(xmdi)=ysi.

Our method tests whether C1 is satisfied (i.e., that Fmdi

matches Fsi) by means of identifying that at least one of the
two following properties between Fmdi and Fsi holds:

(P1) Fmdi is related to Fsi by means of “1 - 1” correspon-
dence (i.e., synonyms or equal factual concepts).

(P2) For each dimension di (d′i) of Fmdi (Fsi) there is the
dimension d′j (dj) of Fsi (Fmdi), such that di and d′j (d′i and
dj) are related by means of “1 - 1” relationship or di (d′i) is
related to Fsi (Fmdi) by means of “1 - *” relationship.

Example (P1). Figures 7 and 8 show how the matching
schema in TM is identified for MDIs produced for informa-
tion requirements IR2 and IR5, respectively, by means of
identified “1 - 1” correspondence of their facts Lineitem. 2

Example (P2). Figure 9 shows an example inspired by
TPC-H. A new PartMarket fact is introduced, which as-
sesses the convenience of releasing a specific Part in a spe-
cific market (i.e., Nation). Even though we may find no “1
- 1” correspondence between PartMarket and the Supplier-
PartSupplier fact, their MD spaces do coincide as they are
arranged by the same dimensions: Nation and Part. 2

For each Fsi∈Si matched with Fmdi∈MDI, the merge-
Facts(Fsi, Fmdi) operation is identified with its correspond-
ing weight (see Table 2). If an equality between the given
facts is not identified, the renameConcept(Fsi, Fmdi) is also
added. If for Fmdi our method does not identify a valid
matching in TM , the insertFact(Fmdi) operation is consid-
ered. All integration possibilities are listed with their corre-
sponding weights and user feedback is required to continue.
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Figure 8: Matching the MD Interpretation for IR5

Figure 9: Matching facts (P2)

3.4 Matching dimensions
For each pair of matching facts (i.e., Fmdi, Fsi) identified

in the previous stage and chosen by the user, ORE contin-
ues by conforming their dimensions. To this end, ORE in
this stage identifies possible matchings of the dimensional
concepts of MDI inside the corresponding star schema Si

of TM (i.e., Fsi∈Si).
Since a single dimension di consists of a partially ordered

set of individual levels, with single bottom (i.e., atomic) level
and with “to-one” relationships among the levels, each di-
mension may be seen as a directed acyclic graph (DAG),
where the vertices of the graph are individual levels and the
directed edges between them “→” are “to-one” relationships.
Note that we assume the graph is guaranteed to be acyclic
in a preliminar validation step of the requirement, since the
loops would violate the MD integrity constraints [10].

To match each pair of levels, we consider the minimum
path of a valid MD relation (=, “1-1”, “1-*”or“*-1”) between
them, i.e., the path relating two level concepts of different
dimensions in the ontology and not including any other level
of these dimensions.

Example. In Figure 7, while we identify “* - 1” match-
ings from Lineitem_dim to Orders and Nation, we do not
consider the one from Lineitem_dim to Customer since it
goes over Orders. 2

For each dimension of MDI we search for a compatible
dimension in Si; i.e., the dimension with atomic levels re-
lated with some kind of valid MD relation (=, “1-1”, “1-*”
or “*-1”). For these two dimensions we search for possible
matchings among their individual levels. The problem may
be seen as a graph matching problem. Next, we present the
dimension-matching, DM algorithm, which solves the prob-
lem in our context. The algorithm, for two dimensions com-
ing from MDI and Si, represented with their corresponding
DAGs (i.e., Dmdi and Dsi), searches for the set of operations

(intOps) that are necessary to be applied over Si inside TM
to appropriately integrate the new information requirement
(i.e., its corresponding MDI).

Considering the topological order of the nodes in Dmdi

and Dsi, the algorithm recursively explores the paths in
Dmdi and Dsi starting from their atomic levels. In each
recursive call, the matching between two levels and their
remaining hierarchies is considered. If there is no relation
between two levels, DM stops searching for matchings in
their hierarchies. In doing so, DM discards unrelated parts
of the dimensions and thus, prunes the search space.

Otherwise, following the topological order (Step 2c), DM
keeps searching for different possibilities to relate the lev-
els and collects the corresponding operations along the way.
In each recursive call, we consider the next two levels from
the topological orders of Dmdi and Dsi, curLevelDmdi and
curLevelDsi, respectively (Step 2). If we can infer the full
match between curLevelDmdi and curLevelDsi (Step 2a),
i.e., equality or synonyms, we consider the mergeLevels op-
eration to be applied. Additionally, in the case of synonyms,
our method potentially considers the renameConcept oper-
ation over the curLevelDmdi (Step 2(a)ii).

Example. Figure 8 shows an integration possibility for
the Orders dimension, in the case of integrating IR5 into
TM satisfying IR1-IR4. A full matching (i.e., equality) is
then found for both Orders and Customer levels of the corre-
sponding Dmdi. Thus, the mergeLevels operations are pro-
posed for both Orders and Customer levels and they respec-
tively involve insertDimDescriptor operations for transfer-
ing o_shippriority and c_mktsegment level attributes. 2

For “1 - *” or “* - 1” relationships, we consider inserting a
new level into the star Si (i.e., insertLevel operation). Addi-
tionally, for “1 - *” or “* - 1” relationships (Steps 2(b)ii and
2(b)iii), we consider inserting a roll-up relation, i.e., func-
tional dependency, (i.e., insertRollUpRelation operation).

Example. In Figure 7, for all “* - 1” or “1 - *” match-
ings found, insertion of a roll-up relation is proposed; e.g.,
insertRollUpRelation(Lineitem_dim, Orders). 2

Furthermore, we continue matching the dimensions by
considering different combinations of the remaining hierar-
chies starting from the current levels (i.e., curLevelDmdi

and curLevelDsi) (Step 2d).
Similarly to the previous stage, we may identify different

possibilities to conform the dimensions between MDI and
Si, and therefore, these possibilities are weighted based on
the set of integration operations they imply and proposed to
the user. User feedback is then expected to determine how
to conform the given dimensions.

3.5 Complementing the MD design
This stage considers the possible integration of the new

MDI in TM , identified in the previous stages, and further
explores the ontology to complement the future MD design
with new analytically interesting concepts. By exploring
the functional dependencies (“to-one” relationships) in the
ontology, new levels for the previously conformed dimensions
may be identified. Furthermore, different datatype properties
in the ontology may also be identified either as measures of
the existing facts or descriptive attributes of the levels. We
distinguish two cases:

• If the property has numerical datatype (e.g., integer,
double), we consider using it as a measure iff the do-
main concept of the property is identified as a fact.
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Algorithm: DM

inputs: Dmdi, curLevelDmdi, Dsi, curLevelDsi, output: intOps

1. intOps := ∅;
2. If related(curLevelDmdi, curLevelDsi) then

(a) If curLevelDmdi fully matches curLevelDsi then

i. intOps := add(intOps, mergeLevels(curLevelDmdi,curLevelDsi) );
ii. If multiplicity(curLevelDmdi,curLevelDsi) = “1 - 1” then

intOps := add(intOps,renameConcept(curLevelDsi,curLevelDmdi));

(b) else

i. intOps := add(intOps, insertLevel(curLevelDmdi));
ii. If multiplicity(curLevelDmdi,curLevelDsi) = “1 - *” then

intOps := add(intOps, insertRollUpRelation(curLevelDsi,curLevelDmdi));
iii. If multiplicity(curLevelDmdi,curLevelDsi) = “* - 1” then

intOps := add(intOps, insertRollUpRelation(curLevelDmdi,curLevelDsi));

(c) levelsDmdi := getTopOrderLevels(Dmdi, curLevelDmdi); levelsDsi := getTopOrderLevels(Dsi, curLevelDsi);
(d) Foreach pair(nextLevelDmdi from getNext(levelsDmdi), nextLevelDsi from getNext(levelsDsi)) do

i. intOps := add(intOps, DM(Dmdi, nextLevelDmdi, Dsi, nextLevelDsi));

3. return intOps;

• Otherwise, in the case that the domain concept of a
property is identified as a level, our method suggests
using the property as a new descriptor.

Different possibilities for enriching the current design are
presented to the designer as different integration operations
(i.e., insertLevel, insertFactMeasure, insertDimDescriptor).
The designer may decide how to complement the MD design.

Example. For the Orders dimension in Figure 8, we ex-
plore the ontology and propose concept Region as a new
top level of the given dimension. Also, we propose differ-
ent descriptors for the levels Ordes, Customer, Nation, and
Region; e.g., o_orderstatus, c_phone, and so on. 2

3.6 Integration
Having identified the matching of concepts and the op-

tions for complementing the MD design in the previous sta-
ges, in this stage, ORE produces the final MD schema in a
two-phase process.

(I) Partitioning. The first phase starts from the MD
schemas obtained in TM, so far. Each MD schema as it
can be represented with a directed acyclic graph (DAG) is
further partitioned into different groups of concepts (sub-
graphs), so that all concepts of one group:

1. Produce a connected subgraph and

2. Have the same MD interpretation (i.e., all concepts are
either factual of dimensional).

Each of these subgraphs of concepts further gives rise to
a fact or a dimension of the final star schema.

(II) Folding. Starting from these partitions we obtain
the final star schema (or any other schema like a snowflake
schema). Inside each subgraph captured by a single par-
tition, we consider only the concepts currently required by
the user, either provided with the requirement at hand or
discovered when complementing the MD design in the on-
tology (i.e., Stage 3). The concepts considered inside each
partition are then collapsed to produce an element (i.e., fact
or dimension) of the final MD schema.

In these two phases, first, we relax the final schema from
knowledge currently irrelevant to the designer’s choices and
then, we conform the schema to well-known DW quality fac-
tors (e.g., the structural complexity, understandability, anal-
izability, maintainability, and others as discussed in [19]).

For example, collapsing the adjacent levels simplifies the
corresponding dimensions and lowers the number of roll-up
relationships, which has a significant influence in the overall
structural complexity of the schema.

While concepts with currently no interest to the designer
may be hidden from the final MD schema design, TM still
preserves all this knowledge for using it in future integra-
tion steps. Furthermore, as TM contains the knowledge
from data sources that answers the given set of information
requirements, we can benefit from it for producing the ap-
propriate data flow design (e.g., ETL flow) to manage the
transfer of the data from the sources to the produced target
MD schema. We consider this as a possible future work.

4. RELATED WORK
As we discussed in Section 1, following a monolithic ap-

proach for building a DW is considered problematic and
thus, manual guidelines were given to overcome this issue
(e.g., DW Bus Architecture [9]). Apart from traditional
DW designing approaches, e.g., [6, 7, 11], various works have
studied the problem of adjusting the DW systems to changes
of the business environments. For dealing with such an issue,
different directions have been followed.

Schema Evolution. The approaches that fall into this
category, e.g., [3, 15, 23], have as main goal to maintain the
up-to-dateness of the existing DW models when a change oc-
curs. While almost all of them propose a set of evolution op-
erators (e.g., for adding/deletion of dimensions/levels/facts
or their instances), some (e.g., [15]) also study the influence
of different evolution changes on the quality metrics of the
DW (e.g., consistency and completeness). Similar problems
have been studied for ETL flows too (e.g., [14]).

Schema Versioning. Beside dealing with the changes
by upgrading the existing schema, schema versioning ap-
proaches have also focused on keeping the trace of these
changes by separately maintaining different versions of the
schema (e.g., [2, 4, 5]). Some of them (e.g., [2]) in addition
to the versions resulting from real world changes, they also
store and maintain the alternative versions which can simu-
late various operational/business scenarios and propose new
analytical perspectives. Another work deals with the prob-
lem of cross-version querying and introduces the concept of
augmented schema, which keep track of change actions to
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enable answering the queries spanning the validity of differ-
ent versions [5].

One contribution of these works is the formal definition of
specific alternation operators, which can be applied when an
evolution change occurs. However, these works do not study
how the information requirements actually affect such evo-
lution changes. In this sense, our work complements them
and starting from a given set of information requirements,
it aims to automatically derive the changes of the current
schema necessary to be applied for satisfying these new re-
quirements.

Incremental DW Design and DW Schema Integra-
tion. There are works that have studied the problem of
incremental DW design; e.g., [13, 21]. For example, a pre-
vious work considers the DW as a set of materialized views
over the source relations and introduces a state space search
algorithm for maintaining this set (i.e., view maintenance)
to answer new queries [21]. Since a pure relational approach
has been followed, it uses equivalence transformation rules
to enhance the integration of new queries into the existing
view set. That makes this approach not easily applicable to
the current heterogeneous environments. In fact, as it has
been become clear in the last decade, DW are more complex
than just a set of materialized views, especially when the
ETL flows come into play. On the schema integration side,
there are works that use ontologies, to bridge the seman-
tic gap among heterogeneous data (e.g., [20]). To deal with
the integration of heterogeneous DW schemas, another work
proposes two approaches: loosely and tightly coupled [22].
But, this work assumes that a structural matching among
schemas exists and proposes the d-chase procedure (inspired
by the chase procedure) for the chase of dimensional in-
stances to ensure the consistency of the given matching.

Overall, the importance of information requirements into
the DW design process has been generally overlooked. An
exception is the work in [12] that starts from OLAP re-
quirements expressed in sheet-style tables and later trans-
lates them to single star schemas. However, the integration
proposed is based solely on union operations applied to the
facts and dimension hierarchies. Moreover, this work does
not consider the heterogeneity and complex relations that
may exist in such structures.

5. CONCLUSIONS
Our research aims at providing an end-to-end, require-

ment-driven solution for designing MD schemata and ETL
flows for the DW ecosystem. In the past, we presented our
system called GEM, which translates information and busi-
ness requirements into MD interpretations of these require-
ments and also, produces a set of necessary ETL operations
for managing the data flow from the sources and answering
the given requirements [18]. GEM produces separate ETL
and MD designs per requirement. In a recent work, we have
shown how to integrate those individual ETL designs to a
single ETL model [8]. In this paper, we have extended GEM
to support the production of a single, unified MD schema
that fulfills all input requirements. We have discussed the
challenges and have presented an iterative method for con-
solidating MD interpretations, through an example case.

There are many interesting future directions. A prominent
one is to explore the functionality achieved and technology
produced in this work, for fine-tune the data flow design
(e.g., ETL).
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