
Integrating ETL Processes from Information
Requirements

Petar Jovanovic1, Oscar Romero1, Alkis Simitsis2, and Alberto Abelló1

1 Universitat Politècnica de Catalunya, BarcelonaTech
Barcelona, Spain ({petar|oromero|aabello}@essi.upc.edu)

2 HP Labs, Palo Alto, CA, USA (alkis@hp.com)

Abstract. Data warehouse (DW) design is based on a set of require-
ments expressed as service level agreements (SLAs) and business level ob-
jects (BLOs). Populating a DW system from a set of information sources
is realized with extract-transform-load (ETL) processes based on SLAs
and BLOs. The entire task is complex, time consuming, and hard to
be performed manually. This paper presents our approach to the require-
ment-driven creation of ETL designs. Each requirement is considered se-
parately and a respective ETL design is produced. We propose an incre-
mental method for consolidating these individual designs and creating an
ETL design that satisfies all given requirements. Finally, the design pro-
duced is sent to an ETL engine for execution. We illustrate our approach
through an example based on TPC-H and report on our experimental
findings that show the effectiveness and quality of our approach.

1 Introduction

Organizations share their common Data Warehouse (DW) constructs among
users of different skills and needs, involved in different parts of the business
process. Information requirements coming from such users may consider differ-
ent analytical perspectives; e.g., Sales is interested in analyzing suppliers data,
while Finance analyzes different data like cost or net profit. Complex business
models, often make these data intertwined and mutually dependent. Taking into
account dynamic enterprise environments with constantly posed information re-
quirements, we need a means for dealing with the complexity of building a com-
plete target schema and supporting extract-transform-load (ETL) process from
the early design phases. In addition, due to typical maintenance tasks of such
constructs, a great challenge is to provide the designer with the means for dy-
namic and incremental building of such designs considering real business needs.

In this paper, we focus on ETL design and present our approach to the incre-
mental consolidation of ETL processes, each created to satisfy a single business
requirement. For new projects, we create the ETL design from scratch based on
a given set of requirements. If an ETL process already exists, we build upon it
and extend it according to new or changed requirements.

For these tasks, we propose the CoAl algorithm. As ‘coal’ is formed after the
process and extreme compaction of layers of partially decomposed materials (src.

2 P. Jovanovic, O. Romero, A. Simitsis and A. Abelló

Fig. 1. TPC-H Schema Fig. 2. Information Requirements

Wikipedia), CoAl processes partial ETL designs, each satisfying a single business
requirement, and consolidates them into a unified design satisfying the entire set
of requirements. The algorithm is flexible and applies various equivalence rules
to align the order of ETL operations for finding the appropriate matching part
among different input ETL designs. At the same time, it accounts for the cost
of ETL designs, searching for near-optimal solutions. At the end, the solution
suggested by CoAl is sent to an ETL engine for execution. Hence, we provide a
novel, end-to-end, requirement-driven solution to the ETL design problem. Our
experiments show the effectiveness and usefulness of the proposed method.

Contributions. In particular, our main contributions are as follows.

– We present our approach to the incremental integration of new information
requirements into new or existing ETL designs.

– We introduce a novel consolidation algorithm, called CoAl, that deals with
both structural and content comparison of ETL designs, identifies the max-
imal matching area among them, and finally, taking into account the cost,
produces an ETL design satisfying all requirements.

– We show a set of experiments showing the effectiveness and quality of CoAl.

Outline. Section ?? introduces a running example used throughout the
paper. Section ?? presents the ETL design consolidation problem, describes
equivalence rules, and formalizes operation comparisons. Section ?? presents the
CoAl algorithm and Section ?? reports on our experimental findings. Finally,
Sections ?? and ?? discuss related work and conclude the paper, respectively.

2 Running example

To illustrate our approach, we use a scenario based on the TPC-H schema [?].
Figure ?? shows an abstraction of the TPC-H schema. Assuming a set of five
requirements (IR1, ..., IR5) over the TPC-H schema, as shown in Figure ??, we
describe how we automatically produce a design that fulfills all five requirements.

First, we create an ETL design for each of these requirements. In the litera-
ture there are methods for dealing with such a task (e.g., [?]). Having a design
per requirement at hand, in this paper, we focus on integrating the individual
ETL designs into a design that satisfies all requirements. Considering Figure ??,
we define the referent ETL design as the integrated ETL design for a number
of requirements already modeled (we start from IR1) and the new ETL design
as the design for a requirement not integrated yet (IR2). In terms of graphical

Integrating ETL Processes from Information Requirements 3

Fig. 3. ETL designs satisfying IR1 and IR2

notation, the gray bottom rectangles represent data sources, whereas the other
boxes represent operations. The design for IR1, say G1, contains four join op-
erations, jrk, k=1 . . . 4. The design for IR2, G2, has three joins jnl, l=1 . . . 3.
Both designs contain other operations like filters, and so on.

Observe that the two designs have a number of common operations, like for
example those on the paths involving the source nation (shaded paths in Figure
??). For both performance and maintainability purposes, we need to create an
alternative, equivalent design having the minimum number of overlapping oper-
ations. Figure ?? (left) shows an alternative ETL design that satisfies both IR1
and IR2 requirements and the common computation is realized only once.

Once the designs satisfying IR1 and IR2 have been integrated, we iteratively
proceed with the remaining requirements, IR3, IR4, and IR5, until we consolidate
all five ETL designs into one (assuming that all five designs share operations;
otherwise, a design is not merged with the others). For this example, the ETL
design that satisfies all five requirements is shown in the right part of Figure ??.

For the sake of presentation we discuss here functional requirements, but our
approach works seamlessly for non-functional requirements too. For example,
a requirement regarding availability might lead to a fault-tolerant design that
uses replication. Such a design would involve a splitter and a voter operations –to
create and merge back the replicas, respectively– whereas the flow fragment be-
tween these two operations would have been replicated by a factor –for example–
of 3 (triple-modular redundancy). In such cases, the design integration proceeds
using the same techniques we describe next by means of the running example.

3 The Design Consolidation Problem

In this section, we describe the problem of consolidating ETL designs satisfy-
ing single requirements. We first discuss the challenges that need to be solved

4 P. Jovanovic, O. Romero, A. Simitsis and A. Abelló

Fig. 4. ETL designs satisfying IR1 and IR2 (left) and all five requirements (right)

and then, we formally present the theoretical underpinnings regarding design
equivalence and operation comparisons.

3.1 Goals and Challenges

Typically, an ETL design is modeled as a directed acyclic graph. The nodes of
the graph are data stores and operations, and the graph edges represent the data
flow among the nodes.

Intuitively, for consolidating two ETL designs, a referent G1 and a new G2

designs, we need to identify the maximal overlapping area in G1 and G2. There-
fore, we proceed as follows:

1. First, we identify the common source nodes between G1 and G2. In terms
of our running example, let us assume that G1 satisfies IR1 and G2 satisfies
IR2. The common sources for the two designs are nation, supplier, partsupp,
and lineitem (see Figure ??).

2. For each source node, we consider all paths up to a target node and search
for common operations in both designs. Starting with the nation source
node, we identify the paths up to the target in both designs (shaded paths
in Figure ??). In these paths, we search for common operations that could
be consolidated into a single operation in the new design.

Deciding which operations can be consolidated and how is not an easy task. If
two operations, each placed in a different design, can be matched, then we have
a full match. For example, the join operation jn3 in the new design G2 fully
matches the join operation jr4 in the referent design G1 (see also Figure ??).
If two operations, one in the referent design and the other in the new design,
partially overlap, then we have a partial match. For example, if jn3 involved
only predicate ps partkey = l partkey, then the referent design would partially
overlap, since in that case jr4 would be more specific and thus would provide
only a subset of the necessary results set.

For being able to guarantee full or partial matching, we should also look
at the operations performed before the ones considered for the matching; i.e.,

Integrating ETL Processes from Information Requirements 5

we need to check the input paths of each operation considered for matching.
For example, we cannot consolidate operations jr2 and jn1 until we ensure
that their predecessors have been already fully matched too. In order to enable
better matching, we also consider design restructuring by moving operations
before or after those considered for matching. This task is performed by our
CoAl algorithm described in detail in Section ??.

Before presenting CoAl, we first describe two theoretical aspects that set the
foundations of our method. In ??, we show how to reorder operations within the
same design, in order to facilitate the search for full or partial matchings. In ??,
we show how partial and full matches may be identified between operators.

3.2 Equivalence Rules

Reordering operations within an ETL design may be desirable for several reasons;
e.g., for improving performance by pushing selective operations early in the
flow. Here, we focus on design restructuring with the goal of favoring operation
matching between two different designs.

In order to change the structure of a design, we need to ensure that the
change, called transition, is valid and leads to a semantically equivalent design.
For this reason, all possible transitions obey to a set of equivalence rules, which
guarantees the equivalence of designs after a transition has taken place. We
consider some of the transitions previously proposed in the context of ETL op-
timization [?]. These transitions include: swap, distribute, and factorize. Swap
(swp) interchanges the position of two adjacent unary operations. Factorize (fct)
and distribute (dst) represent the factorization and distribution of unary opera-
tions over an adjacent n-ary one. It is proven that these transitions are sound and
produce equivalent designs, as long as some conditions based on the schemata of
operations hold. For example, two unary operations o1 and o2 cannot be swapped
if o2 has as a parameter an attribute generated by o1. For further details and a
complete list of these conditions, we refer the interested reader to [?]. In addition,
we use another two transitions: association (asc), which refers to the associativ-
ity rule of n-ary operations of the same kind (e.g., joins), and n-ary distribution
(distr), which refers to the distributive rule between n-ary operators (e.g., join
and union), all with their well-known properties.

Table ?? shows the applicability of equivalence rules for an example set of
operations (we explain them in ??). Although, for the sake of presentation, we
list here a limited set of operations (as those needed for the running example),
the transitions work for a much broader set of operation as discussed in the
literature (e.g., [?,?]). The table reads as follows. For each cell we present how
the operation of the column can be rearranged and pushed down the adjacent
operation of the row. A tick (

√
) means that the unconditional equivalence rule(s)

exists between these operations. The additional label(s) besides this symbol refer
to which transitions are allowed. If there is a conflict and no equivalence rule can
be applied over operations, the cell is crossed (×). Furthermore, in the cases of
partial conflicts the cell is marked with (∼) and has an appropriate label. This
happens when certain equivalence rules can be applied only if certain conditions

6 P. Jovanovic, O. Romero, A. Simitsis and A. Abelló

Table 1. Equivalence rules for the running example
oper. f sM j ∪ a UDF SK

f
√

swp ∼swp
√

dst/fct

√
dst/fct ∼swp

√
swp

√
swp

sM
√

swp ×
√

dst/fct

√
dst/fct ∼swp

√
swp

√
swp

j
√

dst/fct ∼dst/fct

√
asc × ∼dst/fct ∼dst/fct ∼dst/fct

∪
√

dst/fct

√
dst/fct

√
distr

√
asc ×

√
dst/fct ∼dst/fct

a ∼swp ∼swp ∼dst/fct × × ∼swp ∼swp

UDF ∼swp ∼swp ∼dst/fct

√
dst/fct ∼swp ∼swp ∼swp

SK ∼swp ∼swp ∼dst/fct

√
dst/fct ∼swp ∼swp ×

hold. In all cases, CoAl considers only valid transitions based on the equivalence
rules.

For example, note that reordering sMr4 in the referent design of the running
example is not allowed, since it projects out s suppkey included in the predicate
of jr3. As another example, a filter and an aggregator can be swapped, assuming
that the input schema of filter does not have an attribute contained in the group-
ing attributes of the aggregate. In addition, it is possible to dst/fct aggregate
over join if afterwards the specified set of functional dependencies that ensures
the equivalence of such transition holds [?]. Other operations behave similarly.

3.3 Operation Comparisons

Next, we describe how we determine whether between two operations, say oref
(placed in the referent design) and onew (placed in the new design) there exists
either full or partial or no match.

As we discussed before (see ??), two operations can be consolidated if they
match and if their input data flows also coincide. Even if they do not coincide at
first, after finding the matching, either full or partial, we try design restructuring
based on the equivalence rules until we meet this condition (if it is possible). We
discuss this in the next section. Here, we describe comparison of two operations
oref and onew, without considering their input flows.

Figure ?? illustrates the four possible outcomes of operation comparison.
(1) The compared operations are equal: oref = onew. Then, we consolidate

the two operations as a single one in the integrated design.
(2) The results of onew can be obtained from the results of oref . Then, both

operations can be partially collapsed as depicted in Figure ??. Hence, the output
of onew can be computed from the output of oref (i.e., oref≺onew) and thus, it
partially benefits from the transformations already performed by oref . Also, the
consolidation of the partially matched operation onew may involve a transfor-
mation of this operation for obtaining the original output data. For example, if
jr4 in Figure ?? involved only the predicate ps partkey = l partkey we could
then only identify partial matching between jn3 and jr4 and the consolidation
of these operations would require an extra operation to filter data according to
the remaining predicate (ps suppkey = l suppkey).

(3) The results of oref can be obtained from the results of onew (onew≺oref).
(4) Finally, it may happen that neither onew can benefit from oref nor the

opposite. Then, the two operations cannot be consolidated. In such cases, we use

Integrating ETL Processes from Information Requirements 7

Fig. 5. Integration of the operations

a fork in the already matched ETL subset, as shown in Figure ??(4). (Note that
the fork is implemented as a copy-partitioning operation in the physical design.)

In general, each operation is characterized by its input (I) and output (O)
schemata (see also [?]). We also consider the semantics (S) involved in the com-
putation performed by this operation. To express the wide complexity of ETL
flows we can define the semantics of their operations as programs with corre-
sponding precondition (Pre) and postcondition (Post) predicates. Accordingly,
we can formally represent an ETL operation o as o(I,O, S, Pre, Post).

– o1(I1, O1, S1, P re1, Post1) = o2(I2, O2, S2, P re2, Post2) iff I1 = I2 ∧O1 =
O2 ∧ Pre1 ≡ Pre2 ∧ Post1 ≡ Post2;

– o1(I1, O1, S1, P re1, Post1) ≺ o2(I2, O2, S2, P re2, Post2) iff ∃o3(I3, O3, S3,
P re3, Post3) : I1 = I2 ∧ O1 = I3 ∧ O3 = O2 ∧ Pre1 ≡ Pre2 ∧ Post3 ≡
Post2 ∧ Post1 ⇒ Pre3;

The definition of a specific operation semantics (S) along with the correspond-
ing postconditions and preconditions predicates and their implications (⇒) are
provided by template definitions for operations. Hence, any given ETL design
uses instances of these operations that inherit such properties from their generic
template definitions. This process is straightforward and a detailed discussion
on this topic falls out of the scope of this paper.

Next, we show formal definitions for operation comparison for the operations
shown in Table ??. Due to space considerations, we do not elaborate here on
other operations, but the process is similar.

– Filter - fψ(R)
For comparing filter operations, besides the input schema, we also check
the comparison of included predicates ψ. The comparison of the equivalence
or logical implication of these predicates (ψ1 ⇐ ψ2) can be facilitated by
generic reasoners. We compare filter operations as follows:
• fψ1

(R) = fψ2
(S) iff R=S ∧ ψ1 ≡ ψ2;

• fψ1(R) ≺ fψ2(S) iff R=S ∧ ψ1 ⇐ ψ2;
– Schema Modification - sMa1,a2,..,an(R)

For comparing schema modifications, besides the input relations, we also
compare the attributes that are modified. Therefore, we compare schema
modification operations as follows:
• sMa1,..,an(R) = sMb1,..,bm(S) iff R=S ∧ {a1,..,an} = {b1,..,bm};
• sMa1,..,an(R) ≺ sMb1,..,bm(S) iff R=S ∧ {a1,..,an} ⊃ {b1,..,bm};

8 P. Jovanovic, O. Romero, A. Simitsis and A. Abelló

– Join - R jψ S
To compare joins, we take into account the commutative property that ap-
plies over the inputs of a join. As with filter, we compare the corresponding
join predicates. Thus, we compare joins as follows:
• P jψ1

Q = R jψ2
S iff ((P=R ∧ Q=S) ∨ (P=S ∧ Q=R)) ∧ ψ1 ≡ ψ2;

• P jψ1
Q ≺ R jψ2

S iff ((P=R ∧ Q=S) ∨ (P=S ∧ Q=R)) ∧ ψ1 ⇐ ψ2;
– Union - R ∪ S

To compare unions, we only compare their input relations, as they do not
have any additional parameters defined. Here, we also consider the commu-
tative property. Thus, we compare unions as follows:
• P ∪ Q = R ∪ S iff ((P=R ∧ Q=S) ∨ (P=S ∧ Q=R));

– Aggregator - g1,..,gmaf1(A1′), .., fk(Ak′) (R)
To compare aggregators, besides the input relations, we also compare the
grouping attributes regarding equality or functional dependency between
them (gi → ti). Currently, we consider the set of aggregation functions to
be equal. However, this can be extended considering the class of expandable
aggregation functions, discussed in [?]. Thus, we compare them as follows:
• g1,..,gna... (R) = t1,..,tma... (S) iff R=S ∧ m=n ∧ ∀i = 1..m, gi=ti;
• g1,..,gna... (R) ≺ t1,..,tma... (S) iff R=S ∧ m≤n ∧ ∀i = 1..m, gi =
ti ∨ gi→ti;

– User Defined Function (UDF) - UDF(R)
A udf is expressed as f :I→Oo(R). For comparing udfs we consider their be-
havior over the input records (r), as follows:

• f1:I1→O1 o1(R) = f2:I2→O2 o2(S) iff R = S ∧ ∀r ∈ R : f1(r) = f2(r);
• f1:I1→O1 o1(R) ≺ f2:I2→O2 o2(S) iff ∃f3:I3→O3 o3(P):R = S ∧ O1 =
I3 ∧O3 = O2 ∧ ∀r ∈ R : f3(f1(r)) = f2(r);

– Surrogate Key Assignment (SK) - SK(R,S)
Surrogate key assignment (SK) is a typical ETL operation that joins the
incoming data (R) with a lookup dimension table (S) and replaces the pair
“source of data, primary key”(value) with a unique identifier for DW called
“surrogate key”(sk). If a surrogate key does not exist for the pair “source,
primary key”, then a new surrogate key is generated, typically by a function
producing values like max(SK) + 1. The comparison is as follows:
• SK(R1, S1) = SK(R2, S2) iff R1 = R2∧(∀t ∈ R1 : (∃t′ ∈ S1, t[value] =
t′[value] ∧ ∃t′′ ∈ S2, t[value] = t′′[value])→ t′[sk] = t′′[sk]);

Due to specific semantics of the SK transformations, the above comparison
does not actually test equality of two SK transformations, but their ability
to be consolidated. Therefore, we define that two SK transformations can be
consolidated iff there is no conflict between their lookup tables, i.e., iff the
SK values can be found either in one or in none of the tables.

4 Consolidation Algorithm

The CoAl algorithm looks for all matching opportunities between operators from
the referent and new designs and at the end, it produces a consolidated design.

Integrating ETL Processes from Information Requirements 9

For each source node, we explore its paths up to a target following a topological
order of the nodes in the design. At each iteration of the algorithm, we only
match two operations (one from each design), and we only add this match to
the final result if and only if all previous nodes in the path have been fully
matched. To ensure this, we proceed using the equivalence rules between the
operations at hand and taking into account the performance cost of the design.

Returning to the running example that shows how we consolidate the designs
for IR1 and IR2 (see figure ??), we identify a full match between jr2 and jn1

operations. However, their input paths have not been fully matched yet. One
solution to handle this is to check if we can push jr2 and jn1 down to their
respective sources (supplier and nation). This is possible because on the one
side jr2 may move over sMr2, sMr3, jr1, and sMr1, while on the other side
operation jn1 may move over sMn1, sMn2, and fn1, and we may still produce
equivalent designs that fulfill our constraint.

As we discussed, only when a full match is not possible (either directly or
after reordering of operations), we search for a partial match. Partial matches
finish our exploration in the considered branch, as we do not fulfill our constraint:
fully match of the input paths is required in order to keep exploring the branch.
Hence, if at the end a complete match is not found –i.e., the new ETL cannot
be completely subsumed by the referent ETL– we explore the partial matchings
identified and estimate their costs. The cheapest solution according to the cost
model considered (discussed later in this section) is chosen for integration.

Formally, CoAl starts with two ETL designs, the referent and the new, and
iterates following a topological order of the ETL operations, which guarantees
the following two invariants:

(I1): At each iteration, only one pair of operations can be partially or fully
matched.

(I2): A new match is added to the set of already matched operations iff the input
flows of the operations involved in the new match have been fully matched in
previous iterations.

These invariants have some interesting consequences. Two matched opera-
tions are eventually consolidated in the output, integrated design if the designs
they belong to can be reordered so that their children are fully matched. Since
we are looking for the maximal overlapping area between the two designs, we can
guarantee that any two operations that fully match can be immediately added
to the output. The proof based on contradiction is straightforward.

Suppose that oref1 and oref2 are two operations from the referent design and
onew1 and onew2 are two operations from the new design. Let us assume that
oref1 fully matches with onew1, from now pair1, and oref2 fully matches with
onew2, from now pair2. Both belong to the maximal overlapping area between
both designs and there is no other full match left to identify. If the order to
add them to the output matters, it means that one of these pairs, say pair1,
should be added to the result before pair2. But this can only happen if no
equivalence rules can be applied between the corresponding operators in each
design (i.e., between oref1 and oref2 in the referent design and between onew1

10 P. Jovanovic, O. Romero, A. Simitsis and A. Abelló

inputs: G1, G2, output: Gint

1. matchingsQueue := matchLeafs(G1, G2);
2. alternativeList := ∅;
3. while (matchingsQueue is not empty) do

(a) currentMatchings(G1′,G2′) := dequeue(matchingsQueue);
(b) newOperationsForMatching(LOps ref, LOps new) := explore(G1′,G2′);
(c) if (LOps new is empty) then

i. insert(G1′,G2′, ∅, 0) into alternativeList;
(d) foreach pair(Onew from LOps new, Oref from LOps ref)

i. if (Onew fully matches Oref) then
A. G1′′ =: reorder(G1′); G2′′ =: reorder(G2′);
B. enqueue(matchingsQueue, {G1′′,G2′′}, {Onew,Oref});

ii. else if (Onew partially matches Oref) then
A. G1′′ =: reorder(G1′); G2′′ =: reorder(G2′);
B. insert(G1′′, G2′′, {Onew, Oref}, Cost(G1′′, G2′′)) into alternativeList ;

(e) if (no matching found) then
i. insert(G1′, G2′, ∅, Cost(G1′, G2′)) into alternativeList;

4. if (alternativeList is not empty)
(a) Gint := integrate(cheapestAlternativeMatching);

5. Return Gint;

Fig. 6. Pseudocode for CoAl

and onew2 in the new design). In such a case, and knowing that they belong to the
maximal overlapping area, pair1 can be moved according to the equivalence rules
down in both designs, so that all their input data flows are fully matched and
consequently, they will be added to the output in the next iteration. After pair1
has been integrated, we use another finite set of equivalence rules for pushing
pair2 down and fulfill (I2). Thus, in the next iteration it will be also added to
the output. Relevantly, this is also the proof that our algorithm will eventually
finish. Due to this property we define rule R1:

(R1): When looking for matchings, the first two operations to be compared from
the referent and the new designs are those that fulfill (I2).

Although it favors the cheapest solutions (i.e., that do not require any re-
ordering), R1 nevertheless does not eliminate better solutions that may appear.

CoAl comprises four steps (see Figure ??): i) search for the next operations to
match; ii) compare the next operations; iii) reorder input designs if a match has
been found; and iv) integrate the alternative matching with the lowest estimated
cost. The three first are executed in each iteration of the algorithm, whereas the
last one is executed only once, when no match is pending.

Through the algorithm we maintain two structures. First, a priority queue
that contains fully matched areas that may be further extended with new match-
ing operations. Each queue element contains the list of matching operations to-
gether with the input ETL structures specifically reordered for such matchings.
Second, a list for keeping all alternative matching combinations ending up in a
partial matching found through the algorithm, along with the estimated costs
of such matchings. The algorithm starts by matching the source nodes of the
referent and the new designs (step ??). The comparison of the source nodes is
based on the parameters that characterize them: source type, source name, and
extracted fields. The steps of CoAl are as follows.

Search for the next operations to match. We identify the operations to be
compared next (step ??). We start with comparing operations according to (R1).
If there is no full match, the algorithm identifies all operations that can be

Integrating ETL Processes from Information Requirements 11

reordered, by applying equivalence rules, and pushes them down according to (I2)
and hence it identifies different possibilities for comparing. As a result, two sets
of operations to be compared (LOps new and LOps ref) are produced. In terms
of the running example, for the paths starting from the matching source nation
(see Figure ??), in the referent design we identify the set: (jr1, jr2, and sMr1)
and in the new design: (jn1, sMn1, and fn1).

Compare the next operations. We then produce the cartesian product of these
two sets (step ??). For each pair, we proceed as explained in subsection ??
depending on the result of the comparison: (a) we can identify a full match
(equality) (step ??); (b) a partial match (step ??) or (c) no match (step ??).

Reorder the input designs. If CoAl finds a (full or partial) match between
two operations, then it tries reordering of the input designs to guarantee (I2)
(steps ?? and ??). Considering the running example, when we find a full match
between joins jr2 and jn1, the algorithm pushes them down to the sources
nation and supplier. CoAl then adds the match found to the integrated design
and depending on the type of match found it proceeds as follows.

– For a full match, it enqueues back to priority queue the two designs (possibly
reordered) to further extend the matching in next iterations (step ??).

– For a partial match, it estimates the cost of such a solution and then adds
it, along with its cost, to the list of integration alternatives (step ??).

– Finally, if there is no match, this alternative, along with its estimated cost,
is also added to the list of potential integration alternatives (step ??).

Regarding a cost estimation model, CoAl is not tied to a specific cost model;
in fact, it is extensible to any given cost model. Example cost models for ETL
designs can be found in the literature (e.g., [?]).

The matching process ends when the algorithm finishes with all possible
paths and the comparison among their operations (i.e., when there are no more
elements in the priority queue). Alternatively, the algorithm terminates when a
complete matching of the new design is identified (step ??). This extreme case
happens only when the new design is completely subsumed by the referent one
and thus the cost of such an alternative (i.e., the referent design itself) is 0.

Integrate an alternative match. After the iterations finish, CoAl checks if
there is any alternative matching. It checks the list of all possible alternatives
and chooses the one with the lowest estimated cost. Then, it continues the design
consolidation with that alternative (step ??).

Finally, CoAl returns the consolidated design.

5 Evaluation

This section describes our prototype and reports on our experimental findings.
CoAl in GEM . Our work revolves around GEM, which is a prototype for

the creation of multidimensional (MD) schemata and the respective ETL design
based on a given set of business requirements. In a nutshell, starting from a set of
requirements expressed in a proprietary XML-like form, we semi-automatically

12 P. Jovanovic, O. Romero, A. Simitsis and A. Abelló

Fig. 7. Physical ETL design satisfying (IR1 - IR5)

construct the resulting MD schemata and ETL designs using Semantic Web
technology for inferring the necessary mappings [?]. The outcome of this process
is a conceptual MD and an ETL designs. The conceptual ETL design is encoded
in an XML-like format, namely xLM, previously proposed in [?]. Our method
produces one ETL design per business requirement and then, we use CoAl for
consolidating the results into a unified ETL process.

As a next step, our prototype translates the conceptual ETL design into a
physiological ETL model, expressed again in xLM, which then may be executed
in an ETL engine. Figure ?? shows a physical rendition for the running example.
For now, GEM is connected to an open source ETL engine (PDI, a.k.a. Kettle
[?]). For the connection, we translate xLM to the engine-specific XML form
for storing ETL metadata, and thus, we are able to import a design into the
engine and execute it. Our design choice of use an XML-like encoding was made
for achieving a greater extensibility, since many modern ETL engines use XML
encoding to import/export ETL metadata. Thus, GEM may connect to any of
them, assuming that the correct XSLT to tool-specific XML parser is provided.

Experimental Methodology. We constructed designs based on the TPC-H
[?] schema and queries (information requirements). We first used GEM to build
designs corresponding to individual requirements and then, we launched CoAl to
consolidate these designs. We considered all order permutations of the provided
designs. Here, due to space considerations, we present our representative results
for six TPC-H queries: Q3, Q5, Q7, Q8, Q9, and Q10. For each permutation,
we first started by consolidating two requirements, and then we incrementally
added the other four.

Scrutinizing CoAl . Next we report on our experimental findings.

Search Space. As shown in Figure ??(right), for a naive search, the search
space grows with the]requirements. For input designs of an average size of 28
operations, the number of states considered starts from 1.2k for 2 requirements
and go up to 9.7k for 6 requirements. At the same time, the time needed to
complete the search grows exponentially with the]requirements –see Figure

Integrating ETL Processes from Information Requirements 13

4000

6000

8000

tim
e

(s
ec

)

time (w/o R1)
time (w/ R1)

0

2000

2 3 4 5 6
requirements

4000

6000

8000

10000

st

at
es

space size (w/o R1)
space size (w/ R1)

0

2000

2 3 4 5 6
requirements

Fig. 8. Search space exploration

??(left)– starting from 60sec for 2 requirements and go up to 7.7ksec for 6
requirements. Hence, it is obvious that we need to prune the state space.

For that, we used the (R1) rule (see Section ??). For evaluating the effec-
tiveness of (R1), we performed the same set of experiments with and without
the rule. This is shown in Figure ??: the red bars represent the naive search and
the blue bar shows the results of applying the (R1) rule into our search. The
improvement is obvious in terms of both space and time.

As another experiment, we studied the behavior of the internal characteristics
of CoAl. Figure ?? shows how]matches,]maxTransitions (this relates to the
(I2) invariant),]firstMatches (R1-effect), and]solutions are affected by the size
of the problem. While the number of matches increases with the number of
requirements, both the numbers of solutions and reorganizations drop as we
encounter additional requirements. At first, CoAl aggressively matches different
designs, but as the incrementally integrated design matures and the design space
is covered, there are lesser novel, valid moves. This is also verified by the]visited
states (not shown in the graph) that increases with the]requirements.

Quality of our solutions. Figure ?? presents our findings regarding the quality
of solutions provided by CoAl with respect to optimal designs, which were man-
ually constructed. Figure ??(left) shows a comparison based on a combination of
design metrics that measure the coverage of the optimal cases by the respective
designs. Interestingly, the quality of CoAl increases with the]requirements. Fig-
ure ??(right) reports on an individual metric, namely]operations. In all cases,
the]operations in designs produced by CoAl, follows the same pattern as in the
respective optimal cases. Moreover, CoAl matches all data stores (not shown in
the figure). It is worth noting that the time needed for finding the optimal case
was 3-4x larger than the respective time needed for getting the designs auto-
matically. In addition, CoAl produces equivalent designs; i.e., designs that when
executed produce the exact same results.

6 Related Work

ETL. Previous work on ETL has studied modeling and optimization issues. Re-
garding modeling, there are two directions: the use of ad-hoc formalisms (e.g.,
[?]) and standard modeling languages (e.g., [?,?,?]). These approaches do not de-
scribe how the ETL design adapts to change of requirements. Past work has also

14 P. Jovanovic, O. Romero, A. Simitsis and A. Abelló

10

15

20

el

em
en

ts

matches
R1-effect
maxTransitions
solutions

0

5

2 3 4 5 6
requirements

Fig. 9. CoAl characteristics

tackled the problem of optimizing ETL designs for a variety of objectives (e.g.,
performance, fault-tolerance, etc.) without showing how to deal with business
requirements [?,?].

Query optimization. Both traditional query optimization [?] and multi-query
optimization approaches [?] focus on performance and consider a different subset
of operations than those typically encountered in ETL. Also, database optimizers
do not work well for operations with ‘black-box’ semantics [?]. Our equivalence
rules, however, are based on transitions that have been proved to work for a
wider range of operations [?](e.g., arbitrary user functions, data mining trans-
formations, cleansing operations, etc.).

Data mappings and data exchange. Data mapping specifications aim at bridg-
ing the heterogeneities between source and target schemas by mapping the rela-
tionships between schemas [?]. The data exchange problem aims at restructur-
ing data structured under one source schema in terms of a given target schema
[?]. However, current algorithms and tools generating automatic data mappings
(e.g., [?,?,?]) either cannot tackle grouping and aggregation or overlook complex
transformations like those with black-box semantics.

7 Conclusions

We have presented CoAl, our approach to facilitate the incremental consolidation
of ETL designs based on business requirements. CoAl identifies different possi-
bilities for consolidation and suggests near-optimal designs taking into account
their processing cost too. Our method can be used either at the early stages of an
ETL project for creating the ETL design or at later stages, to facilitate the bur-
densome process of adapting an ETL design to evolving requirements. CoAl is
integrated in our prototype tool called GEM, which connects to an ETL engine
for the actual execution of the produced designs. Our experiments show that
CoAl successfully automates the design process, a task that is largely infeasible
to be performed manually in a timely fashion.

Our future plans include the optimization of our method by exploiting heuris-
tics based on the observation of past execution results for a variety of designs.

Integrating ETL Processes from Information Requirements 15

80

100

st

at
es

ti l

60
2 3 4 5 6

requirements

optimal
CoAl

40

60

80

100

120

op

er
at

io
ns

#operations (opt)
#operations

0

20

2 3 4 5 6
requirements

Fig. 10. Quality of CoAl

