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ABSTRACT

This chapter describes the convergence of two of the most influential technologies in the last decade, 
namely business intelligence (BI) and the Semantic Web (SW). Business intelligence is used by almost 
any enterprise to derive important business-critical knowledge from both internal and (increasingly) 
external data. When using external data, most often found on the Web, the most important issue is know-
ing the precise semantics of the data. Without this, the results cannot be trusted. Here, Semantic Web 
technologies come to the rescue, as they allow semantics ranging from very simple to very complex to 
be specified for any web-available resource. SW technologies do not only support capturing the “pas-
sive” semantics, but also support active inference and reasoning on the data. The chapter first presents 
a motivating running example, followed by an introduction to the relevant SW foundation concepts. 
The chapter then goes on to survey the use of SW technologies for data integration, including semantic 
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INTRODUCTION

The semantic web (SW) has been conceived 
as a means to build semantic spaces over web-
published contents so that web information can 
be effectively retrieved and processed by both 
humans and machines in a great variety of tasks. 
The definition of these semantic spaces can 
have many different facets: to provide common 
terminology (e.g., thesauri), to semantically link 
published information (e.g., linked data) and to 
provide further knowledge to allow reasoning 
(e.g,. logical axioms). The SW is still an open 
research area although many interesting outcomes 
have been attained during the last years. Thus, we 
will use the term “SW technologies” rather than 
Semantic Web in order to refer to these results, 
since they can be applied to numerous tasks not 
necessarily associated to the web.

Despite the successful results of SW area, they 
have been timidly used in the data warehouse 
community. Multidimensional models (MD) and 
online analytical processing technologies (OLAP) 
have been successfully applied within the database 
community for analysis purposes, but always 
under a well-controlled and structured scenario. 
However, the eruption of XML and other richer 
semi-structured formats like RDF has shifted the 
attention of the data warehouse community to a 
much more heterogeneous and open scenario than 
that of traditional BI applications. Currently no 
one questions the need of adding all this external 
information to the traditional corporate analysis 
processes. On the other hand, there is a strong 

agreement in the community about bringing more 
semantics to the analytical processes. As data 
warehousing mainly involves the integration of 
disparate information sources, semantic issues are 
highly required for effectively discovering and 
merging data. These semantic issues are similar 
to those faced in the SW.

This chapter is aimed at giving a new perspec-
tive to the BI and the web, which is the main topic 
of the book. SW technologies have been recently 
applied to some BI tasks such as extract, transform, 
and load processes (ETL), MD design and valida-
tion, and so on. However, they are usually limited 
to traditional BI scenarios. In this chapter we also 
describe the SW technologies that can be useful 
in highly heterogeneous and open scenarios, and 
what are their strong and weak points.

As far as we know, this is the first review 
of the combination of SW and BI technologies. 
Given that there is a great interest within the BI 
area about analyzing web-published data, SW 
technologies seem to be a promising way to ap-
proach the involved semantic integration issues 
as well as new operational capabilities such as 
automatic classification and deductive reasoning 
over (integrated) data.

The chapter is organized as follows. First, we 
present a motivating scenario for combining BI 
and SW, including a running example. Second, 
the chapter introduces the relevant foundations 
of SW technologies, including the resource 
description format (RDF) and the ontology web 
language (OWL), standard reasoning services, and 
technologies for storing and querying semantic 

data annotation and semantics-aware extract, transform, and load processes (ETL). Next, the chapter 
describes the relationship of multidimensional (MD) models and SW technologies, including the relation-
ship between MD models and SW formalisms, and the use of advanced SW reasoning functionality on 
MD models. Finally, the chapter describes in detail a number of directions for future research, including 
SW support for intelligent BI querying, using SW technologies for providing context to data warehouses, 
and scalability issues. The overall conclusion is that SW technologies are very relevant for the future of 
BI, but that several new developments are needed to reach the full potential.
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annotations. Third, the chapter describes how to 
use SW technologies for data integration, includ-
ing how to perform semantic data annotation and 
the operation of semantics-aware ETL processes. 
Fourth, the chapter goes into the heartland of BI, 
namely multidimensional data models and their 
relation to SW technologies, including how SW 
formalisms can be used to capture MD models, 
and how reasoning services can be applied to 
perform advanced reasoning about the models 
and their properties. Fifth, the chapter describes 
directions for future research in the area, includ-
ing intelligent querying, contextualizing of data 
warehouses, and scalability issues. The chapter is 
rounded off with an overall conclusion.

MOTIVATING SCENARIO 
AND RUNNING EXAMPLE

BI technology is aimed at gathering, transform-
ing and summarizing available data from existing 
sources to generate analytical information suitable 
for decision making tasks. A typical BI scenario 
can be roughly structured into three layers:

• the data sources layer, which regards all 
the potential data of any nature (e.g., re-
lational, object-oriented, semi-structured, 
and textual) that can help to fulfill the anal-
ysis goals,

• the integration layer, which is in charge of 
normalizing and cleansing the data gath-
ered from the sources, as well as of storing 
it in an appropriate format for the subse-
quent analysis, and

• the analysis layer, which contains a series 
of tools for generating the information 
from the normalized data so that it will be 
presented to analysts.

The most successful approach to BI has been 
the combination of data warehousing (DW) and 
online analytical processing technologies (OLAP). 

These approaches propose for the integration layer 
a special model, called multidimensional model, 
where factual data gathered from the data sources 
layer must be expressed in terms of numerical mea-
sures and categorical dimensions. The semantics of 
this model consists of representing any interesting 
observation of the domain (measures) at its context 
(dimensions). The typical processes in charge of 
translating data from the data sources layer to the 
integration layer are called ETL processes (extract, 
load, and transform). In this chapter we will focus 
on this kind of architecture, although most topics 
treated in it can be also applied to other integra-
tion architectures such as service-oriented ones.

For illustrating the concepts introduced in 
this chapter, we will use the BI scenario of a 
consortium of EU car rental companies. This 
consortium is interested in generating and sharing 
strategic information about the sector so that they 
can improve their respective market strategies. In 
this scenario, each partner is fully autonomous 
in the design of their IT infrastructures, while at 
the same time requiring minimal overhead when 
sharing data and documentation of interest. As a 
result, data sources are prone to diverge in almost 
all the aspects: syntactic, linguistic and semantic 
ones. Notice that in this scenario, the main issue 
is about the integration of data formats, schemas, 
vocabularies, and so on. However, there are also 
many aspects in common for all the partners, 
mainly the domain (rent-a-car) and the business 
strategic goals they are interested in. These agree-
ments are gathered in a conceptual model, which 
is the base of the intended data warehouse (see 
Figure 1). This conceptual model captures the 
main elements of the scenario required by analysts, 
and it will guide the data warehouse design and 
implementation process.

Before introducing the technical aspects of the 
SW technology, we discuss the role of knowledge-
based representations in this scenario. In fact, for 
integration issues we need to define the agreed 
representations of the components involved in the 
scenario, namely:
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• Domain Ontology (DO), which describes 
the elements that characterize the business 
topics and subjects. In the example: cars, 
companies, locations, etc. Large taxono-
mies of products, taxonomies and generic 
business rules fall into this category.

• Technical Ontologies (TO), which describe 
the elements that characterize the informa-
tion technology objects, mainly the sche-
mas of the three BI layers. Logic represen-
tations of conceptual schemas fall into this 
category.

• Business Ontologies (BO), which describe 
the elements that characterize the business 
models, such as the semantics of the mea-
sures (Diamantini & Potena, 2008), their 
relation to strategic goals, etc. Also ontolo-
gies derived from the eXtensible Business 
Reporting Language (XBRL) fall within 
this category.

Following our running example, in Figure 1 
yellow-colored classes correspond to knowledge 
pertaining to the DO elements, whereas blue-
colored classes belong to TO elements, which 
are associated to the intended data warehouse. 
The business ontology will describe both the 
consortium’s business activities and the BI mea-
sures used in their strategic goals (e.g., Return 
on Investment, Fraudulent Ratio, and so on). 
The other classes of the conceptual model can be 
represented either as properties between ontol-
ogy classes (e.g. PendantCarModel) or ontology 
classes (e.g. RentalDuration).

SEMANTIC WEB FOUNDATIONS

This section covers the foundations of the Semantic 
Web, introducing the main concepts through the 
running example. First, we give a brief introduc-

Figure 1. A conceptual model for the proposed BI scenario
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tion of the semantic web technology origins and 
motivations. Second, we introduce the two main 
representation formalisms that are being used 
nowadays for semantic annotations, and their 
inference capabilities and limitations. Finally, 
we introduce the most widely used language for 
querying Semantic Web data, SPARQL, where we 
explain the structure, give examples, and discuss 
BI-related extensions. We then introduce the 
various approaches to building specialized RDF 
data stores, called triple-stores, including schema 
design and implementation choices.

Historical Background

Semantic Web technology is aimed at providing 
the necessary representation languages and tools 
to express semantic-based metadata. Prior to SW, 
there were several efforts to provide metadata 
formats to the web contents, resulting in well-
known metadata formats such as Dublin-Core, 
whose main purpose was to improve information 
discovery and retrieval. However, these formats 
were shown very limited mainly due to their very 
poor expressivity and little web-awareness. As a 
result, the W3C proposed new representation for-
mats, all relying on XML (Bray et al. eds., 2000), 
to overcome the limitations of existing metadata 
formats. The main idea behind these formats is 
that any concept or instance used for describing 
a web object must be referred through a unique 
resource identifier (URI). Thus, the most basic way 
to describe an object consists of creating a link to 
the URI that represents the intended semantics. 
With the resource description framework (RDF) 
(Keyne et al. eds., 2004), we can create more 
complex metadata elements allowing the rep-
resentation of relationships between descriptors 
(e.g. triples). Additionally, the RDFS (Brikley & 
Guha eds., 2004) extension allows users to define 
a conformant schema for RDF descriptions. It is 
worth mentioning that the semantics of RDFS are 
quite similar to frame-based and object-oriented 
formalisms. More expressive semantic descrip-

tions have been also proposed by adopting logic-
based frameworks: DAML+OIL (Horrocks et al. 
eds., 2001) and the ontology web language (OWL) 
(Dean et al., 2004). Contrary to RDFS, all these 
languages rely on description logics, which are 
tractable subsets of the first order logic (FOL). In 
this context, metadata is governed by logic axioms 
over both classes and instances (assertions). Like 
in RDFS, logic axioms in these formats must be 
defined over web-based references (i.e. URIs).

In the data warehouse field, the definition and 
use of metadata also have strong requirements 
(Chaudri & Dayal, 1997). Indeed, the traditional 
division of DW metadata into three categories 
(i.e. administrative, business, and operational) 
resembles the division we have proposed in the 
previous section. In the same way that web de-
velopers required more powerful mechanisms to 
express and manage web metadata, DW develop-
ers are requiring more powerful tools to face the 
increasingly heterogeneous, dynamic and open 
BI domains.

SW Formats: RDF(S) and OWL

In RDF there are three kinds of elements (Keyne 
et al. eds., 2004): resources, literals, and proper-
ties. Resources are web objects (entities) that are 
indentified through a URI, literals are atomic 
values such as strings, dates, numbers, etc., and 
properties are binary relationships between re-
sources and literals. Properties are also identified 
through URIs. The basic building block of RDF 
is the triple: a binary relationship between two 
resources or between a resource and a literal. The 
resulting metadata can be seen as a graph where 
nodes are resources and literals, and edges are 
properties connecting them. RDFS extends RDF 
by allowing triples to be defined over classes 
and properties. In this way, we can describe the 
schema that rules our metadata within the same 
description framework.

The ontology web language (OWL) mainly 
differs from RDFS in the underlying semantic 
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formalism, which is founded in description log-
ics (DL) (Baader et al., 2003). Indeed, OWL 
languages provide RDF/XML serializations of 
different DL languages.

DL basic elements are concepts and individu-
als, being concepts the intentional representation of 
individuals sets. Concepts can be defined in terms 
of other concepts by using a series of construc-
tors, which can be either set-oriented, like concept 
union (⊔), concept intersection (⊓), and concept 
complement (¬), or relation-oriented, like the ex-
istential (∃R.C) and universal (∀R.C) restrictions. 
Relations can be also defined in terms of other 
simpler relations by using role constructors, like 
the inverse of a role (R−). Different DL families 
can be defined depending on the constructors 
provided by their languages. The basic family 
is ALC, which contains the previous operators 
except the inverse of roles.

Ontologies in DL consist of two parts: the 
terminological box (TBox), which contains a set 
of axioms describing concepts, and the assertional 
box (ABox), which contains concept and role as-
sertions involving individuals (i.e. the data). In 
our running example, the following axiom of the 
TBox describes the concept RentalAgreement:

RentalAgreement≡ 

CommercialTransaction ⊓ 
∃assignment.Car ⊓ 
   1hasPrice.(1hasCurrency.Currency 

   ⊓ 1amount.Float)

The qualifier “1” of the properties hasPrice, 
hasCurrency and amount indicates that they are 
functional properties for this concept definition, 
that is, they are to-one relationships.

The following assertions describe an instance 
for the previous definition:

{  RentalAgreement:Contract112, 

assignment(Contract112, MMT34), 

price(Contract112,_p001),     

hasCurrency(_p001,Euros), hasAmount(_

p001,”100”^^”float”)  } 

Notice that this axiom does not necessarily 
follow the model given in Figure 1, as ontologies 
are intended to describe semantics not database 
schemas. Indeed, unlike RDF schemas, not all the 
axioms of the ontology are designed to describe the 
“structure” of classes, properties, and instances. 
Some axioms can express the application business 
logic. For example, the following axiom may be 
used to identify taxed transactions according to 
their currency:

∃hasPrice.(∃hasCurrency.(Currency  ⊓   
∃usedIn−.(¬EuroZone)) ⊑ 
TaxedTransaction 

In this way, we can encode implicit knowledge 
in our descriptions, resulting in much more concise 
metadata. For example, by just asserting that an 
instance a is of type “∃hasPrice.(∃hasCurrency.
Dollars)”, we can infer that “a is an amount of 
money expressed in the currency used in USA, and 
therefore it is associated to a taxed transaction”. 
In the following section, we will introduce the 
inference tasks that can be performed by means 
of reasoning mechanisms.

DL axioms can be seen as a kind of logic rule 
of the form “body → head”, because in DL the 
expression C ⊓ D ⊑ A is equivalent to the FOL 
expression ∀x C(x) ∧ D(x) → A(x). However, in DL 
we cannot express rules of the form: ∀x. ∀y C(x) ∧ 
R(x, y) → P(x, y), which can be useful to describe 
BI concepts as well as transformation rules neces-
sary for integration tasks. For example, consider 
the following rule for the running example:
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∀x.∀y RentalAgreement(x)  ∧ 
hasCustomer(x, y)  ∧ NonUECustomer(y) 
→ TaxedTransaction(x, y)

Several extensions of OWL have been pro-
posed to support rules, mainly the semantic web 
rule language (SWRL) (Horrocks et al., 2004) 
and the recent integration between DL and rules 
(Motik & Rosati, 2010). However, these languages 
restrict the rule syntax in order to ensure they are 
safe: a safe rule has all individual variables bound 
to individuals named explicitly in the ontology. As 
a consequence, data variables are not allowed, and 
therefore they are not suitable for data-oriented 
transformations as those required in BI ETL flows.

Currently, there are several software platforms 
that give support to the development of ontologies 
by providing tools for edition, debugging, and 
querying. Among them, we emphasize Protégé 
and NeOn toolkits. Both platforms are based on 
java plug-ins, which can be easily added and re-
moved according to the user requirements. These 
plug-ins allow a great variety of task associated to 
ontology development: editors, keyword search-
ers, module builders, ontology matching tools, 
reasoners, and so on.

Standard Reasoning Services

Logic-based systems can provide users with infer-
ence capabilities to manage the implicit knowledge 
derivable from the ontology axioms. Any infer-
ence can be expressed as O ⊨ α, where α is any 
axiom expressed with the same language as the 
ontology O. The typical inferences DL reasoning 
services usually provide are the following ones:

• Subsumption and equivalence inferences: 
O ⊨ C ⊑ D and O ⊨ C ≡ D

• Concept unsatisfiability: O ⊨ C ⊑ ⊥
• Instance classification: O ⊨ C(a)

A relevant task derived from the previous 
inference problems is that of query answering. 

Basically, it consists of retrieving all the subsumed/
subsuming concepts along with the individuals 
of a given DL concept description.

Reasoners

The main approaches to carry out DL inferences 
have mainly relied on the tableaux-based algo-
rithms (Baader, 2009). A tableaux-algorithm is 
intended to incrementally build an ontology model 
(i.e. a finite interpretation of the ontology) by 
applying a series of transformation rules which 
express the semantics of each DL constructor in 
terms of models. Models in decidable DLs are 
always tree-shaped, where the branches represent 
relations between concepts (roles) and nodes rep-
resents interpretations of the involved concepts. 
Most of the popular reasoners for OWL-DL, like 
Pellet (Clark & Parsia, 2010), Racer (Haarslev & 
Möller, 2001) and FaCT++ (Horrocks, 1998), are 
implementations of these algorithms.

Computational Complexity Issues

Unfortunatelly, most of the significant OWL 1 
languages proposed by the W3C (namely, OWL-
DL and OWL-Lite) are actually coNP-hard in data 
complexity, i.e., when complexity is measured 
with respect to the size of the data layer only, 
which is indeed the dominant parameter in this 
context. This means that, in practice, computa-
tions over large amounts of data are prohibitively 
costly. A way to reduce the complexity of DLs is 
to impose restrictions on the ontology language, 
so as to guarantee that reasoning remains compu-
tationally tractable w.r.t. the TBox size. Possible 
restrictions that guarantee polynomial reasoning 
have been studied and proposed in the context of 
description logics, such as Horn SHIQ (Hustadt 
et al., 2005), EL++ (Baader et al., 2005) y DLP 
(Grosof et al., 2003). Among these fragments, 
we find a family of DLs, called DL-Lite (Artale, 
2009), which is specifically tailored to capture 
basic ontology and conceptual data modeling 
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languages, while keeping low complexity w.r.t. the 
size of the data. These logics allow for answering 
complex queries (namely, conjunctive queries, 
i.e., SQL select-project-join queries, and unions 
of conjunctive queries) in LogSpace with respect 
to data complexity. More importantly, after a 
pre-processing phase which is independent of the 
data, they allow for delegating query processing 
to the relational DBMS managing the data layer.

Recently, OWL 2 (W3C, 2009) introduces three 
profiles aimed to perform specific reasoning tasks 
(e.g. classification, query/answering, etc.) with 
tractable computational cost, namely:

• OWL2-EL profile, which is intended to 
produce complete inferences in polynomi-
al time for large terminological requiring a 
limited expressivity resources (e.g. life sci-
ences ontologies),

• OWL2-QL profile, which is intended to 
efficiently perform queries over large data 
bases with a expressivity equivalent to DL-
LiteR, and

• OWL2-RL, which is intended to make in-
ferences over RDF (graph) data through 
rule-based query languages. More details 
about these profiles can be found at the of-
ficial W3C site (Calvanese et al., 2008).

Currently, these profiles are supported by sev-
eral reasoners: Mastro (Savo et al., 2010) is fully 

conformant to OWL2-QL, CEL (Baader et al., 
2006) is a reasoner for the OWL2-EL profile, and 
OWLRL (Herman, 2008) implements a reasoner 
for the OWL2-RL profile.

Apart from these efforts, other recent ap-
proaches aim to implement efficient reasoners 
for the complete DL expressivity as well as new 
reasoning problems. For example, (Motik et 
al, 2010) propose an extension of the tableaux-
algorithms, called hypertableux-algorithms, which 
allows reasoning with rules. The HermiT reasoner 
(Hermit, 2010) implements this approach.

Storing and Querying 
Semantic Annotations

An RDF store, also called triplestore, is a database 
management system in charge of storing huge 
amounts of RDF triples as well as of providing a 
query language for sub-graph retrieval. As RDF 
data is basically graph data expressed with triples 
of the form “subject-predicate-object” (SPO), the 
query language consists of sub-graph patterns also 
expressed as a set of triples containing variables 
over any of the triple arguments. Additionally, 
pattern variables can be restricted by filtering 
expressions. SPARQL (Prud’hommeaux & Sea-
borne, 2008) is the query language proposed by 
the W3C for RDF stores. Basically, a SPARQL 
statement is a SELECT-FROM-WHERE expres-
sion (see Figure 2).

Figure 2. SPARQL query example and its graph pattern representation
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In a SPARQL query, variables start with “?”, 
the WHERE clause contains triple patterns and 
filtering expressions over variables which are 
separated by “.”, and the SELECT clause contains 
the variables that will be used in the result set. 
Result sets are just tuples with all the bindings of 
the variables that satisfy the WHERE clause. 
Although not yet part of the W3C Recommenda-
tion, several extensions have been proposed for 
SPARQL, e.g., by the ARQ query engine, that 
make it more applicable for BI-like queries, in-
cluding ORDERBY, DISTINCT and GROUPBY 
clauses to manage resulting tuples. While SPAR-
QL is the most prominent, other families of 
query languages capable of querying semantic 
web data exist, including XML query languages 
such as XQuery (Boag et al., 2007), topic map 
query languages, other RDF query languages such 
as RQL (Karvounarakis et al., 2002), and OWL 
query languages. A detailed survey of these is 
found in (Bailey et al., 2009), which also notes 
that a drawback of SPARQL is the weak support 
for schema or ontology information. From our BI 
perspective, this is a problem, since BI data, in-
cluding MD models, require very strong schema/
ontology support.

RDF stores have the main drawback of lacking 
a conformant schema that facilitates its physical 
database design and query optimization tech-
niques. The simplest way to implement a RDF 
store is to create a single relational table with three 
columns (S-P-O) and perform queries through 
self-join operations. This approach is clearly 
inefficient for both large triple stores and large 
graph queries. Several optimization approaches 
have been proposed in the literature, which have 
derived to different RDF store systems. A common 
optimization that still maintains a generic database 
schema is to put long text values such as URIs and 
string literals into separate tables. This is done, 
e.g., by the well-known triplestore 3store (Harris 
et al., 2003). A further optimization consists of 
grouping triples by predicate and then creating a 
table for each group. Jena (Wilkinson et al., 2003) 

and Sesame (Broekstra et al., 2003) use this strat-
egy in their implementations. More sophisticated 
ways of clustering triples have been proposed in 
order to facilitate the generation of materialized 
joint views, like in the Oracle-RDF and C-Store 
(Abadi et al., 2007) implementations. The 3XL 
triple store (Liu et al. 2011) builds a specialized 
and optimized object-relational schema based on a 
supplied OWL-Lite ontology for the data in order 
to provide intelligent data partitioning, a strategy 
that proves very successful. Finally, the RDF-3X 
(Neumann & Weikum, 2008) and YARS2 (Harth 
et al., 2007) systems propose indexing the differ-
ent SPO combinations under a B+-Tree, so that 
triple patterns can be solved through range queries.

The main issues addressed in query processing 
are the design of proper indexes for graph-pattern 
queries and gathering the most appropriate statisti-
cal information for join-order optimization. For 
the former, materialized join indexes, B+-trees 
and hash indexes have been proposed. For the 
latter, frequency statistics must go beyond S-P-O 
individual histograms and must take into account 
element co-occurrences for different graph shapes 
(Neumann & Weikum, 2010).

SW TECHNOLOGY FOR 
INTEGRATION ISSUES IN 
DATA WAREHOUSING

Current BI solutions face two main challenges. 
The first one is related to how to represent domain 
and business semantics, that is, how to model 
domain and business concepts and logic, so that 
decision makers can explore information reposi-
tories without using technical descriptions. The 
second challenge is concerned with the integra-
tion of heterogeneous information sources. The 
widespread adoption of new technologies in the 
Web, such as XML and other richer semi-structured 
formats like RDF, has widened the traditional 
BI scenario to a much more heterogeneous and 
open one. Dealing with the problem of accessing 
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structured and non-structured data in an integrated 
and transparent way is still a challenge. Semantic 
annotation has been proposed to overcome these 
issues by providing a semantic abstraction to sup-
port both homogeneous access to disparate data 
sources and resource discovery. In this context, 
semantic-aware ETL processes are those that take 
into account these semantic annotations to improve 
the integration processes required in BI solutions. 
This section reviews these topics.

Semantic Annotation

An annotation is usually conceived as a com-
ment attached to a section of a document, or 
more generally, an object. Annotations may be 
provided in different forms and formats, ranging 
from links to the information resources to embed 
in the annotated object and also as unstructured 
text or with formal structures. In general terms, 
semantic annotation is conceived as the process 
of discovering and assigning to the entities in the 
text links to their semantic descriptions, which are 
usually defined in a knowledge base (Kiryakov 
et al., 2004; Reeve & Han, 2005). In principle, 
semantic annotation is applicable to any kind of 
text – web pages, text documents, text fields in 
databases, and so on. It can be seen as a metadata 
generation/acquisition process so that data can be 
leveraged into a more expressive semantic level. 
We put special emphasis in the language used to 
describe the schema of the annotation since the 
more formal the semantics of this language the 
more machine-processable are the annotations.

In the BI scenario where applications are 
domain-dependent (e.g. retail sales, R&D), se-
mantic annotation should be focused on assigning 
both domain and business concepts from specific 
known resources (e.g. thesauri, ontologies) to the 
data structures of the information system. It can be 
seen as a mapping of the sources to a homogeneous 
conceptual space where we capture the meaning 
of the integrated elements. This process will be 
usually performed in a semi-automatic way.

State-of-the-art research in the BI area proposes 
the use of semantic annotation by means of on-
tologies as a semantic middleware for integrating 
data from heterogeneous information systems. In 
(Spahn et al., 2008) a layered architecture is pro-
posed where each data source schema is indepen-
dently mapped to a technical ontology (TO) and the 
various TOs are connected to a business ontology 
(BO) to relate technical concepts to business-level 
concepts. At the application layer, the user can 
specify queries based on graph representation 
of the BO, which contains business-relevant 
vocabulary that is familiar to business users and 
therefore intuitive and easy to understand. In (Sell 
et al., 2008) they differentiate between the domain 
ontology, which provides the terminology of the 
business domain, and the BI ontology, which 
models the concepts used to describe how the data 
is organized in data sources (i.e. OLAP concepts) 
and to map such data to the concepts described 
in the domain ontology. In (Simitsis et al., 2010) 
ontology-based semantic annotation of data stores 
is used for deriving the conceptual design of ETL 
processes through reasoning. In a pre-processing 
phase the elements of each individual data store 
are analyzed and mapped to concepts using a 
domain specific thesaurus using both string and 
structure-based schema matching techniques 
in a semi-automatic way. Then, an ontology is 
constructed with the previous concepts and is 
used to annotate the data stores using OWL-DL 
constructs. These annotations embed both domain 
and technical concepts. Figure 3 shows an excerpt 
of the semantic annotations over one data source 
and the data warehouse.

In a similar way, a semi-automatic method 
exploiting ontology-based semantic annotation 
for the design of multidimensional data ware-
houses is presented in (Romero & Abelló, 2010b). 
The method assumes several heterogeneous data 
sources are represented by an ontology and iden-
tifies potential facts, dimensions and measures 
based on functional dependencies. In (Romero et 
al., 2009), the inference capabilities of the domain 
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ontology encoded in DL-Lite are exploited to 
derive a multidimensional model that fully takes 
into account the semantics of the domain.

In recent years a lot of research and develop-
ment has been carried out in the area of automatic 
information extraction (IE) from Web pages, text 
resources, semi-structured data such as HTML 
tables or Wikipedia infoboxes. The main goal of 
these approaches is to provide a comprehensive 
knowledge base of facts about named entities, 
their semantic classes and their mutual relations. 
Most pattern-based approaches follow the basic 
method outlined in (Brin, 98). In (Kiryakov et 
al., 2003; Maedche et al., 2003) extraction rules 
arise from an initial set of tagged entities. Other 
relevant approaches include (Cimiano et al., 2004) 
which present a tool for automatic pattern-based 
annotation based on the available knowledge on 
the Web, Text2Onto (Cimiano & Völker, 2005) a 
tool for ontology learning with improved statisti-
cal assessment of fact candidates and patterns and 
Omnivore (Cafarella et al., 2009) which aim to 
extract arbitrary relations from natural language 
texts. Moreover, most research along these lines 
has considered Wikipedia as key asset for the 
extraction of knowledge. Examples of such ef-
forts include (Atserias et al., 2008) which provide 
semantic annotations for the English Wikipedia, 
DBpedia (Auer et al., 2008) which harvests RDF 
subject-predicate-object triples from Wikipedia 
and similar sources, Kylin/KOG (Weld et al., 
2008; Wu & Weld, 2007; Wu & Weld, 2008) an 
ambitious work whose goal is to extract arbitrary 
relations from natural language texts and Wiki-
pedia infobox templates and YAGO (Suchanek et 

al., 2007; Suchanek et al., 2008) which integrates 
relational knowledge from Wikipedia with the 
WordNet taxonomy. The prevalent methods under 
these IE tools are a combination of rule-based 
pattern matching, natural language processing, 
and statistical machine learning.

Although one of the goals of the previous 
approaches is to leverage data with semantics 
(similar to the goal of semantic annotation) they 
conceive the harvesting of knowledge in a broad, 
universal way. They are domain-independent in 
the sense that they try to capture in an automatic 
way as many entities as possible and link them to 
knowledge resources mainly to advance the func-
tionality of search engines to a more expressive 
semantic level. These differences w.r.t. the specific 
and domain-oriented nature of BI scenarios along 
with the lack of standards and integration with 
formal knowledge hinders its usage for semantic 
annotation in the aforementioned BI scenarios. 
However, some approaches have tackled this issue 
by customizing and adapting existing IE tools so 
that they can be effectively applied to a specific 
BI scenario. In (Saggion et al., 2007; Declerk, 
2008) the use of ontology-based IE in the con-
text of BI is proposed for the internationalization 
domain. This approach requires the construction 
of a domain ontology by knowledge engineers 
and domain experts that gathers all the required 
domain concepts and relations. Furthermore, IE 
tools like NER have been customized to target 
the specific domain entities and map them to the 
ontology concepts.

Most of the classical IE annotation tools re-
quire a complete syntactic analysis, and in some 

Figure 3. Double underlined concepts refer to the technical ontology (i.e. application specific concepts) 
whereas single underlined ones refer to the domain ontology (i.e. BI domain specific concepts)
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cases, a semantic analysis too, which is usually 
an expensive operation not affordable for even 
medium-sized document collections. Methods 
based on manual pattern definition do not suffer 
from these issues, but require human effort and 
intervention for updating and customizing patterns 
to each application scenario. Finally, machine 
learning methods usually rely on training corpora, 
which is not always available. As an alternative 
to the previous approaches in (Danger & Ber-
langa, 2009) a tool for the extraction of complex 
instances from free text on the Web is presented. 
The approach is based on non-monotonic process-
ing and uses a logic-based reference ontology, 
entity recognizers and disambiguators, in order 
to adequately create and combine instances and 
their relations. The complementary work in (Ne-
bot & Berlanga, 2009) enables the customized 
use of available knowledge resources such as 
thesauri or ontologies to assist in the annotation 
process. The method allows the user to select and 
build tailored and logics-enabled ontologies from 
large knowledge repositories. Later, the extracted 
ontology can be used as an alternative to the use 
of training corpora in machine learning methods 
(Danger & Berlanga, 2009).

New research possibilities may arise if we 
consider the semantic descriptions delivered by 
the previous tools as a new type of data sources 
susceptible of being analyzed by BI applica-
tions. Along this line of research we can find 
a few approaches aimed at analyzing semantic 
annotations encoded in logic languages such as 
RDF(S) and OWL. (Nebot et al, 2009) propose 
a multidimensional framework for analyzing se-
mantic annotations from a logical viewpoint using 
ontologies. In this approach semantic annotations 
are based on application and domain ontologies. 
The user can build a multidimensional integrated 
ontology (MIO) containing the required analysis 
measures and dimensions taken from the avail-
able ontologies. This approach is similar to the 
previous semantic BI approaches in the sense that 
it uses ontologies as an integrating tool among 

different sources. In such scenario where multiple 
ontologies co-exist together, ontology alignment 
and merging strategies play a key role.

Semantic-Aware ETL Processes

During the initial steps of an ETL project, the main 
goal is to construct a conceptual ETL design that 
identifies the useful to the project data sources and 
describes the corresponding data transformations 
needed to map these sources to the target data 
warehouse concepts. For achieving that, it is im-
perative to identify and understand the semantics 
of both the data sources and the target data stores. 
Several approaches have already been proposed 
for using Semantic Web technology to the design 
and construction of the ETL part. Naturally, most 
of them deal with the conceptual part of the ETL 
design, since the Semantic Web paradigm seems 
as a promising means to overcome the lack of 
handy ways for capturing the semantics of an 
ETL process.

The prevailing –so far– idea in using Semantic 
Web technology for ETL suggests using a global 
ontology for mapping all the involved data stores 
to it. This idea resembles the “local-as-view” 
paradigm (Lenzerini, 2002), where the applica-
tion ontology, constructed as a conceptual model 
of the domain, corresponds to the global schema 
and the semantic descriptions of the data stores, 
in terms of classes and properties defined in the 
ontology, correspond to the views describing the 
local schemata. However, the use of an OWL 
ontology, instead of a global schema provides 
a formal model on which automated reasoning 
mechanisms may be applied. Furthermore, in 
ETL it is not sufficient to consider the integration 
problem as a query rewriting problem, since the 
transformations taking place in a real-case ETL 
scenarios usually include operations, such as the 
application of functions, that cannot be captured 
by a query rewriting process (see Skoutas & 
Simitsis, 2007).
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(Niemi et al., 2007) discusses methods for 
OLAP cube construction using Semantic Web 
technology. They use a generic OLAP ontology as 
an upper ontology for all OLAP cubes. This ontol-
ogy defines only general OLAP concepts and it is 
independent of the application area. Per application 
need, they consider domain-specific ontologies 
(e.g., CarModel, Branch, Country) based on the 
upper one. Such ontologies are defined based on 
common concepts that have global definitions 
shared among all domain-specific ontologies. The 
OLAP cubes are described based on the domain-
specific ontologies and the data sources are defined 
using the global concepts. However, since in prac-
tice it is possible that some data sources are not 
defined using the domain-specific ontology and 
they are described in another way –for example, 
using the upper ontology– we may need to define 
ontology mapping transformations describing how 
the source data should be converted to conform to 
the global domain ontology. In order to integrate 
data from different sources, the authors consider 
an RDF data format and an RDF query language. 
The approach proposed by (Niemi et al., 2007) is 
as follows. They suggest starting with mapping 
the sources to an OWL/RDF ontology. Then, the 
user needs to design the structure of the OLAP 
cube. Next, the OLAP cube (presented using the 
XML serialisation of RDF) is constructed based 
on RDF queries issued on the data sources. At 
the instance level, the combined result of such 
queries represents an instance of the OLAP cube. 
As a constraint, the method requires that there 
is a common ontology base for the data sources 
and that each data source can be described in 
sufficient level of detail for enabling a mapping 
to RDF format.

An extension to this work discusses in more 
detail the method for automating the construction 
of OLAP schemas (Niinimäki & Niemi, 2009). 
Again, the source and target schemas are consid-
ered as known. The mapping among the source 
data and the OLAP schema is done by convert-
ing the data in RDF using ontology maps. Then, 

the relevant source data are extracted using RDF 
queries generated using the ontology describ-
ing the OLAP schema. At the end, the extracted 
data are stored in a database and analyzed using 
typical OLAP techniques. Both works aim at an 
end-to-end design approach, but they have two 
main limitations. First, they both require prior 
knowledge of the source and target schemas and 
second, they consider simple data transformations.

Another research approach to ETL design using 
Semantic Web technology elaborates more on the 
complexity of the data transformations required 
for integrating source data from heterogeneous 
sources into a data warehouse (Skoutas & Simitsis, 
2006; Skoutas & Simitsis, 2007). This research 
work deals with one of the major challenges 
of the ETL design: the structural and semantic 
heterogeneity. For example, two sources S1 and 
S2 may contain the same kind of information 
under two different schemata: S1.Rents(rentID, 
cartype, carplate, carmileage, customerID, …) 
and S2.Rents(rentID, carID, customerID, …); or 
they may use different representation formats, 
like: carmileage in kilometers (km) in S1 and in 
miles (mi) in S2. The core idea of this work is 
the use of ontologies to formally and explicitly 
specify the semantics of the data source and the 
data warehouse schemas and thus, to automate 
in a large extent the ETL generation. This work 
also assumes that the source and target schemas 
are previously known.

In more detail, the first step of this approach is 
to construct an ontology to model the domain of 
discourse as described by the data store schemas 
and the application specifications. For that and in 
order to deal with different naming schemes, first, 
an application vocabulary is constructed. The vo-
cabulary involves information like terms denoting 
the primitive concepts of the domain of discourse 
(e.g., car, branch), the features that characterize 
such concepts (e.g., carID, carmileage), the dif-
ferent representation formats that may be used 
for a feature (e.g., for carmileage {km, mi}), the 
allowed values that an enumerated feature may 
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take (e.g., for branch location {Athens, Barcelona, 
New York}), and functions associating features to 
concepts, representation format to features, values 
to representation formats or features, and so on. 
Then, the data sources and the data warehouse 
are annotated w.r.t. the application vocabulary. 
Each data store contains a set of relations that 
comprise one or more attributes. The process of 
annotating a data store refers to providing two 
types of information: establishing the appropri-
ate mappings between the data store relations 
and attributes and the concepts and features of 
the vocabulary; and describing each relation in 
terms of the cardinality, representation format 
and (range of) values of its associated features. 
Based on these, this works elaborates on how the 
application ontology is generated.

The second step of the process is the generation 
of conceptual ETL design. This step involves an 
automatic means for deriving the mappings from 
the source attributes to the attributes belonging 
to the data warehouse, along with the appropriate 
ETL transformations. First, the method determines 
from which sources –i.e., from which attributes/
relations of these sources– information needs to 
be extracted in order to populate each attribute/
relation in the data warehouse. Next, the method 
determines the transformations required to inte-
grate data from the source to the target relations 
using the specified mappings and the relative 
position of the source and target classes in the 
class hierarchy. This is realized in three phases. 
In the first, transformations like project, concat-
enate, and join are identified. In the second, other 
transformations like select, convert (functions), 
not null, aggregate, and so on are also discovered. 
Finally, the design is complemented with transfor-
mations like add attribute, union, distribute, detect 
duplicates, and so on. Although more complex 
transformations (e.g., pivot and slowly changing 
dimensions) are not captured by this process, the 
most frequently used ones can be automatically 
discovered. For example, assuming that location 
information was stored in the two sources S1 and 

S2 under different formats: S1.Branch(…, loca-
tion,…) and S2.Branch(…, street, number, …) and 
that the target data store has a different schema 
T(…, city, street,…), then a convert operation, 
namely concatenation c(attr1_val, …, attr2_val, 
property_val), will be identified as: c(street, 
number, street).

Several extensions to the above two research 
works have been proposed. (Skoutas et al., 2009) 
proposes using a graph-based representation as a 
conceptual model for the source and target data 
stores and based on that, the ETL transformations 
can be identified by means of graph transforma-
tions. In other words, this work describes how the 
operations comprising the ETL process can be 
derived through graph transformation rules, the 
choice and applicability of which are determined 
by the semantics of the data with respect to an 
attached domain ontology. Thus, starting from an 
initial graph comprising the source and target data 
stores subgraphs, the ontology subgraph, and the 
semantic annotations, this works shows how to 
produce a final graph that contains the ETL process 
subgraph. In this context, the specification of the 
ETL process can be seen as a set of paths directed 
from source data store nodes towards target data 
store nodes. The nodes along these paths denote 
ETL operations and the edges connecting the nodes 
indicate the data flow. Figure 4 presents a simple 
rule for inserting a LOAD operation in the pres-
ence of a direct relationship, where the source and 
target elements correspond to the same concept; in 
Figure 4(a) a match is found and a rule is triggered 
causing the insertion of a LOAD operation Figure 
4(b). Several transformations can be discovered 
by this process as Load, Filter, Convert, Extract, 
Split, Construct, and Merge.

The techniques discussed so far consider as 
given the source and target schemas and search 
for the mapping of one to the other. A more recent 
approach starts with the business requirements 
and the source data stores, and works toward the 
identification of both the target schema and the 
transformations needed for the realization of the 
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ETL process (Romero et al., 2010a). The method 
starts with a single business requirement, and 
after its validation, and possibly completion, it 
relates it to the source data stores in order to an-
notate a generic ontology. Then, the concepts are 
characterized either as factual or dimensional and 
correctness w.r.t. multidimensional design prin-
ciples is checked. In the meantime, the annotations 
are used for extracting schema modification op-
erators; e.g., selection, projection, union, set 
operations, aggregation, functions. At a next step, 
additional transformations can be added either 
based on functional requirements of the data –e.g., 
“make sure that each customer is considered 
once”– or based on standard business and design 
needs; e.g., “replace the production keys with 
surrogate keys” or “take care of the slowly chang-
ing dimensions”. As a final step, all the results 
produced for each single business requirement 
are consolidated in order to produce the final 
multidimensional design and ETL process.

The abovementioned efforts work toward the 
facilitation and automation of ETL design, and 
thus, aim at making the life of the designer easier. 
Another crucial matter is to allow business people 
to comprehend and evaluate the design outcome. 
Several design notations, like UML or BPEL, 
require some knowledge and experience for their 
understanding. Providing a textual description 
of ETL designs is the most natural way for their 
representation. The ontology-driven techniques 
for conceptual ETL design can be exploited for 
producing such textual descriptions (Simitsis et 
al., 2008; Simitsis et al., 2010). In particular, after 

the generation of the ETL design, the constructed 
ontology can be parsed and a template based 
method can be used for representing information 
about the data stores –using the data store annota-
tions– and about the generated ETL process. Then, 
several reports can be customized using a template 
language for showing a list of annotations, ETL 
transformations, ETL statistics, and so on.

All the previous approaches are conceived for 
dealing with relational data sources. Recently, 
(Nebot & Berlanga, 2010) have presented a method 
to generate fact tables directly from semantic data 
expressed in RDF(S) and OWL. The proposed 
method starts with the target MD, which must 
be expressed in terms of concepts and properties 
of the source ontologies, and then it performs a 
series of transformations that guarantee that the 
generated factual data conforms to both the MD 
and the source semantics. This method could be 
incorporated to existing semantic-aware ETL 
processes in order to integrate SW annotations 
of unstructured and semi-structured data into 
data warehouses.

MULTIDIMENSIONAL 
MODELS AND THE SW

This section presents a brief introduction to the 
multidimensional model, and we highlight the 
strong dependence of multidimensional model-
ing of data warehouses on data found within the 
organizations. However, nowadays it is com-
pulsory to consider external data to produce the 

Figure 4. Rule for inserting LOAD operation (Skoutas et al., 2009)
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data warehouse multidimensional schema. At this 
point, SW technologies arise as a valuable asset 
to help in the integration process of external data 
to complement the organizations own data. This 
section is divided in 3 subsections:

• In the “Relationships between MD models 
and SW formalisms” subsection we pres-
ent the current straightforward solutions 
relating multidimensional modeling and 
the SW technologies.

• The “Advanced reasoning services for MD 
models” subsection discusses which ad-
vanced features from the SW become es-
sential when modeling the data warehouse. 
We highlight two main reasoning tasks 
tightly related to data warehousing: rea-
soning on data aggregation and transitive 
functional dependencies.

• Finally, we wrap up the discussion in the 
“Advanced Reasoning and MD Modeling” 
subsection by presenting how these ad-
vanced features have been exploited by 
current modeling methods.

Multidimensional modeling is a well-known 
paradigm in the area of data warehouses and 
databases in general. It was firstly introduced by 
Ralph Kimball at the logical level (Kimball, 1996) 
and later by Matteo Golfarelli at the conceptual 
level (Golfarelli et al., 1998). Since then, many 
approaches have introduced, or improved, mul-
tidimensional models either at the logical or the 
conceptual level (Pedersen et al., 1999; Vassiliadis, 
1998; Abelló et al., 2006). Multidimensionality 
is based on the dichotomy Fact-Dimension. This 
paradigm aims at analyzing the instances of a 
kind of fact (or subject of analysis), from differ-
ent points of view (i.e., the analysis dimensions). 
For example, we may want to analyze “rental 
agreements” (our kind of fact) depending on the 
customer profile, the duration of the agreement, the 
branch where it was picked up, the branch where 
it was dropped off, and so on. Factual instances 

can be placed in a multidimensional space (whose 
axis are the analysis dimensions), known as data 
cube. Thus, each factual instance is identified by 
a point on each analysis dimension.

Several measures (i.e., variables or metrics) 
use to be available for each fact instance. For 
example, we may be interested in analyzing the 
basic price (with no benefit considered) or the 
best price (the lowest price offered yet providing 
benefit) of the rental agreements. Furthermore, the 
multidimensional model also provides foundations 
to study / analyze the available measures at vari-
ous aggregation levels hierarchically structured 
in the dimensions. For example, we would like to 
study the basic price we may offer regarding the 
kind of customer (instead of a specific customer), 
country (instead of the city from where the deal was 
done) and kind of branch (instead of the specific 
branch where the car was picked up). Indeed, ag-
gregation is one of the main characteristics of the 
multidimensional model, setting foundations for 
the well-known roll-up and drill-down operators.

Usually, the multidimensional analysis of 
data has been restricted to the well structured 
information sources within the company. Never-
theless, (Inmon et al., 2008) outlines the oppor-
tunity and importance of using unstructured and 
semi-structured data (either textual or not) in the 
decision making process. These data could still 
come from the sources in the company, but also 
from the Web. It is clear the benefit of enriching 
our multidimensional model with information 
coming from the Web, since it can provide new 
points of view, new aggregation levels, or even 
new measures to analyze. Anyway, either coming 
from inside or outside the company, data must 
be annotated somehow in order to be used for 
decision making (it is the addition of data and 
metadata that generates information). Among 
the first attempts to include web data in analysis 
schemas were (Jensen et al., 2001) and (Vrdoljak 
et al., 2003). These works generate multidimen-
sional schemas from XML. However, this can be 
clearly improved by using current semantic web 
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formalisms. A review and deep discussion of data 
warehouse approaches for XML and Web data can 
be found in (Pérez-Martínez et al, 2008a).

Relationships Between MD 
Models and SW Formalisms

To the best of our knowledge, there is only one 
work, (Hacid et al., 1997), that shows the re-
lationship of multidimensionality and the SW 
by proposing a model based on DL. This work 
emphasizes on multidimensional operations and 
defines a data cube as follows:

Cube  ≡ ∀hasCell.(∀hasDuration.
RentalDuration ⊓ ∀makes.Customer ⊓ 
∀pickupBranch.Branch)

The problem with such definition is that strict 
role-typing is assumed (meaning that the range as 
well as the domain of a role is a subset of a con-
cept and it cannot freely relate any instance in the 
database), which is a rather common assumption 
in the conceptual modeling area, but not for DL 
ontologies. For example, the has role in Figure 
1 has two different ranges DemandXGroup and 
DrivingLicense. Thus, it cannot be represented 
by assuming strict role-typing.

In the last years, some multidimensional 
models based on UML have been presented. For 
example, (Abelló et al., 2006) proposed a UML 

meta-model extension to capture and describe 
the multidimensional concepts in a UML class 
diagram (like that in Figure 5).

Relevantly, nowadays it is well known how 
to capture and represent UML and ER class dia-
grams by means of DL (Berardi et al., 2005). 
Indeed, most of the UML features are known to 
be captured by well-behaved DLs such as the 
DL-Lite family (Artale et al., 2009). This fact 
opens a new bridge between the semantic web 
and multidimensional formalisms, as the work 
presented in (Abelló et al. 2006) can be easily 
translated into DL. Thus, the multidimensional 
schema in Figure 5 would be translated into:

Cube ≡ RentalAgreement ⊓ 
∃hasDuration.RentalDuration ⊓ 
∃makes.Customer ⊓ ∃pickupBranch.
Branch 

However, two issues still remain open: how 
to reason with aggregation relationships (which, 
in any case, can be represented by roles) and fact 
IDs (to be captured as keys).

Advanced Reasoning 
Services for MD Models

Logic frameworks are the foundations of the SW 
that provide standard reasoning services that, in 
turn, provide a theoretical and algorithmic basis 

Figure 5. UML multidimensional schema
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that can be used for the design and evolution of 
the data warehouse.

Reasoning Services to 
Support Data Aggregation

In the field of ontology population we can find 
some approaches dealing with aggregated ontol-
ogy instances. For example, (Danger & Berlanga, 
2008) presents a system to extract complex onto-
logical instances and relations from unstructured 
environments such as the web. This work, based 
on the DL language SHOIQ(D), presents a set of 
operations for merging and aggregating instances. 
Thus, aggregation of instances (by means of paths 
between concepts) can be asserted on a reference 
ontology. However, this work is thought to capture 
aggregation relationships between instances when 
parsing unstructured text related to an ontology, 
but no further reasoning aggregation services 
can be exploited. Many inference problems can 
be reduced to satisfiability and containment but 
this is not the case of aggregation, a new kind of 
inference problem crucial in the data warehouse 
scenario. (Jarke et al, 2000) outlines four different 
open problems associated to aggregation:

1.  To decide whether queries (or views) are 
satisfiable,

2.  whether one is contained in another,
3.  whether one is refined by another (i.e., one 

can be calculated from the other despite not 
being a subset), and

4.  to answer a query.

(Baader et al., 2003) introduced aggregates 
over concrete domains. The resulting language 
is called ALC(Σ), and extends the basic language 
ALC with concrete domains, functional roles (i.e., 
relations between instances and values from these 
domains) with predicates expressing value com-
parisons, and a limited set of aggregation functions, 
namely: sum, min, max and count. Aggregates 
are introduced through complex functional roles 

of the form Γ(R ◦ u), which relate each instance 
with the aggregate Γ over all the values reach-
able from R followed by the functional role u 
(note that ◦ doesn’t stand for role composition, 
but for an ad-hoc constructor). For example, we 
can define the following complex functional role 
sum(monthPickUpTime ◦ basicPrice) to find out 
which was the income based on the rental agree-
ments done per month, where the complex func-
tional role sum(monthPickUpTime ◦ basicPrice) 
relates an individual to the sum over all values 
reachable from monthPickUpTime (extracted 
from the pickUpTime date from the Opened-
Rental class) followed by basicPrice (inherited 
from RentalAgreement). Thus, a new, complex 
functional role is built using the aggregation 
function sum, the role name PickUpTime, and 
the functional role basicPrice.

However, DLs formalisms present important 
limitations for representing complex measures 
and aggregations. (Baader et al., 2003) also dem-
onstrate that handling aggregates in DLs usually 
leads to undecidability for problems (1) and (2), 
even for very simple aggregates such as sum and 
count. Moreover, decidable cases present a level 
of computational complexity too high for practi-
cal real-world applications and thus, there are no 
reasoners able to deal with the advanced features 
required by these new constructors.

Problem (3) is also known as query rewrit-
ing from materialized views (i.e., if a query can 
be refined from materialized views, given that 
answering queries from views is cheaper than 
answering them from the sources). For example, 
consider that the user asks for a query Q asking 
for the average best price offered by every rental 
agreement done, per year and kind of customer 
(ranged by age). Let us consider now two comple-
mentary materialized views V and V’, which are 
defined as rental agreements in EU countries 
and rental agreements in non-EU countries, per 
day and customer, respectively. Then, Q can be 
answered by computing the average best price 
(grouping the instances by year and date of birth 
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and then, summing up the best prices of each group 
and dividing the result obtained by the number of 
deals on the group) from both views. In general, 
according to (Mannino, 2007), a view could be 
used to answer a certain aggregation query if:

1.  the selection predicate of the query is sub-
sumed by that of the view,

2.  the aggregation level (i.e., the data granular-
ity demanded) is coarser or equal than that 
in the query and

3.  if the aggregation function used is the same 
(or compatible) with that of the view.

For example, the first condition states that a 
view storing data related to EU cannot be used to 
answer a query regarding the USA, as the query 
selection predicate is not contained into that of the 
view (thus, data needed is missing). The second 
condition states that data at month granularity 
level cannot be used to answer queries at day 
level. However, it can be used to answer queries 
at year level. Finally, a query using the average 
function to aggregate data can be answered from 
a view capturing both the sum and the number of 
instances involved, but it would not be possible 
if, for example, the number of instances is not 
captured in the view. In general, query rewriting 
is too complex to be exhaustively checked. Thus, 
DBMSs use heuristics to rewrite queries in terms 
of materialized views.

Recently, the problem of answering queries 
over ontologies (4) has also been addressed. Firstly, 
very expressive DLs (such as fragments of OWL 1 
DL) have been considered and the data complexity 
(i.e., measured in the size of the intensional level) 
of the problem was characterized. It has been 
shown that for expressive ontology languages like 
SHIQ, answering unions of conjunctive queries 
(the typical scenario considered in this area) is 
coNP-complete in data complexity (Glimm et 
al., 2008) and (Ortiz et al., 2008). For this reason, 
most recent works have focused on less expressive 
languages providing a nice trade-off with data 

complexity on query answering. One relevant 
result is that of the DL-Lite family (Artale et al., 
2009), which is known to be LogSpace in data 
complexity (i.e., it can be reduced to standard query 
evaluation over DBs) when considering union of 
conjunctive queries. In this scenario, (Calvanese 
et al., 2008) studied the complexity of extending 
query answering of union of conjunctive queries 
with aggregates. However, the authors shown that 
there are some assumptions related to aggregate 
queries that are difficult to overcome in formalisms 
such as DL. DL ontologies deal with incomplete 
information (i.e., the intensional level –i.e., IL- 
is a partial description of the domain of interest 
that the ontology completes by characterizing the 
space of all the possible, compatible intensional 
levels – i.e. IL’-). This fact is known as the open-
world assumption in contrast to the closed-world 
assumption assumed for relational databases. For 
this reason, the authors argue that assuming certain 
answers (i.e., asking for an aggregate query Q 
over each IL’) may produce meaningless answers, 
as it may return a different answer for each IL’ 
and eventually obtain an empty intersection. The 
authors explore the conditions to be fulfilled so 
aggregate queries make sense; i.e., that the answer 
exists and can be computed (Calvanese et al., 2008) 
and (Thorne et al., 2009). However, although, in 
these cases, the computational complexity is yet 
LogSpace regarding data complexity, the result 
happens to be too restrictive and not feasible for 
most real cases.

Transitive Functional Dependencies

It is well-known that patterns used to look for multi-
dimensional concepts in multidimensional design 
are based on functional dependencies (Kimball et 
al., 1996; Romero et al., 2010b) because of two 
reasons. On the one hand, the multidimensional 
space is arranged by the analysis dimensions of 
a given fact. Each instance of data is identified 
(i.e., placed in the multidimensional space) by a 
point in each of its analysis dimensions (i.e., the 
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multidimensional space axis). Conceptually, it 
entails that the fact must be related to each analysis 
dimension by a to-one conceptual relationship. 
That is, a functional dependency. Furthermore, 
since two different instances of data cannot be 
placed in the same point of the multidimensional 
space, it is compulsory that a set of dimensions 
(known as the multidimensional base) functionally 
determine the fact. On the other hand, measures 
can be thought as class attributes (i.e., OWL 
properties with data types as range) and thus, 
they are functionally dependent on the fact. For 
this reason, computing functional dependencies 
is essential for data warehouse modelling.

Functional dependencies discovery has been 
tightly related to the databases field and it has been 
typically addressed either at the logical or physi-
cal level. Addressing this task at the logical level 
entails that results obtained are tied to the design 
decisions made when devising the system. Most 
approaches try to overcome the lack of semantics 
in a logical schema by addressing this task at the 
physical level (e.g., (Jensen et al., 2004) already 
addressed this approach for data warehousing), but 
these result in computationally expensive solutions 
that register drops in performance when a large 
number of attributes or instances are processed.

Given that DL ontologies provide a semantical-
ly rich formalism, (Romero et al., 2010b) discusses 
the benefits of computing the functional dependen-
cies closure (i.e., by considering role chains, also 
known as role compositions) at the conceptual 
level, if the ontology provides multiplicities for 
the roles. Composition allows expressing joined 
relationships making the intermediate involved 
concepts implicit, but it was not supported by 
OWL 1 and it is not yet fully supported by current 
reasoners. For this reason, (Romero et al., 2010b) 
presented an ad hoc algorithm to compute transi-
tive functional dependencies based, partially, on 
standard reasoning services. A refined approach to 
fully exploit DL reasoning services and compute 
functional dependencies is discussed in (Romero et 
al, 2009). This work shows that role composition 

can be simulated by means of a well-behaved DL 
such as DL-LiteA (Artale et al., 2009), by exploit-
ing its query answering services for conjunctive 
queries. Similarly, (Danger & Berlanga, 2008) 
presents the adaptation of an algorithm to select 
functional dependencies. This approach focuses on 
building dimension hierarchies, which are shaped 
to maximize the information gain.

Recently, OWL 2 provides a construct to as-
sert a property that is the composition of several 
properties. Such axioms are known as complex 
role inclusions in SROIQ (in which OWL 2 is 
based on). However, SROIQ defines regularity 
conditions for decidability (mainly, prevent cyclic 
definitions involving hierarchies with property 
chains).

A specific case of functional dependency is the 
key concept, which is relevant for modeling tasks 
to identify instances. Thus, it is worth remarking 
that some recent works have addressed the issue 
of asserting keys on ontologies: OWL 2 allows 
asserting them under certain safe rules (Motik et al., 
2005). With the same spirit, (Calvanese et al., 2008) 
shows how path-based identification constraints 
can be considered in both, very expressible DLs 
such as ALCQIbreg and the DL-Lite family. In 
general, path-based constraints are a powerful class 
of identification constraints (which allow using 
roles, inverses, and paths) that capture sophisti-
cated forms of identifications (although it does not 
suit to the traditional key definition). This kind of 
constrains though, happen to be problematic in the 
general case and the authors propose a restricted 
form of these constraints, called local, that does 
not increase the complexity of reasoning both in 
very expressive DL and in the tractable DL-Lite 
family. Local path-based constraints still remain 
interesting for most real scenarios.

Advanced Reasoning 
and MD Modeling

Nowadays we can find several approaches exploit-
ing the advanced reasoning services presented in 
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previous section. We can classify its use in three 
areas: discovering dimension hierarchies from 
ontology fragments, fact extraction and integrat-
ing concepts from several ontologies to produce 
the multidimensional schema (i.e., carry out the 
fact extraction and dimension discovery from 
several sources).

Mainly, automatically discovering dimension 
hierarchies has attracted researchers’ attention. 
Regardless of the data source formalisms, it can 
be thought as a way to summarize schemas (in the 
sense of allowing the user to grasp, at a glance, 
the information contained by the schema), as 
considered in (Yang et al., 2009). This approach 
summarizes relational databases by exploiting a 
metric distance over the schema to cluster the most 
relevant tables (i.e., facts) and present a summa-
rization of the ontology topology around it (i.e., 
the analysis dimensions). In the data warehousing 
area, (Romero et al., 2010b) present a similar way 
of proceeding. There, distance metrics and mul-
tidimensional patterns are introduced to identify 
facts, measures and dimensional concepts (which, 
eventually, will form the analysis dimensions). 
(Danger & Berlanga, 2008) also present its own 
approach to identify dimension hierarchies based 
on functional dependencies. Both approaches 
foundations are based on discovering functional 
dependencies as discussed in previous section.

Note, however, that these two approaches 
assume a single domain ontology. However, in 
certain scenarios, like biomedicine, this is not a 
fair assumption, as several domain ontologies are 
available and should be considered. To overcome 
this limitation, (Nebot et al., 2009) introduces the 
Semantic Data Warehouse (SDW), which can 
contain semantic annotations defined in several 
large inter-linked ontologies. Thus, it presents 
an approach to tackle the semantic integration 
of ontologies. Specifically, the authors focus on 
only integrating the right amount of knowledge 
needed for specific multidimensional analysis 
(for example, data related to opened rental agree-
ments, or data related to customers, etc.) and a 

method for designing, validating and building 
these schemas is detailed.

Oppositely, (Romero et al., 2010a) presents a 
different approach for the same scenario. There, 
the authors propose to extract a multidimensional 
schema from each domain ontology (for example, 
as suggested in (Romero et al., 2010b)) and later 
conciliate those results in a single, detailed multidi-
mensional schema. Thus, the semantic integration 
of the resulting schemas is performed a posteriori.

FUTURE RESEARCH DIRECTIONS

In this section, we discuss future and emerging 
trends in the collaboration of both OLAP and SW 
areas. First, we discuss the use of Semantic Web 
techniques for OLAP query recommendation. 
Second, the use of Semantic Web data to provide 
context information for multidimensional data 
warehouses is discussed. Finally, issues related 
to the scalable and efficient storage of Semantic 
Web data are treated.

Query Recommendation

The use of semantic web technologies has in-
creased the amount of steps that can be (semi-)
automatically performed in the data warehousing 
system design process. This scenario opens a new 
and interesting researching topic: query recom-
mendation. Query recommendation has gained rel-
evance in the database community in the last years. 
In the data warehousing community, (Giacometti 
et al., 2009a; 2009b) introduced their approach for 
multidimensional query recommendation. These 
works take advantage of the OLAP tool query log 
to exploit the knowledge it contains and assess 
the user in his / her future queries. However, it 
remains open if the knowledge extracted from 
performing some tasks automatically (mainly, 
when involving the user requirements in the design 
phase) can help the user when querying the DW. 
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A promising approach would be considering SW 
technologies to help in this process.

Contextualization of Data 
Warehouses with SW Data

Next generation of BI systems require further 
research on data warehouse contextualization. 
This is an alternative way of doing global search 
on separate structured and unstructured data 
sources and integrating both types of informa-
tion in order to semantically enrich the process 
of analyzing business data. The process of ana-
lyzing contextualized data was initially defined 
by (Priebe & Pernul, 2003) with the purpose of 
communicating the user context among different 
portlets representing different data sources and, 
therefore, to support such integration in a generic 
way. With this approach, the system can provide 
the user with the documents that are related to the 
information that is being currently displayed in 
an OLAP report. In order to solve the problem of 
the heterogeneity of both systems, they propose 
to use ontological concept mapping.

The formal definition of contextualized ware-
house was later proposed in (Pérez-Martínez et 
al., 2008a). This work consists in the integra-
tion of a corporate warehouse of structured data 
with a warehouse of text-rich XML documents. 
With this purpose they define a new information 
retrieval model to select the context of analysis 
from the document warehouse and to associate 
to each fact of the analysis cube the set of docu-
ments that are more related (Pérez-Martínez et 
al., 2009). In a contextualized warehouse, the 
user specifies an analysis context by supplying a 
sequence of keywords (i.e., an IR condition like 
“financial crisis”). The analysis is performed on 
a new type of OLAP cube, called R-cube, which 
is materialized by retrieving the documents and 
facts related to the selected context. A new set 
of OLAP operators allows users to find out the 
relationship that can occur between the data in 
the cubes and the information in the documents.

Another contribution someway related to data 
warehouse contextualization has been recently 
made by (Castellanos et al., 2010). With the 
purpose of identifying external events that may 
affect the enterprise operations, in this work, 
novel techniques of information extraction and 
correlation measurement are applied to extract 
relevant information from two disparate sources 
of unstructured data, and determine which docu-
ments are correlated. They have also developed 
several functions for information extraction and 
analytics.

All these systems have in common that the 
integration of data needs to be made on the fly, 
in a dynamic and efficient way. This is the only 
way of ensuring that the answer can satisfy the 
requirements of each specific analysis operation 
involved in a decision making process. The appli-
cation of the technology developed in the context 
of Semantic Web research to this problem is a work 
that remains to be done and that surely would bring 
further benefits. As an example, semantic annota-
tion technologies can help to identifies generic 
and domain specific entities, relationships as well 
as semantic time expressions. This would allow 
us to improve the integration and joint analysis 
of structured and unstructured data coming from 
heterogeneous data sources.

SW Storage Issues

A RDF store somewhat resembles a data ware-
house in the sense that they are intended to store 
huge amounts of read-only data under very simple 
schemas (just three columns). Here, a very inter-
esting direction is the application of data ware-
housing techniques like bulk-loading in order to 
manage huge amounts of triples more efficiently. 
For example, the 3XL system (Liu et al., 2011) 
have shown that using bulk-loading techniques 
in combination with main memory storage and 
intelligent data partitioning can result in huge 
speedups for bulk operations such as loading and 
querying large amounts of triples.
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Unlike traditional multidimensional data 
warehouses, data in triple stores is not subject-
oriented, and there is not a predefined set of dimen-
sions and measures to which all data must refer. 
Identifying which concepts and properties are of 
interest for representing dimensions and measures 
is indeed one of the key points for integrating 
OLAP techniques and SW data. For example, 
the approach recently presented in (Niinimaki, 
M. & Niemi, 2009), proposes to build DWs from 
RDF data through SPARQL queries that identifies 
the target dimensions and measures. Similarly, 
(Nebot & Berlanga, 2010) proposes to define 
multidimensional schemas from the concepts of 
the ontology to which the triple store refers, and 
then semi-automatically generate an OLAP cube 
according to that schema.

A further promising direction is the application 
of bitmap indexing techniques to semantic web 
data management, including efficient reasoning. 
Bitmap indices have traditionally been applied for 
the dimensional data found in data warehouses. 
Recent advances in compressed bitmap indices 
(Deliege et al., 2010) have shown that significant 
speedups can be achieved for both storage and 
query speed when performing complex operations, 
and it is believed that these advantages can be 
exploited for more efficient SW data management.

Finally, a huge challenge related to both 
scalability and semantics lies in the transition of 
business intelligence into so-called “cloud intelli-
gence”, where the full potential of cloud computing 
is realized (Pedersen, 2010). Challenges related 
to the SW includes using SW technologies to 
achieve location and device independence, provid-
ing intelligence as a service, scaling intelligence 
services to a global level through techniques such 
as map-reduce and beyond, and providing agility, 
the ability to assemble the necessary resources on 
demand, not only in terms of computing power, 
but also in terms of data sources.

CONCLUSION

Business intelligence requires the integration of 
massive data coming from disparate data sources. 
Traditionally, these data sources were limited to 
corporate transactional databases, relying on the 
relational data model mostly. As a consequence, 
BI research has been mainly focused on this data 
model so far. However, the increasing avail-
ability of valuable knowledge resources, public 
databases, and a great variety of information 
sources in the Web are requiring new BI models 
and techniques for dealing with structured and 
unstructured data at the same time.

The Semantic Web is clearly targeted to facili-
tate the integration of all these web resources by 
providing semantic annotations that follow some 
agreed ontologies. In this chapter, we have firstly 
reviewed the major efforts to bring semantics 
to both web resources and BI application data, 
which is a previous step to a true integration of 
both worlds. Then, we have presented the main 
approaches that have utilized SW technology to 
face classical issues of data warehouse design 
and implementation. These approaches have 
brought BI methods closer to SW data and vice 
versa. However, several issues must be addressed 
before achieving the actual integration of BI and 
SW, to mention a few: new user recommenda-
tion methods, data warehouse contextualization, 
massive SW data storage for analytical tasks, 
and performing BI in the cloud regarding fully 
distributed data and services. These issues and 
many others to come constitute an open intelligent 
information systems research area of great interest.
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KEY TERMS AND DEFINITIONS

Business Intelligence: Business intelligence 
(BI) is a broad category of applications and tech-
nologies for gathering, integrating, analyzing, and 
providing access to data to help enterprise users 
make better business decisions. BI applications 
include the activities of decision support systems, 
query and reporting, online analytical processing 
(OLAP), statistical analysis, forecasting, and 
data mining.

Data Semantics: The semantics refers to the 
meaning of data. Such an abstraction can be for-
malized as a mapping between an object modeled, 
represented and stored in an information system 
and a set of agreed concepts (objects, relation-
ships, behavior) representing a conceptualization 
of the real-world.

Semantic Web: The Semantic Web is an 
extension of the current Web that provides an 
easier way to find, share, reuse and combine in-
formation. It refers to the group of methods and 
technologies to allow machines to understand 
the meaning - or “semantics” - of information 
on the World Wide Web. The term was coined by 
the W3C director Tim Berners-Lee. He defines 
the Semantic Web as a web of data that can be 
processed directly and indirectly by machines. It 
is based on machine-readable information and 
builds on XML technology’s capability to define 
customized tagging schemes and RDF’s flexible 
approach to representing data.


