
GEM : Requirement-Driven Generation of ETL

and Multidimensional Conceptual Designs

Oscar Romero1, Alkis Simitsis2, and Alberto Abelló1

1 Universitat Politècnica de Catalunya, BarcelonaTech
Barcelona, Spain

{oromero,aabello}@essi.upc.edu
2 HP Labs, Palo Alto, CA, USA

alkis@hp.com

Abstract. At the early stages of a data warehouse design project, the
main objective is to collect the business requirements and needs, and
translate them into an appropriate conceptual, multidimensional design.
Typically, this task is performed manually, through a series of interviews
involving two different parties: the business analysts and technical de-
signers. Producing an appropriate conceptual design is an error-prone
task that undergoes several rounds of reconciliation and redesigning, un-
til the business needs are satisfied. It is of great importance for the busi-
ness of an enterprise to facilitate and automate such a process. The goal
of our research is to provide designers with a semi-automatic means for
producing conceptual multidimensional designs and also, conceptual rep-
resentation of the extract-transform-load (ETL) processes that orches-
trate the data flow from the operational sources to the data warehouse
constructs. In particular, we describe a method that combines informa-
tion about the data sources along with the business requirements, for
validating and completing –if necessary– these requirements, producing
a multidimensional design, and identifying the ETL operations needed.
We present our method in terms of the TPC-DS benchmark and show
its applicability and usefulness.

1 Introduction

“A gemstone or gem is a piece of attractive mineral, which –when cut and
polished– is used to make jewelry or other adornments. Most gems are
hard, but some soft minerals are used in jewelry because of their lustre
or other physical properties that have aesthetic value.” (Wikipedia)

As most of the raw materials and resources, gems are out there in large vari-
eties and quantities, but we need to dig and work hard in order to get them and
make profit out of them.

Data are the gems of the enterprise. They are available at large quantities,
but we need to “dig” for recognizing the relevant and useful ones, and to adjust
and polish them for making our valued assets, our “jewelry”. The jewelry for
an enterprise is any tool or means that facilitates strategic decision making and
helps in satisfying business needs. Such a tool is a data warehouse (DW) that

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2011, LNCS 6862, pp. 80–95, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

GEM : Requirement-Driven Generation of ETL 81

organizes the raw, source data in a way that enables decision support. Building a
DW requires two essential constructs: the multidimensional (MD) design of the
target data stores and the extract-transform-load (ETL) process that populates
the target data stores from the source ones.

Nowadays, the construction of conceptual MD and ETL designs is an error-
prone, manual process that undergoes several rounds of reconciliation and re-
designing, until the business needs are satisfied. It is essential for the business
of an enterprise to facilitate, speed up, and automate these design processes.

This paper presents a system called GEM (Generating E tl and Multidimen-
sional designs). GEM starts with a set of source data stores and business re-
quirements –e.g., business queries, service level agreements (SLAs)– and based
on these, it produces a MD design for the target data stores, along with a set of
ETL operations required for the population of the target DW.

The semantics, characteristics, and constraints of data sources are represented
by means of an OWL ontology. The business requirements are expressed in a
structured form. We consider functional requirements that drive the generation
of the MD design constructs and also, soft or non-functional requirements –e.g.,
freshness, recoverability, availability– that can be used for giving “lustre” and
adding value to our designs. For example, based on a freshness requirement we
may decide which data source to use and according to a recoverability require-
ment we may choose to enrich the ETL process with recovering techniques.

For each business requirement, we identify the relevant part of the data sources
(e.g., concepts, attributes, properties) needed to answer it. If we identify conflicts,
we either suggest corrections or ask for user feedback. The output of these tasks
is an annotated subset of the source ontology that corresponds to a business
requirement. Next, we classify the relevant concepts as dimensional or factual
and validate the result. We also explore schema information for identifying the
respective ETL operations. Finally, we consolidate the individual designs, one
for each business requirement, and get the conceptual MD and ETL designs.

Contributions. In particular, our main contributions are as follows.

– We present GEM, a system that facilitates the production of ETL and MD
designs, starting from a set of business requirements and source data stores.
To the best of our knowledge, GEM is the first approach towards the semi-
automatic generation of both the ETL and MD conceptual designs, since we
automatically generate mappings from sources to cubes.

– We propose novel algorithms finding and validating an ontology subset as a
MD schema, and identifying ETL operators at the same time.

– We are able to deal with incomplete requirements and validate them.
– We evaluate our method using the schema and constructs of the TPC-DS

benchmark and show the quality of the GEM designs.

Outline. The rest of the paper is structured as follows. Section 2 formulates
the problem at hand and presents the GEM architecture. Sections 3 and 4 dis-
cuss the validation and completion of business requirements, respectively. Then,

82 O. Romero, A. Simitsis, and A. Abelló

Section 5 describes the validation of the MD design and Section 6 the identifica-
tion of ETL operations. Section 7 evaluates GEM using the TPC-DS benchmark
and Section 8 presents the related work.

2 GEM in a Nutshell

This section gives an overview of our system, GEM. Given two inputs, namely
information about the operational sources and a set of user requirements,
GEM produces two designs: the MD design of the target DW constructs and the
conceptual ETL flow that interconnects the target constructs to the operational
sources.

2.1 Inputs

Source Data Stores. We capture the semantics of the data sources in terms of
an OWL ontology. In previous work, we have shown that a variety of structured
and unstructured data stores can be elegantly represented as graphs, and we
have also described how we can construct an appropriate ontology for such data
stores by integrating a domain vocabulary with the data sources’ vocabulary [17].
Here, due to space consideration, we assume that we do have an OWL ontology
annotated with the mappings of those concepts and properties available in the
operational data sources. For further details on how we get this ontology from
the sources, we refer the interested reader to our past work [17]. Figure 3 (page
92) depicts an example ontology based on the TPC-DS schema [19].

Business Requirements. In typical DW and ETL engagements, the design
starts from a set of functional and non-functional requirements (respectively f-
req and nf-req, from here on) expressing business needs. Example requirements
could be “examine stocks provided by suppliers” or “a report on total revenue per
branch should be updated every 10 minutes”. Such requirements often come as
service level agreements (SLAs) or business queries and are expressed in various
forms, either structured or unstructured. Much work has been done in capturing
and representing business needs. For example, SLAs expressed as free-form text,
require natural language processing (NLP) techniques for being interpreted in a
machine processable way. How to capture such requirements are out of the scope
of this work. Here, without loss of generality, we consider requirements expressed
in a structured way (e.g., by means of i* profiles [22]). Such requirements are
represented in an XML file that contains two main parts.

The first part involves functional or information requirements that are cap-
tured by identifying the measures and dimensions of interest. In the previous
example, stocks would be the measure and suppliers the dimensional concept.

<measures><concept id = “stocks”/></measures>
<dimensions><concept id = “suppliers”/></dimensions>

The second part, involves the non-functional requirements of interest for each
concept indicated by the functional requirements. For example, the measures

GEM : Requirement-Driven Generation of ETL 83

used by the revenue report (i.e., the respective view) should conform to a non-
functional requirement for freshness that requires that the corresponding data
should be updated at least every 10 minutes.

<concept id = ”v revenue”><nf req>
<freshness format = “HH24:MI :SS”> < 00:10:00 </freshness>

</nf req></concept>

Due to space restrictions, we omit a detailed description of the XML structure
for representing such requirements. Briefly, it contains:

– Levels of detail, which represent data granularity. The user may provide a
discretization process for continuous (or with high cardinality) data types.

– Descriptors, which carry out selections over them (i.e., slicers). Type of
comparison carried out; e.g., “in a given year YYYY”.

– Measures, which should be analyzed. Aggregation function and a partial
order between them; the latter is needed when we perform different aggrega-
tions (one order per dimension). In doing so, we would be able to distinguish
between, for example, ‘average of sums’ and ‘sum of averages’.

Note that although our XML structure captures multidimensional requirements
over a domain (i.e., non-multidimensional) ontology, the expressivity we support
is equivalent to that of the dimensional expressions introduced in [4].

In addition, we may have nf-reqs either for each one of the above three
elements or for the whole design.

As a remark, different requirements affect different design levels. For example,
a freshness requirement indicates how often an ETL flow should run in order to
meet the required latency in updating the DW. However, such decision affects the
execution level and should be taken under consideration at the physical model.
Nevertheless, we may need to use this requirement during the conceptual design
as well. For example, assume two source data stores containing the same data
but placed in different locations for business reasons (e.g., two snapshots placed
in two different branches of the organization). Assume also that the first data
store is updated every hour and the second every 5 minutes or that the conges-
tion of the network coming from the first data store is significantly greater than
the one coming from the second source. If we have such information, then based
on the freshness requirement we need to honor for our target data stores, we
should decide to pull data from the second data store. Clearly, such decision is
to be taken at the conceptual level.

However, we are interested in capturing all requirements. Those that cannot
be used at the conceptual level (which is the focus of this paper) should be trans-
ferred to the subsequent, more detailed design levels, along with the outcome
of this process; i.e., the conceptual ETL and MD designs. Hence, the designer
of the logical and physical models does not need to revisit and reinterpret the
original set of business requirements.

84 O. Romero, A. Simitsis, and A. Abelló

Operator
Identification

Consolidation

Designer

Business
Requirements

Data Sources

Ontology,
mappings &
Data source
features

Annotated
Ontology

Annotated
Ontology

Subset
(AOS)

AOS and
Context Edges

Operator
Library

Data Warehouse
Conceptual Schema

Multidimensional
Tagging

Requirements
Completion

Requirements
Validation

suggestions

alternative
scenarios

process
flow

input/
output

legend:

Conceptual ETL
Operations

ETL Process

ffl
000.000

Fig. 1. System architecture

2.2 System Architecture

The process of producing the ETL and MD designs is a semi-automatic process
comprising five main stages (see Figure 1). Here, we briefly describe these stages.
The next sections provide more details for each stage.
Stage 1: Requirement Validation. First, the system checks if there is a
mismatch among the business requirements (either functional or non-functional)
in the XML and the data sources, by looking for the corresponding concepts in
the ontology and checking whether they are mapped to the sources or not. In
case of mismatch, it identifies the possible problems or it may suggest relaxation
of the requirements. Otherwise, concepts in the ontology are selected and tagged
as either Level, Descriptor or Measure. These concepts are also annotated with
nf-reqs and composition of extraction mappings, if necessary.
Stage 2: Requirement Completion. After considering the business require-
ments, the system complements them with additional information gathered from
the sources. This stage identifies intermediate concepts that are not explicitly
stated in the business requirements, but are needed in order to answer the f-
reqs. User feedback is welcomed for ensuring correctness and compliance to the
end-user needs.
Stage 3: Multidimensional Tagging. Next, we tag the new concepts iden-
tified by the previous stage, as either factual or dimensional and validate the
correctness of these completed f-reqs tagging according to MD design principles.
Hence, we check two issues: i) first, whether the factual data is arranged in a
MD space (i.e., if each instance of factual data is identified by a point in each
of its analysis dimensions) and second, ii) whether the data summarization is
correct by examining whether the following conditions hold [8]: (1) disjointness
(the sets of objects to be aggregated must be disjoint); (2) completeness (the

GEM : Requirement-Driven Generation of ETL 85

union of subsets must constitute the entire set); and (3) compatibility of the
dimension, the type of measure being aggregated and the aggregation function.
Stage 4: Operator Identification. The ETL operations are identified in three
phases. First, we use the annotations generated by the previous steps (i.e., map-
pings in Stage 1, intermediate concepts in Stage 2, and their taggings in Stage 3)
for extracting schema modification operations. Then, we complement the design
with additional information that might be found in the sources and with typical
ETL operations regarding surrogate key and slowly changing dimensions.
Stage 5: Conciliation. The previous stages run once for each f-req. Eventually,
the individual results obtained per f-req are conciliated in a single conceptual
MD schema and a single ETL flow.

2.3 Output

At the end, we produce a conceptual, MD schema composed by facts and dimen-
sions. In addition, we identify the ETL operations needed in order to interconnect
the source data stores to the MD constructs.

3 Requirement Validation

Starting from the inputs discussed in Section 2.1, we validate the business re-
quirements w.r.t. the available data sources, as follows: (a) we analyze the input
XML file and tag the ontology concepts corresponding to the f-req, identifying
possible mapping conflicts, and (b) we include and then validate assertions re-
garding nf-reqs and data sources features. The input XML file contains three
kinds of concepts: measures, levels, and descriptors (see Section 2.1). So, first, we
tag the corresponding concepts in the input ontology with these labels. Then, we
check whether the tagged concepts can be mapped to the sources (either directly
or by means of ETL operators). When an error occurs, user feedback is required.
The validation method is as follows:

1. if the tagged concept is mapped to the sources then no further action is needed
2. else if the tagged concept is involved in a concept taxonomy then

(a) if any of its subclass(es) has (have) a mapping then we annotate the tagged concept
with the ETL operations ‘renaming’ and ‘union’

(b) else if any superclass has a mapping then we use the general concept mapped and
annotate the required concept with ETL operations ‘renaming’ and ‘selection’

i. if discriminant function has not been specified in the input XML file then user
feedback is required

i. if the tagged node has several superclasses then ‘minus’ or ‘intersection’ are also
considered (see Section 6 for details)

3. else if exists a (transitive) one-to-one association to a mapped concept then suggest it as a
potential synonym
(a) if the suggestion is accepted then the f-req is updated with the synonym concept

4. else the concept is not available in the data sources

4 Requirement Completion

This stage takes as input the annotated ontology produced in the previous stage
and it completes the requirements regarding the sources. First, it identifies in-
termediate concepts that are not explicitly stated in the f-req, but needed to

86 O. Romero, A. Simitsis, and A. Abelló

retrieve the required information. If an f-req cannot be met, it suggests alter-
native solutions. Finally, it produces the ontology subset needed to answer the
business query at hand and additional annotations regarding ETL operations.

This stage starts with a pruning process. We identify how tagged concepts
are related in the ontology and then, (a) we disregard concepts/relationships not
mapped nor tagged (if a concept taxonomy is affected, we replace the concept
pruned with the first superclass mapped/tagged); and next, (b) we prune all
the mapped many-to-many (i.e., *-*) associations. Note that such associations
violate the three summarization necessary conditions [8] and thus, they cannot
be exploited for MD design. The outcome of this pruning is a subset of the
input annotated ontology, which we call AOS. Since an arbitrary ontology can
be represented as a graph, we will talk about paths between concepts and thus,
we will also refer to concepts as nodes and to associations as edges.
Looking for Paths Between Tagged Concepts. For identifying how tagged
concepts are related in the sources, we use the following algorithm that computes
paths between tagged concepts.

1. foreach edge e in O do
(a) if right left concepts(e) are tagged then paths between tagged concepts ∪=e;
(b) else if right concept(e) is tagged then max length paths ∪=e; //Seed edges

2. while size(max length paths) != ∅ do
(a) paths := ∅;
(b) foreach path p in max length paths do

i. extended paths := explore new edges(p, O); //only considering edges not in p
ii. foreach path p1 in extended paths do

A. if left concept(p1) is tagged then paths between tagged concepts ∪=p1;
B. else paths ∪= p1;

(c) max length paths := paths;
3. return paths between tagged concepts;

We start by identifying edges directly relating tagged concepts (step 1a) and
edges reaching tagged concepts (from now on, seed edges; step 1b). For the
sake of understandability, although the AOS has no directed edges, we say that
the tagged node is in the seed edge right-end, and its counterpart to be in the
the left-end. Then, the algorithm applies the transitive property starting from
tagged concepts. At the first iteration, we explore new edges such that their
right-end matches the left-end of a seed edge, and similarly for the forthcoming
iterations (step 2(b)i). Intuitively, we explore paths starting from tagged con-
cepts by exploring a new edge per iteration. This guided exploration has two
main restrictions: we cannot explore any edge already explored in a given path
(step 2(b)i) and if we reach another tagged concept we finish exploring that
path (i.e., we have found a path between tagged concepts; step 2(b)iiA). Note
that in a given iteration i, we only explore the longest paths computed in the
previous iteration (steps 1b and 2c). Eventually, we explore all the paths and
the algorithm finishes (step 2). Observe that step 1 can be computed by means
of generic ontological reasoning.

This algorithm is sound since it computes direct relationships and propagates
them according to the transitivity rule and complete, because it converges; note
that each path is explored only once. This algorithm has a theoretical exponen-
tial upper bound regarding the size of the longest path between tagged concepts.

GEM : Requirement-Driven Generation of ETL 87

However, this theoretical upper bound is hardly achievable in real-world ontolo-
gies as they have neither all classes with maximum connectivity nor all paths
are of maximum length. Moreover, note that *-* relationships were previously
pruned. (See also our evaluation in Section 7).
Producing the Output Subset. Based on the paths between tagged con-
cepts that the previous algorithm found, the following algorithm determines the
ontology subset needed to answer the f-req.

1. if between two tagged concepts there are more than one path then we ask the user for
disambiguation (i.e., which is the path fulfilling the semantics needed for the f-req at hand)

2. foreach pair of related tagged concepts not involving a descriptor do
(a) Edges forming that path are annotated as aggregation edges, because these relationships

determine the data granularity of the output

The AOS is compound by the paths selected in step 1. Note that these paths
include the intermediate concepts (i.e., those not tagged but involved in the
paths) and that the user may not select any path between a given pair of con-
cepts. At this point, taxonomies are also disregarded.
Annotating the Ontology AOS. Having an AOS containing the new concepts
needed to answer the f-req (besides those in the input XML file), we check
whether the whole graph makes MD sense.

First, we check the semantics of each edge according to the tag -if any- of the
related concepts and its multiplicity. According to these semantics, we tag each
edge with MD relationships that it could represent; i.e., related MD concepts.
Next, we consider factual nodes (those tagged as measures) and dimensional
nodes (those either tagged as levels or descriptors). For guaranteeing the MD
design principles (see Section 2.2), factual and dimensional nodes must be re-
lated properly. For example, factual data cannot be related to dimensional data
by means of a one-to-many (i.e., 1-*) association, as by definition, each instance
of factual data is identified by a point in each of its analysis dimensions. Di-
mensional data can only appear in the *-end of an edge when the other end is
also tagged as dimensional data. Furthermore, non-complete associations –i.e.,
accepting zeros– in the dimensional end are not allowed either, as they do not
preserve completeness.

Hence, we analyze the graph looking for not correct edges and try to fix them.
For example, if the node in the *-end of a *-1 association is tagged as dimensional
then, its counterpart should also be dimensional. If by doing so we have been able
to infer an unequivocal label, this knowledge is propagated to the rest of the AOS.
However, if we identify a meaningless conceptual relationship –i.e., when both
ends are tagged in a forbidden way– the algorithm stops and alternative analysis
scenarios are proposed. For this task, we use previously proposed techniques, as
those described in [14].

5 Multidimensional Validation

This stage validates the AOS and checks whether its concepts and associa-
tions collectively produce a data cube. If the validation fails (according to the

88 O. Romero, A. Simitsis, and A. Abelló

constraints discussed in Section 2.2), GEM proposes alternative analysis solu-
tions. Otherwise, the resulting MD schema is directly derived from the AOS.

The previous stage might have propagated some tags when tagging the AOS
associations (i.e., inferring unequivocal knowledge), but it does not guarantee
that all the concepts have a MD tag at this point. Thus, we start this stage
with a pre-process aimed at deriving new MD knowledge from non-tagged con-
cepts, and each non-tagged concept is considered to play a dimensional role or
a factual role. Furthermore, it would be possible to retag a dimensional node as
dimensional/factual node. Next, we validate if any of these tags, eventually, are
sound in a MD sense. Thus, in this step, we determine every potential MD tag-
ging that would make sense for the input f-req and we also determine how these
alternatives would affect the output schema, deriving (in some cases) interesting
analytical options that may have been overlooked by the designer.

For each possible combination of new tags, an alternative annotation is created
if the tags do not contradict the edge semantics already depicted in the AOS.
Subsequently, each of these AOS will be validated and only those that make MD
sense will be finally considered. Therefore, an f-req can produce several valid
MD taggings for the same AOS and thus, multiple MD schemas.

The validation process introduced in this stage guarantees the multidimen-
sional normal forms presented in [6,7] for validating the output MD schema,
and the summarizability constraints discussed in [10]. The following algorithm
is called once for each alternative tagging generated.

1. If !factualdata(AOS) then return notifyFail(”The requirement does not include any fact.”);
2. If !connected(AOS) then return notifyFail(”Cartesian product is not allowed.”);
3. For each subgraphOfLevels ⊂ AOS do

(a) If cycles(subgraphOfLevels) and contradictoryMultiplicities(subgraphOfLevels)
then

i. return notifyFail(”Cycles cannot be used to select data”);
(b) If existsTwoLevelsRelatedSameFactualData(subgraphOfLevels) then

i. return notifyFail(”Non-orthogonal Analysis Levels”);
(c) For each (c1, c2) ∈ getToManyEdges(subgraphOfLevels) do

i. If relatedToNodesWithMeasures(AOS, c2) then
A. return notifyFail(”Aggregation Problems”);

4. For each cycle ⊂ AOS do

(a) If contradictoryMultiplicities(cycle) then
i. return notifyFail(”Cycles cannot be used to select data”);

(b) else
i. askUserForSemanticV alidation();
ii. add(AOS, newContextEdge(bottom(cycle), top(cycle), cycle));

5. For each (c1, c2) ∈ getToManyEdges(AOS) do

(a) If relatedToNodesWithMeasures(AOS, c2) then
i. return notifyFail(”Aggregation problems between Measures”);

Step 1 ensures that the AOS contains factual data. Note that in our pre-
process we could have tagged nodes as factual data that do not contain mea-
sures. From here on, we distinguish between factual nodes and factual nodes with
measures. So this function returns false if all the nodes are tagged as dimensional
data. Step 2 ensures that the AOS is connected to avoid “Cartesian Product”.

The intuition behind steps 3 to 5 is shown in Figure 2. Step 3 validates levels
subgraphs (i.e., subgraphs only containing level concepts) with regard to where
factual nodes are placed. First, every subgraph must represent a valid dimension

GEM : Requirement-Driven Generation of ETL 89

Fig. 2. Graphical representation of the multidimensional validation steps

hierarchy. We must be able to identify two nodes in the level subgraph which
represent the top and bottom levels of the hierarchy (Step 3a). Two different
levels in a subgraph cannot be related to the same factual node (Step 3b).
Moreover, level - level edges raising aggregation problems in factual nodes with
measures must be forbidden (Step 3c). Note that by convention we assume that
in every *-1 edge (c1, c2), c1 corresponds to the * end of the association. Hence,
Step 3 validates the correspondences between dimensional nodes, whereas Step
4 generates the path of factual nodes (MD data retrieved); i.e., it validates
cycles in the path of factual nodes to ensure that they are not used to select
data, similarly to the validation of levels cycles in 3a. Once the cycle has been
validated, the edges involved are clustered in a context edge (since cycles are
checked to correspond a correct multi-path aggregation hierarchy, i.e., a one-
to-many or one-to-one lattice) tagged with the lattice multiplicity, as shown in
Figure 2. Finally, Step 5 looks for aggregation problems induced by factual nodes
with measures at the 1-end of a 1-* edge –either context edge or not.

6 Operation Identification

For each graph validated as a data cube in the previous stage, we launch an
ETL operation identification process, which is a semi-automatic process that
comprises three phases.
Phase I. This phase identifies operations that are needed for mapping the source
to target data stores, using the target schema produced in the previous stage.
For example, for aggregating over states, we need a location dimension at the
target site and to map it with source information about zip code, street address,
and so on.

During this phase, we identify mainly schema modification operations as fol-
lows. Selection is generated from concepts having attached a selection condition:
from slicers recorded in AOS; or when a required concept does not have any
mapped source (neither it nor its subclasses), while some of its superclasses
do have such mapping. Union appears when a required concept is not directly
mapped to the sources, but some of its subclasses are. Similarly, Intersection and
Minus are generated when a concept is not mapped but some of its superclasses
are. Join is generated for every association in the ontology; if one or both of
the association ends is not mandatory, we state it as outer. Aggregation is gen-
erated when a *-1 association is found so that there is a measure at its *-end.

90 O. Romero, A. Simitsis, and A. Abelló

Renaming is generated for each attribute in the data sources and gives to it the
name of the corresponding ontological concept. Projection is generated for each
concept and association in the ontology. Function expresses operations stated in
the requirements, like a discretization process for an attribute to be used in a
dimension or a transformation for an attribute to facilitate its interpretation as
a measure.

Starting from the AOS, we iteratively synthesize several of its nodes into one
single operation, as shown in the algorithm placed in the next page.

The ETL variable is a directed acyclic graph that tracks the ETL flow gen-
erated, whereas the findOper(ETL g, concept c) function looks for a node in
g, with no successors, such that it contains c. Step 1 considers extraction oper-
ations like a single table access, a union, an intersection or a minus operation,
along with the corresponding selection, projection, renaming mechanisms, and
functions. Step 2 fuses all data that do not involve any aggregation. Hence, for
those AOS nodes related by means of 1-1 associations (i.e., identity), we join
their corresponding operations in the ETL. We also join nodes connected with
edges that do not involve aggregation (i.e., stemming from slicing requirements
and identified in Section 4).

1. For each c ∈ AOS do

(a) add(ETL, newExtraction(c));

2. For each (c1, c2) ∈ edges(AOS) do
(a) If multiplicity((c1, c2)) = ”1 − 1” or not aggregationEdge((c1 , c2)) then

i. o1 := findOper(ETL, c1); o2 := findOper(ETL, c2);
ii. If o1 <> o2 then add(ETL,newJoin(o1, o2, getGroupingAttrs(o1)));

3. For each o ∈ ETL and successors(ETL, o) = ∅ and | outputEdges(AOS, o) |> 1 do
(a) setGroupingAttrs(o, ∅); e := outputEdges(AOS, o);
(b) For each (c1, c2) ∈ (e) do

i. o2 := findOper(ETL, c2);
ii. o := newJoin(o, o2, getGroupingAttrs(o) ∪ getGroupingAttrs(o2));
iii. add(ETL, o);

(c) add(ETL, newAggr(o, getGroupingAttrs(o));
4. While not connected(ETL) do

(a) (c1, c2) := first(
⋃

o=containsMeasure(ET L) outputEdges(o));

(b) o1 := findOper(ETL, c1); o2 := findOper(ETL, c2);
(c) o3 := newJoin(o1, o2, (getGroupingAttrs(o1) \ getAttr(c1)) ∪ getGroupingAttrs(o2));
(d) add(ETL, o3); add(ETL,newAggr(o3, getGroupingAttrs(o3)));

Step 3 creates the basic cubes. First, we check the already generated opera-
tions that have no successors, and whose AOS nodes have more than one edge
with the 1-end related to a concept in another ETL node without successors (ob-
serve that after step 2 only *-1 associations remain). Next, we successively join
these operations. The grouping attributes of the final operation is the union of
the grouping attributes of each joined operation. Note that a grouping operation
is generated to guarantee that data is at the appropriate granularity.

Finally, step 4 connects all cubes produced, starting from those with measures,
by following the order specified by the requirements. Since each AOS edge not
used yet corresponds to an aggregation, we join the output of the operations
(following the AOS aggregation edges), substitute the grouping attributes of c1

by those of the new aggregation level c2, and generate the grouping operation
taking into account the new attributes. The choice of the aggregation function

GEM : Requirement-Driven Generation of ETL 91

depends on the requirements (there, it should be associated to a corresponding
measure and c2) or a default one is used; e.g., SUM .
Phase II. During this phase, the designer might want to refine the design pro-
duced by checking for additional information at the sources that might be useful.
(Part of this phase can be done before Phase I too.) For example, the domain
ontology might relate state with zip code and street address. If there is a source
containing information about “location” and contains both the street address
and zip code in the same field, then such information is definitely useful, but the
domain ontology cannot help. We can correct this by enriching the result with
such a mapping and producing the appropriate function(s).

Nf-reqs can be exploited in a similar way. For example, a strict requirement
regarding recoverability may suggest to consider adding recovery points at points
of the flow that are generally known for being expensive (e.g., after the extraction
phase or after an expensive blocking operator [16]). Of course the final decision
on which are the good places to add recovery points is to be taken by an optimizer
at the logical level [16].

The same holds when we work with f-reqs that involve the data itself. For
example, a requirement like “make sure that each customer is considered once”
can add a “de-duplicate customer info” operation to the design.
Phase III. The last phase complements the design with operations needed to
satisfy standard business and design needs. This task is mainly automatic and
involves typical DW operations that can be identified and added to the design
after the consolidation phase.

For example, common practices suggest replacing production keys with sur-
rogate keys. For that, the system identifies the respective production keys and
enriches the design with appropriate ‘surrogate key assignment’ operations. Sim-
ilarly, the system adds operations that take care of slowly changing dimensions
(SCDs). There are standard dimensions that are not updated very often (e.g.,
dimensions that keep structural information about the organization such as ge-
ographical location, customer information or product information). Hence, the
design can be enriched with operations that handle the update of such dimen-
sions. Possible update operations for SCDs can be: do nothing (do not propagate
changes), keep no history (overwrite old values with new data), keep history by
creating multiple records in the dimensional tables with separate keys, keep his-
tory using separate columns, keep history by storing new data to an active table
and keep (all or some of the) old values to ’history tables’, or use a hybrid ap-
proach. Of course, here we list just a few frequently used operations. The list
can go long and our method is extensible to adapt such a list.

7 Evaluation

We evaluated GEM using the TPC-DS benchmark [19]. TPC-DS provides a set
of DW tables –both facts and dimensions– along with a set of data sources.
ETL operations (or data maintenance functions according to TPC-DS) are also
provided, for maintaining fact tables and dimensions. Finally, a set of business

92 O. Romero, A. Simitsis, and A. Abelló

Fig. 3. Ontology for TPC-DS data sources

queries (i.e., business requirements) exists. Having all these constructs allows us
to evaluate our method as follows. Starting only from the business queries and
the data source, we use GEM for producing the DW schema and ETL opera-
tions. Then, we compare our solutions to the design constructs provided by the
benchmark. Here, due to limited space, we show results concerning the store sales
cube (the results generalize throughout the whole benchmark though).

We worked as follows. We constructed an ontology containing all source tables,
specializations, and added some additional concepts that do not map to data
sources (see Figure 3). Thus, we intentionally make the ontology more complex
by adding more classes to stress GEM ; note, that adding more associations does
not affect GEM, since these would be pruned during AOS creation.

First, we examine the search space produced for AOS creation. Figure 4
presents the number of algorithm iterations needed to converge, the total num-
ber of paths computed, the number of paths between tagged concepts (i.e., the
output), and the maximum length of the output, per business query. The re-
sults show that the search space is not exponential regarding the length of the
longest path. Indeed, although the average length of the longest path is 8, in the
worst case, our algorithm computes no more than 178 paths (24 between tagged
concepts). These findings verify the feasibility and efficiency of our approach in
real-world cases. In fact, the worst total time did not exceed 900ms. Construct-
ing AOS is the most expensive part of our method; the rest tasks are processed
fairly fast, in much less time.

Next, we evaluated the quality of our solutions (see Figure 5). Every busi-
ness query reveals a part of the final design (tables and attributes). Frequently,
business queries reveal overlapping information. However, after a few iterations
over these queries (in fact, after the fifth query) we identified correctly all target
tables. Since numerous attributes are involved overall, identifying them requires
digging into more requirements. After processing 11 business queries, we identi-
fied almost 40% of the total attributes. However, attributes are added throughout
the whole process. For example, surrogate keys are identified after Phase III of
the ETL operation identification task.

GEM : Requirement-Driven Generation of ETL 93

Fig. 4. Space Fig. 5. MD coverage Fig. 6. ETL coverage

Two observations can be made at this point. One may find tempting the fact
that the target tables are identified really fast. Thus, after a certain point of her
choice, the designer might want to stop this automatic process and start refining
the design by herself. As an aside issue, many business queries involve the same
target design constructs. This means that these constructs (e.g., tables) should
be quite popular and this information can help us in the physical design; e.g.,
for choosing appropriate indices or partitioning schemes.

Similar are the findings for the identification of ETL operations (see Figure 6).
GEM returned almost 60% of ETL operations after the completion of Phase I.
The remaining operations (not shown in the figure) are mostly surrogate key
assignments and a few SCDs, which are identified after Phase III. Therefore,
GEM identifies the complete set of ETL operations for the TPC-DS case.

8 Related Work

Various efforts have been proposed for the conceptual ETL modeling. These in-
clude approaches based on ad hoc formalisms [20], on standard languages like
UML (e.g., [9]), MDA (e.g., [11,12]), BPMN [1], and on semantic Web technology
and graph transformations [17]. Most of these works do not specifically consider
business requirements and do not describe how such requirements drive ETL de-
sign. Recent research on optimization of information integration flows proposed
techniques for incorporating such objectives into ETL design [2,15,16,21]. How-
ever, none of the abovementioned research efforts considers synchronous creation
of MD design. In addition, commercial, off-the-shelf ETL products do not offer
functionality similar to the one described in this paper.

Many works have dealt with designing DW models; e.g., [3,5,11,13,18], to
mention a few, but the list is long. However, in most works, it seems that the
more the process gets automated, the more the integration of requirements is
overlooked on the way. Recently, the use of ontologies was considered for facili-
tating this task [13]. However, that work aims at identifying the MD knowledge
contained in the sources and overlooks business requirements. Another approach
to MD design considers business requirements too [14], but the f-req are con-
sidered in the form of SQL queries, so a major design task is done manually.
GEM automates this part and automatically creates such queries from f-req. In
addition, GEM is different from all previous approaches in that it identifies the
ETL operation at the same time.

94 O. Romero, A. Simitsis, and A. Abelló

9 Conclusions

We have presented GEM. A system that facilitates the (semi-)automatic genera-
tion of ETL and MD conceptual designs, starting from a set of business require-
ments and data sources. In particular, we have described how the requirements
can be validated and enriched, in order to produce an annotated ontology con-
taining correct information for both the sources and the requirements. Then, we
have shown how to use this ontology for producing the MD and ETL conceptual
designs. Finally, we have reported on our experimental findings working on the
TPC-DS benchmark. Our future plans involve extending our techniques to the
logical and physical levels, for facilitating their (semi-)automatic production.

Acknowledgements. This work has been partly supported by the Ministerio
de Ciencia e Innovación under project TIN2008-03863.

References

1. Akkaoui, Z.E., Zimányi, E.: Defining ETL worfklows using BPMN and BPEL. In:
DOLAP, pp. 41–48 (2009)

2. Dayal, U., Castellanos, M., Simitsis, A., Wilkinson, K.: Data Integration Flows for
Business Intelligence. In: EDBT, pp. 1–11 (2009)

3. Golfarelli, M., Maio, D., Rizzi, S.: The Dimensional Fact Model: A Conceptual
Model for Data Warehouses. IJCIS, 215–247 (1998)

4. Golfarelli, M., Rizzi, S.: Data Warehouse Design. Modern Principles and Method-
ologies. McGraw-Hill, New York (2009)

5. Hüsemann, B., Lechtenbörger, J., Vossen, G.: Conceptual Data Warehouse Mod-
eling. In: DMDW, pp. 1–11 (2000)

6. Lechtenbörger, J., Vossen, G.: Multidimensional Normal Forms for Data Warehouse
Design. Information Systems, 415–434 (2003)

7. Lehner, W., Albrecht, J., Wedekind, H.: Normal Forms for Multidimensional
Databases. In: SSDBM, pp. 63–72 (1998)

8. Lenz, H., Shoshani, A.: Summarizability in OLAP and Statistical Data Bases. In:
SSDBM, pp. 132–143 (1997)

9. Luján-Mora, S., Vassiliadis, P., Trujillo, J.: Data mapping diagrams for data ware-
house design with UML. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W.
(eds.) ER 2004. LNCS, vol. 3288, pp. 191–204. Springer, Heidelberg (2004)

10. Mazón, J., Lechtenbörger, J., Trujillo, J.: A Survey on Summarizability Issues in
Multidimensional Modeling. DKE, 1452–1469 (2009)

11. Mazón, J.N., Trujillo, J.: An MDA Approach for the Development of Data Ware-
houses. In: DSS, pp. 41–58 (2008)

12. Muñoz, L., Mazón, J.N., Trujillo, J.: Automatic Generation of ETL Processes from
Conceptual Models. In: DOLAP, pp. 33–40 (2009)

13. Romero, O., Abelló, A.: A Framework for Multidimensional Design of Data Ware-
houses from Ontologies. Data & Knowledge Engineering 69(11), 1138–1157 (2010)

14. Romero, O., Abelló, A.: Automatic Validation of Requirements to Support Multi-
dimensional Design. Data Knowl. Eng. 69(9), 917–942 (2010)

15. Simitsis, A., Wilkinson, K., Castellanos, M., Dayal, U.: QoX-driven ETL design:
Reducing the Cost of ETL Consulting Engagements. In: SIGMOD (2009)

GEM : Requirement-Driven Generation of ETL 95

16. Simitsis, A., Wilkinson, K., Dayal, U., Castellanos, M.: Optimizing ETL Workflows
for Fault-Tolerance. In: ICDE, pp. 385–396 (2010)

17. Skoutas, D., Simitsis, A.: Ontology-Based Conceptual Design of ETL Processes for
Both Structured and Semi-Structured Data. IJSWIS, 1–24 (2007)

18. Song, I., Khare, R., Dai, B.: SAMSTAR: A Semi-Automated Lexical Method for
Generating STAR Schemas from an ER Diagram. In: DOLAP, pp. 9–16 (2007)

19. TPC: TPC-DS specification (2010), http://www.tpc.org/tpcds/
20. Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Conceptual modeling for ETL pro-

cesses. In: DOLAP, pp. 14–21 (2002)
21. Wilkinson, K., Simitsis, A.: Designing Integration Flows Using Hypercubes. In:

EDBT (2011)
22. Yu, E.S.K., Mylopoulos, J.: From E-R to ”A-R” - Modelling Strategic Actor

Relationships for Business Process Reengineering. In: ER, pp. 548–565 (1994)

http://www.tpc.org/tpcds/

	GEM: Requirement-Driven Generation of ETL and Multidimensional Conceptual Designs
	Introduction
	GEM in a Nutshell
	Inputs
	System Architecture
	Output

	Requirement Validation
	Requirement Completion
	Multidimensional Validation
	Operation Identification
	Evaluation
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

