
Building Cubes with MapReduce

Alberto Abelló
Universitat Politècnica de
Catalunya, BarcelonaTech
aabello@essi.upc.edu

Jaume Ferrarons
Universitat Politècnica de
Catalunya, BarcelonaTech

jferrarons@essi.upc.edu

Oscar Romero
Universitat Politècnica de
Catalunya, BarcelonaTech

oromero@essi.upc.edu

ABSTRACT
In the last years, the problems of using generic storage tech-
niques for very specific applications has been detected and
outlined. Thus, some alternatives to relational DBMSs (e.g.,
BigTable) are blooming. On the other hand, cloud comput-
ing is already a reality that helps to save money by eliminat-
ing the hardware as well as software fixed costs and just pay
per use. Indeed, specific software tools to exploit a cloud
are also here. The trend in this case is toward using tools
based on the MapReduce paradigm developed by Google.
In this paper, we explore the possibility of having data in
a cloud by using BigTable to store the corporate historical
data and MapReduce as an agile mechanism to deploy cubes
in ad-hoc Data Marts. Our main contribution is the com-
parison of three different approaches to retrieve data cubes
from BigTable by means of MapReduce and the definition
of criteria to choose among them.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administra-
tion—data warehouse; H.2.4 [Database Management]:
Systems—query processing, parallel databases

General Terms
Algorithms, Management

Keywords
BigTable, Data Warehouse, Design, MapReduce, OLAP

1. INTRODUCTION
Nowadays, most companies externalize as many services

as possible to reduce costs and be more flexible in front of
fluctuations of the demand. Thus, with cloud computing,
the time has arrived to IT infrastructures. The National
Institute of Standards and Technology (NIST) defines cloud
computing as “a model for enabling convenient, on-demand

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DOLAP’11, October 28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0963-9/11/10 ...$10.00.

network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction”.

Cloud computing, in general, is a good solution for medium
to small companies that cannot afford a huge initial invest-
ment in hardware together with an IT department to man-
age it. With this kind of technologies, they can pay per use,
instead of provisioning for peak loads. Thus, only when the
company grows up (if at all), so the expenses will. The only
problem is that they have to trust their data to third parties.

In [1], we find an analysis of pros and cons of data man-
agement in a cloud. It is found completely inappropriate
for transactional processing mainly due to the problems to
guarantee ACID properties in such environment. However,
it is adequate for analysis environments, since those proper-
ties are not needed. It also outlines the problem of having
data in an untrusted environment, which would again be
unacceptable in transactional processing, but can be easily
solved in analytical systems by just leaving out some sensi-
tive data or using an anonymization function. On the other
hand, what cloud data management can offer to an ana-
lytical environment is elastic compute power (in the form of
parallelism), replication of data (even across different regions
of the world), and fault tolerance (a new machine automati-
cally taking over from a fallen one without re-executing the
whole query or process). As a side effect, we can also serve
as many users as needed through the Internet.

Data Warehouses (DW) and On-Line Analytical Process-
ing (OLAP) tools where defined by Bill Inmon in [12] and
Edgar Codd in [6], respectively. Thus, they are almost
twenty years old and have evolved to maturity by overcom-
ing many limitations in these years. Huge (Terabytes) rela-
tional DW exist today benefiting from techniques like mate-
rialized views, bitmap indexes, etc [10]. Nevertheless, some
challenges remain still open. Mainly, they are related to
the management of ETL processes, unstructured data, and
schema evolution.

Cloud computing does not mean that we cannot use a rela-
tional system. Indeed, well known alliances already exist in
the market, like that between Oracle and Amazon. However,
as pointed out in [15], there is four to five times as much un-
structured data as there is structured data. NoSQL engines
like BigTable (presented in [5]) are thought to store this kind
of data. For example, with this approach, we could easily
incorporate information extraction tools to the management
of unstructured data in the sources. A non-formatted chunk
of data would be stored associated to the key, and just when

17

Figure 1: Proposed architecture

the user decides what to do with it and which tool can be
used, we do it. Oppositely, in a RDBMS, we format and
structure data in a star-shape schema months or even years
before it is actually used (or even without knowing whether
it will be used or not).
It is at this point that MapReduce (presented in [8]) can

help, because it was conceived to parallelize the parsing and
modification of data as it is being scanned. MapReduce is
a framework that hides distribution of data, parallelization,
fault-tolerance and load balancing from the programmer. It
has been specially designed for scalability, and processing in
a cloud. It allows to deal with huge volumes of data, when
the schema is not concrete (i.e., variations can eventually
appear).
At this point, it is important to clarify that we are assum-

ing the DW architecture in [14], where we have the “Corpo-
rate Data Warehouse” (CDW) for generic storage and the
“Data Marts” (DM) for the specific analysis of data. As
pointed out in [13], the first one is not the addition of several
star schemas and it does not even need to be multidimen-
sional. Therefore, we can freely choose any DBMS (either
relational or not) and data schema that suits our needs.
As explained in [22], MapReduce and Parallel (usually

relational) databases are complementary in the sense that
neither is good at what the other does well. Thus, as de-
picted in Figure 1, what we propose is to temporally store
data in BigTable and just when we know exactly which is
the analysis we have to perform, what are the data quality
needs, and which is the more suitable technology (i.e., RO-
LAP, MOLAP, VOLAP, etc.), then we use the ETL to pre-
pare the data according to our specific necessities. Indeed,
our proposal is to store together all data related to a given
subject (as stated in Inmon’s DW definition), but without
concreting the schema, so that it can easily evolve over time.
We would just partially integrate and clean them before be-
ing stored in an (almost) unlimited CDW in a cloud. Then,
on demand, we would extract specific data cubes specially
customized for a given analysis, that would be stored in a
concrete DM (either also in the cloud or not). For exam-
ple, as explained in [11] in the presence of missing values,
we may adopt several solutions: (i) just ignore the tuples

with missing values, (ii) give them a default value (the same
one for all tuples), either a global constant or the average of
the attribute, (iii) give them the average of the class of the
tuple, or (iv) guess the value for each tuple using regression,
decision trees, etc. To make different decisions, different
approaches may be more appropriate. A MapReduce tool
would help to parallelize the ETL process and choose a dif-
ferent cleaning solution depending on the specific need of
the time. Even if we would always want to choose option
(iv), the more we wait to guess the value of each tuple, the
more informed our choice can be.

Thus, we argue that when we want to benefit from the
compute power of a cloud, the schema easily evolves, and
the cleaning of data is also variable, using a MapReduce
framework should be the right choice for the CDW. This
would help to an agile deployment. However, the bad news
is that since we would be paying per use, the computational
cost of our ETL processes will be directly translated into
money. Therefore, it is crucial to study and determine, a
priori, which is the best (i.e., cheapest) way to process our
data. Notice that trying would mean a payment to the cloud
provider and we would rarely build the same cube twice (i.e.,
trial and error has to be clearly discarded). As pointed out in
[9], one of the drawbacks of Hadoop is the lack of indexes. In
this scenario, our contributions are (i) the algorithms imple-
menting the three typical table access approaches to build a
cube benefiting from MapReduce and BigTable technologies,
and (ii) an experimental analysis of query characteristics to
choose the most appropriate algorithm with regard to the
cube we want to build.

The paper is organized as follows: Section 2 contains
the related work; Section 3 introduces basic concepts about
BigTable and MapReduce technologies; Section 4 explains
three different options to build a data cube using MapRe-
duce; Section 5 shows performance results and exemplifies
when one of these options is preferable in front of the others;
finally Section 6 concludes the paper.

2. RELATED WORK
In the last years, a significant trend has appeared against

the“one size fits all”policy of RDBMS vendors (see [21]). On
the one hand, most companies use only a small percentage
of the functionalities of their RDBMS. On the other hand,
using a DBMS devoted to one specific kind of applications
that considers its special and distinguishing characteristics
usually results in a really significant gain in performance for
these applications.

For example, it is well known (see [7]) that for some kind
of environments it would be much better to store data to-
gether per column instead of per row, like RDBMSs do.
For DW, [2] shows that column storage clearly outperforms
RDBMSs (showing the comparison with three possible sim-
ulations of columns in a RDBMS). Indeed, Dremel (devel-
oped by Google and presented in [18]) is an implementation
based on column storage, and some products are already in
the market like the open source MonetDB or Vertica, which
is the commercial version of [20]. Nevertheless, we advocate
that, while we can use column storage for the DM (where
columns are well defined), we still need some more flexible
storage for the CDW (whose data have not a clear struc-
ture or are under continuous evolution). Thus, for analytical
purposes, Google also developed MapReduce and BigTable
technologies and opened them to the community in 2004 and

18

Figure 2: BigTable organization

2006, respectively. They can be considered young technolo-
gies whose power today is mainly based on the brute force
provided by cloud computing.
Regarding the performance of MapReduce, we would name

two relevant works: [19] and [16]. Firstly, [19] outlines the
start-up cost of MapReduce and the high load throughputs
compared to two commercial DBMSs at the leading edge of
the market. The reason for the high load throughput is that
it just stores data as it comes (which means faster loading
time than any DBMS). Then, it is at query time we have
to pay the price of formatting them (depending on the spe-
cific needs at the time). Moreover, MapReduce is able to
recover from faults in the middle of query execution (which
is quite common in big clouds) while other systems cannot.
On the other hand, [16] shows that despite currently being
slower that some DBMSs at query processing, MapReduce
has a great margin for improvement by just incorporating
well known techniques. They conclude that MapReduce-
based systems are not inferior to parallel DBMSs in terms of
performance. The problem is probably that they are not ma-
ture enough. For example, Hadoop (the most popular open
source MapReduce implementation) did not release version
1.0, yet, and it does not benefit from any kind of indexing
techniques, i.e., adding dynamic indexes to the framework is
still an open issue (addressed in [9]). Summarizing, we could
say that MapReduce is appropriate to serve long running
queries in batch mode over raw data (which is precisely the
case of ETL processes). A similar proposal to build cubes
using MapReduce can be found in [25], but in this case the
authors just rely on brute force to build the cubes and do
not provide any algorithmic improvement beyond fragment-
ing data and distributing it among the nodes in the cloud.
Finally, [9] also shows that MapReduce and Relational

algebra have the same expresiveness. Thus, some may ar-
gue that MapReduce has a too low level programming in-
terface instead of a declarative language like SQL. Indeed,
Hive project (see [23]) is working to solve this problem, by
developing a SQL-like declarative language (i.e., HiveQL).
However, it is again in its early stages and only provides
a naive rule-based optimizer with a small number of simple
rules. It is in this sense that our research is relevant, because
offers different ways to evaluate a given kind of queries (i.e.,
multidimensional) based not on rules but on their selectivity
factor and other physical characteristics.

3. GOOGLE CLOUD TECHNOLOGIES
To understand the rest of the paper, the reader may need

some basic knowledge on the tools we are using. In this
section we just summarize the main concepts of BigTable
and MapReduce as they where presented by Google in [5]
and [8], respectively.

3.1 BigTable
BigTable is a distributed storage system designed to scale

to very large size (petabytes). Figure 2 sketches data orga-
nization inside it, whose main structure is [key,value] pairs.
The main characteristics we would like to outline here are:

• Data are indexed by row and column values (which are
arbitrary strings).

• Columns can be grouped into families to be physically
stored together.

• Versions are automatically generated for each value
(which are timestamped).

• Data are treated also as uninterpreted strings.

• Only single-row transactions are supported.

• Data is clustered (i.e., physically sorted) by key.

Note that only families of columns are part of the schema
and have to be stated on creating a table. Oppositely, the
columns are dynamically defined on inserting data. More-
over, since a family actually corresponds to a separate stor-
age, adding them does not modify data already inserted
(which means this is really efficient, order of seconds). Re-
garding data retrieval, it provides random access to one key,
as well as parallel scan of the whole table or a range of keys.

3.2 MapReduce
MapReduce is a programming framework that allows to

execute user code in a large cluster. It hides parallelization,
data distribution, load balancing and fault tolerance from
the user. All the user has to do is writing two functions:
Map and Reduce. As sketched in Figure 3, those functions
are injected in the framework.

Thus, the signature of those two functions is as follows:

map(keyin, valin) → {[key1tmp, val
1
tmp], ..., [key

n
tmp, val

n
tmp]}

reduce(keytmp, {val1tmp, ..., val
m
tmp}) →

→ {[key1out, val1out], ..., [key
p
out, val

p
out]}

The execution would be:

1. Map function is automatically invoked for each pair
[key,value] in the source table (it also works for plain
files, in which case, one pair is generated per line, hav-
ing as key the position inside the file). Notice that the
source table is distributed in a cloud. Therefore, the
framework takes advantage of this and tries to execute
each map call locally to the data. Each call can gener-
ate either one new pair (potentially different from that
in the input), many pairs or none at all.

19

Figure 3: MapReduce overview

2. The intermediate pairs [key,value] generated by the dif-
ferent executions of the Map function, which are tem-
porally stored in the distributed file system, are then
ordered using a distributed merge-sort algorithm.

3. For each different intermediate key, the Reduce func-
tion is invoked once receiving together all values asso-
ciated to it. Each call can generate again either one
new pair (also potentially different from that in its in-
put), many pairs or none at all.

4. BUILDING A CUBE
In this section we explain the three approaches we have

used to build cubes. They correspond to the typical options
relational optimizers take into account on accessing a table,
namely “full scan”, “index access”, and “range index scan”.
The first one just uses HBase facilities to scan the whole
source filtering it by the attributes the user indicates. The
second builds indexes beforehand to easily obtain the iden-
tifiers of the desired tuples and then retrieve the data by
random access. Finally, the last option mixes the other two
(i.e., it implements indexes, retrieves the identifiers of the
tuples, builds an in-memory bitmap, and uses it to filter the
tuples in the map function, while scanning the whole table).
In all three cases, data is assumed to be completely denor-

malized in one universal relation containing all data related
to the subject object of analysis. By doing it so, we incur in
some extra space, but on the other hand, we avoid random
access to the hypothetical dimensions and having to join
them with the factual data; and on the other hand, we store
the snapshot of the dimensional data at the time the fact
occurred (i.e., facilitating the tracking of slowly changing
dimensions). MapReduce configuration details have been
mostly omitted in the algorithms, since default values are
being used. Moreover, without loss of generality, we assume
that the aggregation function is always “SUM”. Also for the
sake of simplicity in the pseudo-code provided, we consider
that there is only one measure in the output cube (otherwise,
a list of measures should be provided in the input, instead
of only one; and a nested loop over an array implemented in
the last reducer to aggregate each one of them separately).

4.1 Full Source Scan (FSS)
The idea behind this option is using just the brute force

of parallelism in a cloud. It has only been slightly improved
by using the filter facilities of BigTable. However, since this
filtering is not performed by the key of the table, but by
values in the different columns, it does not result in any

significant improvement in the overall performance, because
as explained before indexing is not implemented in BigTable.

BigTable scan configuration as well as Map and Reduce
functions for this approach are sketched in Algorithm 1.
Firstly, we state that only those columns of interest for the
final cube (i.e., dimensions, measure, and slicers) must be
retrieved from the source (Line 2). Then, we state that
those pairs [key,value] whose columns do not match the con-
dition must be filtered out (Line 3). The map function in
this case just redefines the key as the dimensions of the out-
put cube, and the value as the measure to be aggregated
(Line 7). Finally, after all pairs [key,value] generated by the
Map function have been transparently sorted and grouped
by key, the reduce function is called once for each combina-
tion of the dimensions’ values. Thus, the reducer only has to
mirror the input key in the output (Line 10), and aggregate
the measure’s values corresponding to that cell (Line 12).
Note that valtmp is a set of all values in the different pairs
sharing the same dimension coordinates.

4.2 Indexed Random Access (IRA)
As explained in [17], although analytical queries usually

apply aggregation techniques over non-very-selective rows,
they may exhibit quite selective predicates. For example,
the use of bitmaps (a common indexing technique in DW)
is usually worth only when the overall selectivity factor of
the query is below 1% (for example, regarding all queries
in [24] the median of the selectivity factor is 0.8%, with a
range of values between 0.00000003% and 99.9%). Thus, the
idea behind this approach is to use some kind on indexing
technique to avoid a full scan of the source. Therefore, we
introduce a phase “MapReduce0” that aims at building such
indexing structure. We assume this is done before hand,
since it can be reused to build many cubes if incrementally
maintained to reflect the successive updates of the CDW.

The three phases of this approach are sketched in Algo-
rithm 2. The preliminary MapReduce job builds the in-
dexing structure by just scanning the whole source table.
Since only those columns involved in the aggregation hi-
erarchy need to be retrieved, scan is configured so (Line
2). Afterwards, the map function just puts in the tem-
poral key the retrieved value (Line 6) with the following
format: the schema and values of the hierarchy from top
to bottom, preceded by the name of the dimension (e.g,
“Time;year:2005;month:December;day:7”). By doing so,
we benefit from the locality of BigTable due to [key,value]
pairs being indexed and clustered by key (e.g., all days of
Dec. 2005 will be stored together, and later on retrieved in
a single access by just stating the range “[Dec. 2005, Jan.

20

Algorithm 1 Filtered Source Scan

Input:
sourceName, M: String; //Name of the source BigTable and Measure
D, S: Set of String; //Dimensions, Slicers

Output: A data cube
1: function Config does //Configure the source BigTable scan
2: scan.addColumns(D ∪ {M} ∪ S);
3: scan.addFilter(S);
4: initTableMapperJob(sourceName, scan, Mapper, Text, Text, job); //Call stating table and scan procedure
5: end function
6: function Mapper does
7: keytmp:= valin[D]; valtmp:= valin[M];
8: end function
9: function Reducer does
10: keyout:=keytmp;
11: for each String v in valtmp does
12: valout+=(float)v;
13: end for
14: end function

2006)”). The output value in this case is just the key in the
source table, i.e., the ID of the pair (Line 6). The reducer
will, after all pairs being sorted and grouped by the dimen-
sion values, just put in the output pairs where the key is the
dimension value (Line 9), and the value is a list of IDs in
the source corresponding to that dimension value (Line 11).
Eventually, when a cube needs to be actually built, we will

execute the other two phases. In the first phase, based on
the slicers (provided in a plain file in Line 15), the indexing
structure is randomly accessed (Line 18). The map function
just generates one new temporal pair for each ID in the input
value (Line 20). Note that the value of those pairs is always
“1”, which represents the number of slicers where we found
the ID. After the sort step, all we need to do in the reducer
is check whether the ID was present in all slicers or not. If
so, we put it in the output (Line 29), because it belongs
to the intersection of all the slicers and the corresponding
measure deserves to be considered in the output cube. Note
that we are assuming that all slicers of the same dimension
are disjoint (if more than one) and that slicers of different
dimensions have been anded in the predicate. Otherwise,
more complex comparison that just counting should be im-
plemented at this point to check whether the corresponding
data in the source table makes the slicing predicate to eval-
uate true or false. Finally, the second and last phase just
scans the output BigTable of the previous phase and ran-
domly access the source table for each ID found (Line 36).
From this on, it acts with the retrieved pair as in FSS (Sec-
tion 4.1).

4.3 Index Filtered Scan (IFS)
This third option, sketched in Algorithm 3, is a mix of the

other two. The aim is to use the index but avoid random ac-
cess to the source (which would be costly for high selectivity
factors). Thus, we only scan from minimum to maximum
keys and those disk blocks without any key will be skipped.
To do so, we use the same preliminary and first phase ex-
actly as IRA (Section 4.2). Afterwards, we configure the
scan of the source BigTable and create an in-memory bitmap
based on those IDs in the intermediate BigTable generated
by MapReduce1 (Line 4). The bitmap is used in the map-
per step to filter the pairs generated (Line 10). This is done
so, because given the number of IDs generated, it results
much more efficient than using the filter facilities provided

by BigTable (see Section 5). Finally, we use Reducer2 as the
one introduced for FSS and IRA (Sections 4.1 and 4.2).

This algorithm results in less disk accesses than the others
but needs to build an in-memory (bitmap) structure to store
the desired keys.

5. IMPLEMENTATION AND TESTING
We have implemented all these algorithms on Hadoop

(see [3]), which is Apache’s open source implementation of
MapReduce. Moreover, test data as well as indexing infor-
mation has been stored in HBase (see [4]), which is Apache’s
open source implementation of BigTable. Experiments were
run on a single machine, Core2 Duo (2.2GHz), 4Gb RAM
and HD SATA 5400rpm. We did not use a cluster to avoid its
management complexity and eliminate, by now, the number
of active nodes in the experimental variables.

Figure 4: Source table space

One big denormalized table has been filled with data fol-
lowing the TPC-H database population specification (as stated
in [24]). Compression has been enabled and one family of
columns has been defined for each TPC-H column (this im-
proves the compression rate given that physically consecu-
tive repetitions of values are much more likely). Figure 4
shows, for each Scale Factor (SF from here on) the size of

21

Algorithm 2 Indexed Random Access

Input:
sourceName, indexName, slicerName: String; //Name of source and index BigTable, and file containing the slicers
D: Set of String; //Dimensions
H: Ordered list of String; //Slicer dimension hierarchies
M: String; //Measure

Output: A data cube
1: function Config0 does //Configure the source BigTable scan
2: scan.addColumns(H);
3: initTableMapperJob(sourceName, scan, Mapper0, Text, Text, job); //Call stating table and scan procedure
4: end function
5: function Mapper0 does
6: keytmp:= format(valin); valtmp:= keyin;
7: end function
8: function Reducer0 does
9: keyout:=keytmp;
10: for each String v in valtmp does
11: valout=valout.concat(v);
12: end for
13: end function
14: function Config1 does //Configure the load of the slicers
15: setInputPaths(job, slicerName); //Call stating input file for the mapper
16: end function
17: function Mapper1 does
18: currentVal=BigTable.get(indexName,keyin);
19: for each String v in currentVal does
20: output [v,1];
21: end for
22: end function
23: function Reducer1 does
24: keyout:=keytmp;
25: for each String v in valtmp does
26: counter+=(int)v;
27: end for
28: if counter =| file(slicerName) | then
29: return [keyout,null];
30: end if
31: end function
32: function Config2 does //Configure the temporal BigTable scan
33: initTableMapperJob(temporalName, scan, Mapper2, Text, Text, job); //Call stating table and scan procedure
34: end function
35: function Mapper2 does
36: currentVal=BigTable.get(sourceName,keyin, D ∪M);
37: keytmp:= currentVal[D]; valtmp:= currentVal[M];
38: end function
39: function Reducer2 does
40: keyout:=keytmp;
41: for each String v in valtmp does
42: valout+=(float)v;
43: end for
44: end function

the source table once denormalized and loaded into HBase.
Given that SF = x means that TPC-H generates xGb, we
need approximately double space for our denormalized ta-
ble. As depicted in Figure 5, indexes generated by IRA and
IFS need approximately 10% of the size of the source table,
independently of the SF .
On the other hand, query configuration has been also de-

cided based on that of TPC-H queries, which is summarized
in Table 1, and taking the maximum size (i.e., SF = 0.5).
For each one of these four characteristics of the queries (i.e.,
selectivity factor, number of attributes in the select clause,
number of attributes in the group by, and number of clauses
in the selection predicate, aka slicers), we have generated
a set of queries to measure their independent influence on
the performance. Each set contains queries varying exactly
one factor from minimum to maximum, and fixing the other
three factors to the median. Note that we use the median

Min Median Max
Selectivity factor 0.00000003% 0.8% 99.9%
Projected attributes 1 3 9
Grouping attributes 0 1 7
Predicate attributes 1 2 6

Table 1: TPC-H query statistics

instead of the average, because it is a better indicator of
central tendency in the presence of skewed distributions and
outliers (which is the case in the TPC-H queries).

Figure 6, which is in logarithmic scale for vertical as well
as horizontal axis, shows the results (in seconds) for vary-
ing the selectivity factor. For IRA and IFS, we launch two
MapReduce processes, in front of only one for FSS. Thus,
given that Hadoop has high start-up cost (as recognized in

22

Algorithm 3 Indexed Partial Scan

Input:
sourceName, indexName, slicerName: String; //Name of source and index BigTable, and file containing the slicers
D: Set of String; //Dimensions
H: Ordered list of String; //Slicer dimension hierarchies
M: String; //Measure

Output: A data cube
1: Run MapReduce0 and MapReduce1 as in Algorithm 2;
2: function Config2 does //Configure the source BigTable scan
3: for each int k in temporalBigTable does
4: bitmap[k]=true;
5: end for
6: scan.addColumns(D ∪M);
7: initTableMapperJob(sourceName, scan, Mapper2, Text, Text, job); //Call stating table and scan procedure
8: end function
9: function Mapper2 does
10: if bitmap[keyin] then
11: keytmp:= valin[D]; valtmp:= valin[M];
12: end if
13: end function
14: function Reducer2 does
15: keyout:=keytmp;
16: for each String v in valtmp does
17: valout+=(float)v;
18: end for
19: end function

Figure 5: Index space

[19]), we need a fair volume of data to compensate this.
Nevertheless, IFS always compensates it for high selectiv-
ity factors, even for a small SF . As SF is increased, this
handicap is compensated for lower and lower selectivities.
Regarding IRA, we can observe that with just SF = 0.5 it
is already the best option for the lowest selectivity.
On the other hand, Figure 7 shows the variation of the

execution time (in seconds) depending on the number of
slicers. We can observe that it also affects the performance
of IRA and IFS. This happens because they have to manage
one more index access per slicer.
Figures 8 and 9 show the results for varying the projected

attributes and those in the group by. We can observe that,
given a SF , the corresponding three lines are mainly paral-
lel, which means that these characteristics of queries do not
affect the relative performance of the algorithms. Thus, we
can conclude that the dominant characteristic is clearly the

Figure 6: Performance by selectivity factor

selectivity factor which makes performance grow exponen-
tially, while the other makes it grow linearly.

6. CONCLUSIONS
In this paper we have shown how to benefit from cloud

computing technologies to build OLAP cubes by using MapRe-
duce and BigTable. Specifically, three different algorithms
have been proposed and empirically compared, based on
TPC-H benchmarking schema, data generator and query
patterns. Our experiments show that the dominant perfor-
mance factor is the selectivity of the queries. However, also
the number of slicers affects the performance of those algo-
rithms benefiting from indexes. The number of attributes
being projected and used for grouping results to be irrele-
vant for the performance. To simplify the analysis and avoid
the complexity of using a cluster we left as future work the
variation in the number of nodes.

7. ACKNOWLEDGEMENTS
This work has been partly supported by the Spanish Min-

isterio de Ciencia e Innovación under project TIN2008-03863.

23

Figure 7: Performance by number of slicers

Figure 8: Performance by projection size

8. REFERENCES
[1] D. J. Abadi. Data management in the cloud:

Limitations and opportunities. IEEE Data
Engineering Bulletin, 32(1):3–12, 2009.

[2] D. J. Abadi, S. Madden, and N. Hachem.
Column-stores vs. row-stores: how different are they
really? In SIGMOD Int. Conf. on Management of
Data, pages 967–980, 2008.

[3] Apache. Hadoop, http://hadoop.apache.org/.

[4] Apache. HBase, http://hbase.apache.org/.

[5] F. Chang et al. Bigtable: A distributed storage system
for structured data. ACM Transactions on Computer
Systems (TOCS), 26(2), 2008.

[6] E. F. Codd, S. B. Codd, and C. T. Salley. Providing
OLAP to user-analysts: An IT mandate. Technical
report, E. F. Codd & Associates, 1993.

[7] G. P. Copeland and S. Khoshafian. A decomposition
storage model. In SIGMOD Int. Conf. on Management
of Data, pages 268–279. ACM Press, 1985.

[8] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In 6th Symposium
on Operating Systems Design and Implementation
(OSDI), pages 137–150, 2004.

[9] J. Dittrich et al. Hadoop++: Making a yellow
elephant run like a cheetah (without it even noticing).
Proceedings of the VLDB Endowment (PVLDB),
3(1):518–529, 2010.

[10] M. Golfarelli and S. Rizzi. Data Warehouse Design.
Modern Principles and Methodologies. McGraw-Hill,
2009.

Figure 9: Performance by group by size

[11] J. Han and M. Kamber. Data Mining: Tools and
Techniques. Morgan Kaufmann, 2006.

[12] W. Inmon. Building the Data Warehouse. John Wiley
& Sons, Inc., 1992.

[13] W. Inmon. Data Mart Does Not Equal Data
Warehouse. DM Review magazine, May 1998.

[14] W. Inmon, C. Imhoff, and R. Sousa. Corporate
Information Factory. John Wiley & Sons, 1998.

[15] W. Inmon, D. Strauss, and G. Neushloss. DW2.0.
Morgan Kaufmann, 2008.

[16] D. Jiang et al. The performance of mapreduce: An
in-depth study. Proceedings of the VLDB Endowment
(PVLDB), 3(1):472–483, 2010.

[17] W. Lehner. Query Processing in Data Warehouses. In
L. Liu and M. T. Özsu, editors, Encyclopedia of
Database Systems, pages 2297–2301. Springer, 2009.

[18] S. Melnik et al. Dremel: Interactive analysis of
web-scale datasets. Proceedings of the VLDB
Endowment (PVLDB), 3(1):330–339, 2010.

[19] A. Pavlo et al. A comparison of approaches to
large-scale data analysis. In SIGMOD Int. Conf. on
Management of Data, pages 165–178. ACM, 2009.

[20] M. Stonebraker et al. C-Store: A Column-oriented
DBMS. In 31st Int. Conf. on Very Large Data Bases
(VLDB), pages 553–564. ACM, 2005.

[21] M. Stonebraker et al. The end of an architectural era
(it’s time for a complete rewrite). In 33st Int. Conf.
on Very Large Data Bases (VLDB), pages 1150–1160,
2007.

[22] M. Stonebraker et al. MapReduce and parallel
DBMSs: friends or foes? Communication of ACM,
53(1):64–71, 2010.

[23] A. Thusoo et al. Hive - a warehousing solution over a
map-reduce framework. Proceedings of the VLDB
Endowment (PVLDB), 2(2):1626–1629, 2009.

[24] Transaction Processing Performance Council. Decision
suport benchmark (TPC-H),
http://www.tpc.org/tpch.

[25] J. You, J. Xi, C. Zhang, and G. Guo. HDW: A High
Performance Large Scale Data Warehouse. In
International Multi-Symposium of Computer and
Computational Sciences (IMSCCS), pages 200–202.
IEEE, 2008.

24

