Using Ontologies to Discover Fact IDs

Alberto Abellé
Dept. Enginyeria de Serveis i Sistemes
d’Informacio
Univ. Politécnica de Catalunya
E-08034 Barcelona, Spain

aabello@essi.upc.edu

ABSTRACT

Object identification is a crucial step in most information
systems. Nowadays, we have many different ways to iden-
tify entities such as surrogates, keys and object identifiers.
However, not all of them guarantee the entity identity. Many
works have been introduced in the literature for discovering
meaningful IDs, but all of them work at the logical or data
level and they share some constraints inherent to the kind
of approach. Addressing it at the logical level, we may miss
some important data dependencies, while the cost to identify
data dependencies at the data level may not be affordable.
In this paper, we propose an approach for discovering fact
IDs from domain ontologies. In our approach, we guide the
process at the conceptual level and we introduce a set of
pruning rules for improving the performance by reducing
the number of ID hypotheses generated and to be verified
with data. Finally, we also introduce a simulation over a
case study to show the feasibility of our method.

Categories and Subject Descriptors

H.2.1 [Database Management|: Logical Design; H.2.7
[Database Management|: Database Administration—data
warehouse

General Terms
Algorithms

Keywords

Identifiers, Reengineering, Ontologies

1. INTRODUCTION

Object identification is a crucial step in most informa-
tion system engineering process. Identification mechanisms
guarantee that a real world entity will be uniquely identified
in the system and distinguished from the others. However,
not all mechanisms guarantee the object identity [28]. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specifc
permission and/or a fee.

DOLAP’10, October 30, 2010, Toronto, Ontario, Canada.

Copyright 2010 ACM 978-1-4503-0383-5/10/10 ...$10.00.

Oscar Romero
Dept. Llenguatges i Sistemes Informatics
Universitat Politecnica de Catalunya
E-08034 Barcelona, Spain
oromero@Isi.upc.edu

uniqueness of the surrogates (a common way to implement
IDs in relational databases) is useless for data quality, since
they are internal IDs. Meaningful IDs are crucial for as-
suring the quality of data in many reengineerning processes;
e.g., for ensuring the quality when migrating, converting and
merging systems, for data cleansing, data integration or for
building data warehouse (DW) systems.

Like in most information systems, the DW design has been
typically carried out manually, and the experts’ knowledge
and experience are crucial to identify relevant multidimen-
sional (MD) knowledge contained in the sources. However,
there is an important difference from other systems, since
creating a DW does not require the addition of new infor-
mation but rearrange that already existing (indeed, the DW
is nothing else than a strategic view over the organization
data). Consequently, some research efforts have proposed
the automation of the DW design in order to free this task
of being (completely) performed by an expert, and facilitate
the whole process. In this way, in those scenarios where
the analysis capabilities of the data sources are not (fully)
known, it is possible to help the DW designer to identify
and elicit unknown analysis capabilities. These unknown
capabilities may potentially provide strategic advantages.

In star-shape schemas design, where the central fact table
has not an atomic ID, but one composed by the foreign keys
(FK) pointing to the dimension tables, having such com-
plex IDs is a must. Specifically, DW systems design can
benefit from knowledge about IDs in the following ways: (i)
identifying facts (since good candidates are precisely those
with composed IDs), (ii) identifying analysis dimensions for
a given fact (since they are precisely the components of the
IDs), (iii) generate metadata to inform the user of the dif-
ferent spaces where data can be placed (in case of different
composed IDs for the same fact), (iv) avoid sparse cubes
(since, by definition, IDs are minimal sets), and (v) find
overlapping cubes (to improve the physical design by storing
together those data that can be easily analyzed together).

Currently, we may find several approaches to discover
functional dependencies (FDs or “—”) and /or candidate keys
(CKs), see Section 2. Note that the traditional ID concept
is just a specific case of FD (see, for example [2]). Never-
theless, these approaches work either at the logical or data
level, and they share some inherent constraints. Those work-
ing over the logical schema are tied to the design decisions
made when devising the system (for example, denormaliza-
tion of data) and these decisions have a big impact on the
data semantics captured in the schema. These approaches
make some unrealistic assumptions such as completeness

of the data structures (i.e., all the constraints of the do-
main of interest are captured at the logical level). For this
reason, most automated approaches for identifying IDs re-
quire to address this task at the instance level. However,
these methods have various drawbacks: they tend to over-
look composite IDs (essential when dealing with multidi-
mensional databases), propose solutions that are computa-
tionally expensive, and register drops in performance when
a large number of attributes or instances are processed.

In this paper we propose an approach to discover mean-
ingful IDs from domain ontologies. The software engineering
area has claimed to use conceptual representations of the do-
main on the top of systems to have an up-to-date and accu-
rate formalization of the system domain [16]. This approach
has given rise to concepts such as OBDA (Ontology-Based
Data Access) [18] and nowadays, ontologies are used in many
fields such as data integration, conceptual modeling as well
as the semantic web. In our approach, we guide the process
at the conceptual level and introduce a set of pruning rules
for improving the performance by reducing the number of
ID hypotheses generated and to be verified with data. Our
algorithm is relevant since, despite the importance of ob-
ject identification, most description logics (DL), the most
extended ontology languages and also the basis of the OWL
language (a W3C recommendation) do not provide identifi-
cation mechanisms, and only very expressive DL (that are
not suitable for real world applications due to their compu-
tational complexity) incorporate them [4]. For instance, the
only way to specify IDs in OWL DL is by means of one-
to-one binary relationships which are clearly not enough.
Furthermore, the fact that most DLs do not consider n-ary
relationships makes impossible to assert composite IDs in
ontologies. In short, there is no way to express that {A,B}
— C'holds (where A, Band C are concepts), because in most
ontology languages, roles are binary predicates relating one
class to another class.

All in all, an algorithm to discover meaningful IDs benefit-
ing from the semantics of an ontology is a relevant issue for
many real world systems. To our knowledge, this is the first
approach introduced in the literature proposing to lead this
task at the conceptual level. As result, it is able to generate
less hypotheses to be validated with data and therefore, it
performs better than current approaches.

Section 2 points out some related work, and Section 3
sketches the framework where we tested our work. Section
4 establishes the foundations, and Section 5 explains the de-
tails of the algorithm. Finally, Section 6 gives some statistics
of a simulation over a middle-sized ontology to show the fea-
sibility of our method. Section 7 concludes the paper.

2. RELATED WORK

There have been some works proposing to model the DW
from a conceptual formalization of the domain. However,
most of them must be carried out manually since they pre-
sent a step-by-step guide to be followed by an expert (see
[22] for further details). Only a few of them try to auto-
mate some part of this process, but the degree of automation
achieved is rather low. Specifically, these approaches consist
of a detailed requirement elicitation stage (to be performed
manually) and an automated analysis of the data sources.
Later, both stages are put in common, conciliating in this
way the data sources and requirements (for instance, see
[3, 11]). In these methods the requirement elicitation stage

leads the process and main design decisions are captured
in this step whereas the analysis of the data sources is a
posteriori. Indeed, the analysis of the data sources is just a
complementary task to the requirement elicitation processes,
instead of a guide for it.

On the other hand, the automation of the DW design
process from relational schemas has been thoroughly ad-
dressed in the literature (e.g., [13, 17, 23] among others).
All these methods rely on a thorough analysis of the rela-
tional sources. In these cases, dimensional data is discov-
ered by design patterns based on FK and CK constraints.
In MD design, it is well-known that facts and dimensions
must be related by many-to-one relationships, to give rise
to a meaningful MD space. In a relational schema, this kind
of relationships (i.e., mandatory FDs) are modeled by means
of CK and FK constraints. For this reason the accuracy of
results got by these methods depends on the existence of
CK and FK in the schema (maybe disabled by the DBA
to improve performance, maybe lost due to denormalization
below 3NF).

To our knowledge, this is the first work addressing this
issue at the conceptual level. We may find many works
for discovering FDs and CKs (e.g., [7, 8, 14, 15, 25, 30]
among others), but they work at the logical or data level
and they share some inherent constraints. To avoid missing
some important data dependencies, these approaches make
some unrealistic assumptions such as completeness of the
data structures (i.e., all the constraints of the domain of
interest are captured at the logical level).

Addressing this issue at the data level though, would im-
ply such an effort that may not be worth (as explained in
[13]). If the logical schema lacks semantics, we may need
to sample such amount of data that for a large number of
attributes (since we have to blindly test any possible com-
bination of attributes) it would rise an unaffordable compu-
tational complexity ([27] generates an exponential number
of queries). Moreover, these approaches exclusively work
over instances and they cannot easily tolerate erroneous data
(that may generate fake IDs that do not really hold or over-
look real ones).

Unlike these approaches, we use ontological knowledge to
guide the search and we do not exclusively rely on data. It
has two main benefits. On one hand, we rely on a clear pic-
ture of the domain of interest free of logical/physical design
decisions and we are able to considerably improve the per-
formance by reducing drastically the number of hypotheses
to be verified with data. On the other hand, this approach
may be used for assuring the quality of data, as the feasible
IDs found for each concept are extracted from knowledge in
the domain ontology. Thus, it opens new perspectives, since
we may also use this information to detect erroneous data
in the database (i.e., those feasible IDs refuted by data).

3. FRAMEWORK

Most methods that automate the design process focus on
identifying the MD knowledge contained in the sources re-
gardless of the requirements. These methods are known as
supply-driven approaches (see [29]). It is well known that
these approaches suffer from one drawback: they tend to
generate too many results. Consequently, they unnecessar-
ily overwhelm users with blindly generated combinations
whose meaning has not been analyzed in advance. Even-
tually, they put the burden of (manually) studying and se-

¥ Facts

Multidimensional

'){\Dimension Hierarchies

)+ Dimensions ‘ 7% Measures IDs
e
- Potential Dimensions and
Fm‘d out Facts Measures per Fact A~ — C
L i A, _ oo e— N .
B - Quality threshold S Newm L %) Point out Dimension PR
= function ~N T _]\]:l
/N Potential - Techniques: » ’
oS O rotential - Part-whole rels. hd [
< Dimensions, b
\ - Graph theory User Criteria M
o - ~ /
yatie) f > Find IDs pi
SN\ User Criteria T —
S Techniques:
Ontology i Measures - Exhaustive search Multidimensional
2> Discover - Prunning Schemas
Dimensions = (Constellation Schema)
Techniques: Y 3'““"“" 9
,| | - Matching O Measures 18 }f’ : Task
- Matching mer 2ata ser Citeria) : Tasks output / input
) |- = = (5, : Automated Task
— >

Figure 1: Method Overview

lecting results provided onto the designer’s shoulder, but the
time-consuming nature of this task can render it unfeasible
when large data sources are considered. Filtering the results
provided by these approaches is a must.

In this paper, we take a wuser-centered approach to sup-
port the end-user requirements elicitation and the DW de-
sign tasks. First, we start by fully analyzing the data sources
to identify, also without considering requirements as other
approaches do, the MD knowledge they capture (i.e., data
likely to play a dimensional role). However, we drive this
search and are able to filter the results so that we only pro-
pose promising analysis dimensions to the user. After this
feedback, the user elicits the MD requirements. Finally, once
requirements have been stated, we can automatically gener-
ate the DW conceptual schema (by shaping the MD knowl-
edge extracted from the sources according to the require-
ments). Thus, we say it is user-centered since the automatic
process produces a manageable amount of information, and
the feedback of the user is still needed to select results among
those obtained from analyzing the sources.

Even though this work could be integrated in other supply-
driven approaches like [17], we demonstrate its feasibility by
including it as a new feature in the framework (i.e. AMDO)
presented in [21]. This is a supply-driven method, since it
carries out an exhaustive search of potential facts among all
the concepts in the domain, which may generate many re-
sults. In this sense, our approach overcomes the problem by
filtering and priorizing the amount of information shown to
the user at the end of every step. We claim to derive all
the MD knowledge contained in the ontology, prune it ac-
cording to statistical evidences, and eventually let the user
select from results obtained according to his/her require-
ments. On the one hand, we are conciliating requirements
with data available. On the other hand, we believe that it is
easier to carry out the requirements elicitation from knowl-
edge proposed by AMDO than carrying it out from scratch.

Figure 1 depicts a schematic overview of this framework.
It has three well-differentiated tasks, which identify concepts
likely to play MD roles and therefore, eventually produce
MD schemas:

1. The first task looks for potential subjects of analy-
sis (i.e., facts). In the literature we can find differ-
ent approaches to discover facts but most of them are
hardly automatable (automatically identifying facts is
a hard task [17]). Thus, potential facts are ranked (and
maybe filtered) according to some user-defined heuris-
tic (independently of its position in the ranking, a fact

may be of interest or not for the user and he/she has
to decide it). Most methods rely on heuristics such
as table cardinalities or having numerical attributes.
We enrich those heuristics by adding two new vari-
ables, i.e., number of potential measures and dimen-
sions. This task, therefore, is divided in two subtasks:
(a) Discover measures and (b) Discover dimensions.

2. The second task discovers sets of concepts likely to be
used as an ID for each fact choosen by the user. They
are compound of those elements identified as dimen-
sions in the previous task. In short, we look for con-
cepts being able to univocally identify objects of anal-
ysis (i.e., factual data) and produce interesting data
cubes. Similar to the previous task, IDs identified are
ranked according to the sparsity of the multidimen-
sional cube (see [11] for a precise definition and for-
mula to calculate it) they generate for the correspond-
ing fact. Too sparse data cubes can be filtered and not
presented to the user. Eventually, the user will choose,
among the IDs proposed, those of his/her interest.

3. The last task gives rise to dimension hierarchies. We
aim to identify relevant aggregation paths looking for
part-whole relationships among the dimensions.

Thus, in the first term, for each concept we would esti-
mate its likeliness of being a fact (different functions can
be used, for example those in [21] or [26]). Afterwards, the
user should choose some of the concepts from the list. The
novelty of our approach is that, similar to the quality rule
for ranking facts, all the dimensional concepts related to a
given fact will be analyzed to check whether they form an
ID or not, and how sparse is the space these IDs induce over
that fact. If the space induced by an ID is not too sparse (a
sparsity threshold can be introduced here), it is proposed to
the user for the corresponding fact (together with the anal-
ysis dimensions composing it). All previous works propose
all dimensions to the user without filtering them in any way,
generating most of the times too many results with a high
computational cost.

4. FOUNDATIONS

Importantly, our approach discovers IDs guided by the do-
main knowledge captured in the ontology. First, we formally
discuss the implications of the ID concept at the conceptual
level. We make use of a generic conceptual notation: by con-
cepts we refer to an ontology concept (classes in OWL no-
tation) or a datatype, and by relationships to ontology roles

EndDurationPrice

CarGroup BeginningDate

EndingDate Rentall‘.)uratjon Money
A . 1 RN
MinDuration TimeUnit)
CarGroupName MaxDu’ralion RentalDuréﬁonName

Figure 2: FD-tree for EndDurationPrice

(or properties in OWL notation). We denote concepts by
uppercase letters from the beginning of the alphabet (such
as A and B) and sets of concepts by uppercase letters from
the end of the alphabet (such as Y and 7).

DEFINITION 4.1. We say that a set of concepts Z is a
Super-1D (SID) of a concept A, if there is an injective func-
tion from A to Z (i.e., a mandatory one-to-one relationship).

Note that we do not ask for a mandatory participation of Z
in A (i.e., a bijective function), since some values of the SID
could not have a correspondence into the identified concept.
This is sound with relational model literature, where a su-
perkey is defined as a specific kind of FD. Moreover, accord-
ing to the relational model assumptions, each relation row
is supposed to represent a different instance [6], giving rise
as a whole to a one-to-one relationship (furthermore, since
a CK does not allow NULL values, it is also mandatory).
This definition would be equivalent or give rise to others
previously introduced in the literature, like the generic one-
to-one relationships introduced in [5] or the reference mode
(mandatory one-to-one relationships) in ORM [12], as well
as the base concept in [1] and group by set in [11], specifics
for MD modeling.

Def. 4.1 entails that both, the concept identified function-
ally depends on the SID, and the SID functionally depends
on the concept:

PROPOSITION 4.2. A set of concepts Z is a SID of a given
concept A if and only if Z uniquely or functionally deter-
mines the values of A (i.e., Z — A) and A functionally
determines the values of 7 (i.e., A — 7).

Note the benefits of this proposition: we will search the
SID of A only among the attributes determined by A. When
looking for IDs, the searching space is formed by all the at-
tribute combinations up to size N, where N is the number
of attributes in the database (i.e., 2 combinations), but by
using ontological knowledge we reduce the searching space
to 2, where P is the number of concepts functionally de-
pendent on A.

To do this, we require the asserted FDs in the domain
ontology. We got them from the first task in AMDO method,
but we could use any other generic algorithm. Anyway, for
each domain concept we need a tree of F'Ds (FD-tree). Once
we have the FD-tree of A, we aim to find the set of concepts
Z such that Z is a SID of A. According to Prop. 4.2, we
only need to generate combinations of concepts among those
functionally determined by A.

Figure 2, shows an example of FD-tree for the EndDura-
tionPrice concept of the EU-Car Rental ontology (see [10]),
that we will use throughout this paper. It represents the fi-
nal price charged to the customer’s account for the car rent-
ing. As shown in the figure, it has 10 FD’s: the car group

Concept #Dimensions #Measures
DamageCost 81 3
Prepared 81 3
AssignedCar 80 3
LateReturn 78 5
PaidWithPointsRental 74 4
ClosedRental 74 4
EarlyReturn 74 4

Table 1: Some results of the first task of AMDO

(i.e., kind of car rented) and the car group name, the be-
ginning and ending date of the rental agreement, the final
price (i.e., money) and the rental agreement duration (which
consists of the rental duration name and a time unit used
to express the minimum and maximum duration allowed for
that rental). All SIDs of EndDurationPrice are combina-
tions of these concepts represented in the figure. Note that
it is truly a tree, because despite EndDurationPrice has two
associations to Date concept (i.e. BeginningDate and End-
ingDate), this generates two nodes in the FD-tree. We will
use the term Fact-children to denote those concepts in the
first level of the FD-tree (in our example: CarGroup, Begin-
ningDate, EndingDate, Duration and Money).

4.1 Necessary Conditions

A naive approach for discovering IDs would entail gen-
erating all the combinations of potential dimensions in our
searching space (i.e., oF combinations) and sample data to
verify them. However, despite we have considerably reduced
the searching space, we may still have computational prob-
lems for concepts having many FDs, since the searching
space is still exponential. For example, in a middle-sized on-
tology like the EU-Car Rental, after the first task of AMDO
(Section 3), we obtained concepts with more than 80 FDs
(see the second column of Table 1). Furthermore, querying
the data may be expensive for large tables. For this rea-
son, we further exploit the conceptual knowledge we have
before verifying ID hypotheses with data. Specifically, we
take advantage of the well-known FD theory.

Given a set of FDs F, a minimal cover [2] of F'is a set F’
of FDs such that (being C a single concept):

) Each dependency in F’has the form Z — C,

i) F’ = F,

) no proper subset of F’implies F and

) for each dependency Z — C'in F’ there is no W C Z
such that FF = W — C.

In our approach, for every ontology concept A, we define
F as the set of FDs of the kind Z — A, (where Zis compound
of concepts in the FD-tree of A). Essentially, we look for a
minimal cover of F, because we aim to minimize the number
of queries posed to the database (i.e., it is the minimum
set of FDs to be verified as SIDs with data). The rest of
FDs in F could, if necessary, be generated and verified from
F’ in polynomial time by the Armstrong azioms [19] (i.e.,
an FD of the kind Z — A holds if and only if FD € F'").
Nevertheless, as discussed later, we will not be interested in
this kind of FDs either, since they are not minimal and thus,
they are not IDs (in the relational model, only minimal sets
of attributes that uniquely identify the whole tuple use to
be of interest).

Prop. 4.2 guarantees (i). As discussed in previous sec-
tion, the FDs we may find in an ontology are of the kind A
— B, (where A and B are concepts), and in our algorithm

we only generate combinations of concepts in the left-hand-
side of the FD (i.e., LHS multi-attribute FDs). Regarding
(ii), F will be equivalent to the set of FDs determining A
that we can infer from knowledge contained in the ontology
(from where we compute the initial knowledge that guides
the search) and data (from where verify combinations pro-
posed). Thus, if an ID cannot be inferred from the ontology
and verified with data, we will not be able to identify it ([20]
contains the proofs that our algorithm is complete with re-
gard to knowledge captured in the ontology and data). Fi-
nally, (iii) and (iv) guarantee that the set of FDs in F'’is min-
imal. Note that these two conditions are desirable for our
purpose, as they avoid redundancy of IDs. Consequently,
those FDs in the minimal cover are the only ID candidates
to be considered, among all possible SIDs.

Since testing over data is really expensive, we introduce
the novelty of using the ontological knowledge to only gener-
ate and test those concepts and combinations that fulfill the
three necessary conditions introduced below (derived from
(iii) and (iv) and Armstrong azioms, see [2]). These prop-
erties apply to IDs and FDs (note that FDs come from the
ontological knowledge, not needing to access instances).

PROPOSITION 4.3. Let Z and W be sets of concepts func-
tionally dependent on a given concept A (i.e. A—Z and
A—W). If Z C W and Z is an ID of A then, W, despite
functionally determining A, is not considered an ID, since
it 1s not minimal; there exists a subset of W (i.e., Z) that is
already an ID of A.

This proposition is directly formulated from (iv). Intu-
itively, this enforces the minimality property of IDs. If one
concept (or combination) is found to be an ID, we do not
need to check all other combinations containing it. For ex-
ample, it is useless to check whether {RentalDuration, Be-
ginningDate, Money} is an ID of EndDurationPrice or not,
if {RentalDuration, BeginningDate} is known to be an ID.

PROPOSITION 4.4. Let Z and W be two sets of concepts
functionally dependent on a given concept A (i.e. A—Z and
A—W). If two concepts B € Z and C € W ezist such that
B — C or C — B, then ZW 1is not an ID of A.

Intuitively, this property says that the combination ZW
must not be checked if those concepts in Z and W are not
pairwise independent. For example, pair {RentalDuration,
MinDuration} must not be considered as a potential ID,
since RentalDuration — MinDuration. Checking {Rental-
Duration} and {MinDuration} separately would be enough.

PROPOSITION 4.5. Let W be a set of concepts functionally
dependent on a concept A (i.e. A—W), and C a concept
such that C € W. Let T be the set of intermediate concepts
giving rise to the to-one path from A to C (VC; € T: A —
CiNC; — C). If W is an ID of A, then for each C; € T,
(W —{C}HU{Cs} is an SID of A. We call (W —{C})U{C;}

an intermediate set of W.

Intuitively, if one concept (or combination) is not an ID,
those functionally dependent on it will not be an ID, ei-
ther. Since RentalDuration — MinDuration, if {Ending-
Date, RentalDuration} is known not to be an ID then, it
is not possible for {EndingDate, MinDuration} to be an ID.

Only those combinations satisfying all the conditions are
feasible IDs and have to be verified with data (proofs in [20]).

88 and FD edges (searching space)

Partial FD-tree of EDP (input

--= {minDur}

EDP
Level 1
RD CG} — {CGn} — 1-sized T
,,,,, CW?XDW}‘>(;)_ « \) (,f P]cilﬁis. RD cG
Vol J VA ’ | T \
{minDur, maxDur} " {RD,C; minDur maxDur CGn
| . - ‘\ p . SS-edge -
; & Wy : Level2: | Fd-edge —
————— > {minDur,CG} {RD,CCGn} {maxDur,CC} ; 2sized | End-duration price EDP
: i 1 Combs. | Rental duration RD
/ ! Car-group CcG
y Car-group name CGn
rrrrrrrrrrrr > {minDur,CGn} {maxDur, CGn} <-- minDuration minDur
| A maxDuration maxDur

Figure 3: Searching space for EndDurationPrice given
a partial FD-tree

Thus, we only generate and verify with data those combi-
nations that fulfill them. In this way, we reduce drastically
the searching space and the number of combinations to be
checked against the database (i.e., minimizing the number
of queries posed to the DBMS).

4.2 Searching Space

As discussed, a naive approach for discovering IDs would
be to generate all the combinations of concepts and for each
one of them query the data to test whether they have rep-
etitions or not. Clearly, this is unfeasible due to the expo-
nential number of potential IDs each fact may have (second
column in Figure 1 shows the exponents in our case study).
For this reason, we further exploit the properties we have at
the conceptual level before verifying hypothesis with data.

Our searching space can be characterized as a directed
graph like the one shown in the left side of Figure 3. Two
combinations of dimensions in this graph can be related by
two different kinds of edges:

SS-edges (Subset) link two nodes of size ¢ and i+ such
that the first is a subset of the second one. For in-
stance, the edge between {RD} and {RD, CG} (we say
that {RD, CG} is an SS-descendant of {RD}). Note that
these edges link combinations in consecutive depth lev-
els. Therefore, a 3-sized combination such as {minDur,
RD,CG} would be directly related to {minDur,maxDur},
{minDur, CG}, and {maxDur, CG} and only transitively
to {minDur}, {maxDur}, or {CG}, since they are not
placed in consecutive depth levels.

FD-edges (Functional Dependency) link two nodes of
the same size such that there is ezactly one concept in
the first one functionally determining one concept in
the second one (they are derived from the ontology as
explained in [24]). For instance, {RD,CG} is related to
{RD,CGn}, since CG — CGn (we say that {RD, CGn} is an
FD-descendant of {RD,CG}). Note that these edges di-
rectly relate combinations of the same size where only
one concept changes. For instance, {RD, CG} is not di-
rectly related to {maxDur, CGn} despite CG — CGn and
RD — maxDur, since we must substitute two concepts
of {RD,CG} to obtain {maxDur,CGn}. Indeed, they are
related by transitivity.

In our example, we show a piece of the searching space
for EndDurationPrice (EDP). It is based on the FD-tree of
its dimensions. Note that for the sake of simplicity, we use
a partial FD-tree of only five concepts (right side of Figure
3). Moreover, we only draw the first two depth levels of the

function seek_IDs (Concept A, FdTree M) returns Set<Set<Concept>>

Set<Concept> Comb;

Ordered Set<Set<Concept>> Candidates Sets, Feasible IDs;
Set<Set<Concept>> IDs := {};

int i:=1; Feasible_IDs := Get_Children(A,M);
while(Feasible_IDs = @)

(a) Candidates_Sets := {};
(b) Comb := Get_First_Combination(Feasible_IDs);
(c) while(Comb != null)
i. if(determines(Comb,A)) then
A. IDs U= Comb;
B. if (Has_.FD-Descendants(Comb,M)) then
Feasible_IDs U= Gen_Comb_by_FD(Comb, IDs, M);
ii. else Candidates Sets U= Comb;
iii. Feasible_IDs -= Comb;
iv. Comb := Get Next Combination(Feasible IDs);
(d) it+;
(e) Feasible.IDs := Gen_Comb_by_SS(i, IDs, Candidates_Sets, M);

qpwbR

6. return IDs;

Figure 4: Algorithm finding Interesting Dimensions

searching space (left side of Figure 3). Talking about depth
levels is meaningless in most graphs, but in this case we can
still talk about graph depth levels according to SS-edges. On
level i we depict those combinations of size i, and SS-edges
link combination in two different levels. Inside a depth level
we only find FD-edges, and vice-versa.

S. AN ALGORITHM TO DISCOVER IDS

SS and FD-edges introduce a partial order in the searching
space that our algorithm will follow when generating combi-
nations. It takes advantage of previous generated and tested
combinations to decide if we have to explore further alter-
natives according to the necessary conditions introduced in
Section 4.1 (notice that SS-edges will be either explored or
pruned based on Props. 4.3 and 4.4 whereas FD-edges will
be either explored or pruned based on Prop. 4.5). Three
sets are used in the iterations:

Feasible_IDs: In the i*" iteration, this set represents those
combinations of size i, satisfying the three properties
introduced in Section 4.1.

Candidate_sets: In the i*" iteration, this set contains those
feasible IDs of size i refuted as IDs by querying data.

IDs: In the i*" iteration, this set contains those feasible IDs
of size up to i verified as IDs by querying data.

The algorithm (sketched in Figure 4) has two inputs: a
fact A we are looking IDs for, and its FD-tree. Given them,
it starts considering each Fact-child of A as a Feasible ID
(Step 4). Thus, these are verified (see Step 5(c)i and Sec-
tion 5.1) to see if, according to data they identify A. This is
sound, since Fact-children generate unary sets trivially ful-
filling the necessary conditions, because they do not have
proper subsets different form the empty set (and thus, we
can directly consider them feasible IDs). If any of them is
an ID, it is added to the IDs set (Step 5(c)iA). Otherwise,
if it is not, it is added to the Candidates_sets (Step 5(c)ii).

Note that we only explore the FD-descendants of a com-
bination Z if this is an ID for A (see Step 5(c)i and Section
5.1). This is a direct application of Prop. 4.5: the FD-
descendants of a given combination Z are not an ID for A
if Zis not and ID for A. A combination will be generated
by gen_comb_by_FD function iff all its direct FD-ancestors
are IDs for A (i.e., {minDur,CGn} will only be generated if
{minDur,CG} and {RD,CG} are in IDs set). Note that we only
need to explicitly check the FD-parents, as other ancestors
already fulfill Prop. 4.5 transitively (all were generated ei-
ther in the gen_comb_by_FD function or in gen_comb_by_SS,

and both functions guarantee that new combinations gener-
ated do fulfill the three necessary conditions).

The number of new combinations added to the feasible_IDs
by applying gen_comb_by_F'D for each ID found, is, at most,
the number of direct FD-descendants the ID has. For in-
stance, if {RD,CG} is an ID, and restricted to the partial FD-
tree in Figure 3, then we would add to the feasible_IDs:
{minDur,CG}, {RD,CGn}, and {maxDur,CG}. Each one of the
new combinations generated satisfy Props. 4.3, 4.4, and
4.5 and for this reason we directly add them to the feasi-
ble_IDs (thus, each new combination is eventually verified
as an ID). If any of them results to be an ID then, we apply
again gen_comb_by_FD and explore its FD-descendants.

Note that a combination generated by gen_comb_by_FD
that is refuted as an ID (i.e., determines function returns
false and therefore, it is queued in the Candidate_sets) may
give rise to IDs of size bigger than ¢ that involve other
orthogonal concepts (follwing SS-descendants in Step 5e).
For example, if {minDur,CGn}, and {maxDur,CGn} are in the
candidate sets, they will produce {minDurmaxDur,CGn}. In
general, function gen_comb_by_SS (see Figure 5) generates
(i+1)-sized combinations chosen among the SS-descendants
of the i-sized candidate sets obtained in the previous itera-
tion. A feasible ID of size i+1 is only generated if it fulfills
those properties in Section 4.1 (as explained in Section 5.2).
The algorithm iterates until we are not able to generate fea-
sible IDs of size i+1.

5.1 The determines Function

This function is called when the three necessary condi-
tions are guaranteed (i.e., we have identified a feasible ID).
Then, we verify if this combination determines fact A by
querying data, which is exemplified with relational queries,
but may use any other kind of repository. Prior to query
the instances, we first introduce a final pruning rule:

PROPOSITION 5.1. Let Z be a feasible ID, it is able to
identify all instances of A if the cardinality of A is less than
(or equal to) the product of the cardinalities of the concepts
in7 (i.e., [[12:] =14])

zZ,eZ

Note that this pruning rule discards combinations by just
querying the RDBMS catalog, as follows (Oracle syntax):
SELECT NUM_ROWS FROM USER_TABLES WHERE TABLE_NAME = t;

SELECT NUM_DISTINCT FROM USER_TABS_COLS WHERE TABLE_NAME = t AND
COLUMN_NAME = c;

Being t the name of a table and ¢ that of a column, if the
ontology concept maps to a relational table then by means
of the first query we get the cardinality of ¢, and if the ontol-
ogy concept maps to a relational attribute by means of the
second query we get the number of different values it has.
Those combinations satisfying this rule are still candidates
to be an ID, and we verify it by the following query (Oracle
syntax):

SELECT "ID" FROM DUAL WHERE NOT EXISTS(

SELECT attrSet FROM tables WHERE joinConds
GROUP BY attrSet HAVING COUNT(*) > 1)

Where DUAL is the dummy table in Oracle, attrSet are the
attributes forming the feasible ID to be verified, tables the
list of tables containing those attributes and joinConds the
join clauses needed to join tables involved in the query. If
we are able to find two rows with the same values for the ID
hypothesis then, according to data, it is not an ID.

function Gen_Comb_by_SS (int i, Set<Set<Concept>> IDs, Ordered
Set<Set<Concept>> Candidates_Sets, FdTree M) returns
Set<Set<Concept>>

1. Set<Set<Concept>> Combs := {};
2. For(int j = 0; j < sizeof(Candidates Sets); j++)

(a) CS1 := get_element(Candidates_Sets, j);
(b) For(int z = j+1; z < sizeof(Candidates_Sets); z++)
i. CS2 := get_element(Candidates_Sets, z);
ii. if (|CS1NCS2|=(i-1) and (i != 2 or independent(CS1,CS2))
and (check Subsets(CS1,CS2, IDs, Candidates Sets))) then
A. Combs U= {CS1UCS2};

3. return Combs;

function check Subsets (Set<Concept> CS1, Set<Concept> CS2,
Set <Set<Concept>> IDs, Set<Set<Concept>> Candidates_Sets) returns
Boolean

4. For each(subSet in Generate_Alli_Subsets(CS1, CS2)) do

(a) if(subSet in IDs) then return false;
(b) else if(subSet not in Candidates Sets) then

i. if(all_Fact-children(subSet)) then return false;

5. return true;

Figure 5: Generating (i+1)-sized combinations

5.2 The gen_comb_by 5SS Function

Once the i-sized combinations have been verified (i.e., ei-
ther proved to be IDs, and thus added to the IDs set, or
refuted, and thus, added to the candidate sets), the func-
tion gen_comb_by_SS (see Figure 5) generates (i+1)-sized
combinations from the i-sized candidate sets obtained in the
previous iteration. It looks for pairs of candidate sets hav-
ing i-1 concepts in common (Step 2(b)ii). From every pair
identified sharing i-1 concepts, a (i+1)-sized combination is
generated (Step 2(b)iiA) fulfilling the following properties:

Prop. 4.3: guaranteed in Step 2(b)ii by the check_Subsets
function. This function generates all the i-sized sub-
sets of the current (i+1)-sized combination treated,
and verify them as follows:

(a) If an i-sized subset of the (i+1)-sized set is in the
IDs set (Step 4a) then, it must not be considered
a (i+1)-sized feasible ID, since it is not minimal.

(b) If an i-sized subset is in the Candidate_sets (Step
4b), the (i+1)-sized combination can still be min-
imal and some of it concepts have been checked
to be pairwise orthogonal (eventually, all will be
checked in the loop).

(c) Alternatively, due to our pruning rules, it may
happen that a subset is neither in the Candi-
date_sets nor in the IDs set. If the subset is
only compound of Fact-children (Step 4(b)i), the
(i+1)-sized combination must be refuted, since
our algorithm checks all Fact-children combina-
tions fulfilling Props. 4.3 and 4.4.

(d) Otherwise, the i-sized subset is a transitive FD-

descendant (remember that gen_comb_by_FD func-

tion only generated direct FD-descendants) of an
i-sized feasible ID refuted with data and there-
fore, fulfilling Props. 4.3 and 4.4.

Prop. 4.4: guaranteed, for 2-sized combinations, in Step
2(b)ii (i.e., checking that they are not present in the
FD-tree of one another) and, for bigger combinations,
similarly to 4.3 in check_Subsets function.

Prop. 4.5: actually guaranteed by gen_comb_by_FD func-
tion and (i+1)-sized combinations coming from the
union of two i-sized feasible IDs.

For example, suppose that we try to combine {Beginning-
Date, MinDuration} and {BeginningDate, Money} to pro-

duce {BeginningDate, MinDuration, Money}. Then, func-
tion check_Subsets will generate its three 2-sized subsets:
{BeginningDate, MinDuration}, {BeginningDate, Money}
and {MinDuration, Momey}. According to (a), if any of
them is an ID then, the 3-sized combination is not gener-
ated (since it is not minimal). Oppositely, according to (b),
if all of them are in the candidate sets, we can guarantee
that the 3-sized combination is minimal and it is generated.
Consider now that {BeginningDate, Money} and {Begin-
ningDate, MinDuration} are neither in the candidate sets
nor in the IDs set. According to (c), since the first one is
compound of Fact-children, if fulfilling Props. 4.3 and 4.4,
it should have been in either IDs or candidate sets (since
our algorithm is exhaustive for Fact-children) and thus, it
means that either {BeginningDate} or {Money} is an ID.
In the second case, since {BeginningDate, MinDuration} is
an FD-descendant of {BeginningDate, RentalDuration} it
does not invalidate the 3-sized combination. The reason is
that {BeginningDate, RentalDuration} is a feasible ID re-
futed with data. Consequently, since it was refuted as an 1D,
according to Prop. 4.5, we could foresee that {Beginning-
Date, MinDuration} would not be an ID and then, it was
not even generated by the gen_comb_by_FD function (had it
been generated by the gen_comb_by_SS function, this sub-
set would have been included in the IDs set or candidate
sets and thus, considered by either (a) or (b)). However,
this set fulfills Props. 4.3 and 4.4 and therefore, it does not
invalidate the 3-sized combination.

6. CASE STUDY

In this section, we introduce results got after carrying out
our algorithm over the EU-Car Rental case study [10]. This
ontology refers to a car renting domain ' and it has 65 con-
cepts and 170 relationships. For each concept, we computed
its asserted FDs (from knowledge asserted in the ontology)
and later, by means of the algorithm introduced in Section 5,
its feasible IDs. As a result, each concept has an average of
31.83 concepts in the FD-tree (i.e., in our algorithm we have
an average searching space of 2°!'33 combinations). Among
concepts in the FD-tree, an average of 6.67 are Fact-children
(i.e., the average value of combinations we start with in the
first iteration of our algorithm). When computing IDs we
get an average of 156.53 feasible IDs per concept (i.e., we
will query the database 156.53 times in average; in front of
the 3,817,550,246 times if we would have generated all the
combinations in the searching space, i.e., 231%). In general,
considering all the queries posed to the database for all the
concepts we have a total of 10,018 queries, of which 15%
are answered by just querying the catalog (see Section 5.1)
and the rest, by queries over data. This is the minimum
number of queries we must pose to find all the IDs of the
domain (exactly the combinations fulfilling the conditions
stated in Section 4). Furthermore, it is interesting to real-
ize that about 30% of n-sized feasible IDs are generated by
combining (n-1)-sized candidate sets whereas the rest are
generated by following FD-edges. The execution time of
our algorithm is insignificant in front of the cost of querying
data. Indeed, all the feasible IDs for all the concepts were
generated in less than 10 seconds (Intel Core2Duo 1.33 GHz
processor, 1.99 GB of RAM running a JVM 1.4.2 accessing
the ontology through Protégé-OWL API [9]).

The whole ontology is available in OWL DL notation at www.lsi.upc.edu/~
oromero/EUCarRental.owl

7. CONCLUSIONS

We have proposed an algorithm for finding fact IDs (i.e.,
composite keys) using domain ontologies. We take advan-
tage of knowledge captured in the ontology to generate IDs
hypotheses that are later verified with data. Unlike previ-
ous approaches that addressed this task at the data level,
we benefit from ontological knowledge that allows to better
depict and prune the searching space. As consequence, our
approach does not completely rely on data and it opens new
perspectives for data quality processes. We have presented
the feasibility of our method by means of the statistics raised
by the implementation of our algorithm over a case study
(soundness and completeness proofs with regard to knowl-
edge captured in the domain ontology and the data are found
in [20]).

8. REFERENCES
[1] A. Abells, J. Samos, and F. Saltor. YAM? (Yet

Another Multidimensional Model): An Extension of
UML. Information Systems, 31(6):541-567, 2006.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[3] A. Bonifati, F. Cattaneo, S. Ceri, A. Fuggetta, and
S. Paraboschi. Designing Data Marts for Data
Warehouses. ACM Trans. Softw. Eng. Methodol.,
10(4):452-483, 2001.

[4] D. Calvanese, G. De Giacomo, D. Lembo,

M. Lenzerini, and R. Rosati. Path-Based Identification
Constraints in Description Logics. In 11th Int. Conf.
on Principles of Knowledge Representation and
Reasoning, pages 231-241. AAAT Press, 2008.

[5] P. P. S. Chen. The Entity-Relationship Model:
Toward a Unified View of Data. ACM Transactions on
Database Systems, 1(1):9-36, 1976.

[6] E. F. Codd. The Relational Model for Database
Management, Version 2. Addison-Wesley, 1990.

[7] J. Demetrovics and V. D. Thi. Some Remarks On
Generating Armstrong & Inferring Functional
Dependencies Relation. Acta Cybernetica,
12(2):167-180, 1995.

[8] P. A. Flach and I. Savnik. Database Dependency
Discovery: A Machine Learning Approach. AT
Commaun., 12(3):139-160, 1999.

[9] S. C. for Biomedical Informatics Research.

Protégé-OWL APT (last access 17/12/2009).

protege.stanford.edu/plugins/owl/api.

L. Frias, A. Queralt, and A. Olivé. EU-Rent Car

Rentals Specification. Technical report, "Dept. de

Llenguatges i Sistemes Informatics”, 2003. www.1si.

upc.edu/dept/techreps/llistat_detallat.php?id=690.

M. Golfarelli and S. Rizzi. Data Warehouse Design.

McGraw-Hill, 2009.

T. Halpin and T. Morgan. Information Modeling and

Relational Databases. Morgan Kauffman, 2008.

M. R. Jensen, T. Holmgren, and T. B. Pedersen.

Discovering Multidimensional Structure in Relational

Data. In 6th Int. Conf. on Data Warehousing and

Knowledge Discovery, pages 138-148. Springer, 2004.

W. M. Lim. Discovery of Constraints from Data for

Information System Reverse Engineering. In 2nd

Australian Software Engineering Conf., pages 39-48.

IEEE, 1997.

[11]
[12]

[13]

[14]

10

[15] M. Kantola, H. Mannila, K.-J. R&iha, and H. Siirtola.
Discovering Functional and Inclusion Dependencies in
Relational Databases. Int. J. of Intelligent Systems,
7(7):591-607, 1992.

A. Olivé. On the Role of Conceptual Schemas in
Information Systems Development. In 9th Int. Conf.
on Reliable Software Technologies. Springer, 2004.

C. Phipps and K. C. Davis. Automating Data
Warehouse Conceptual Schema Design and
Evaluation. In 4th Int. Workshop on Design and
Management of Data Warehouses, volume 58, pages
23-32. CEUR-WS.org, 2002.

A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo,
M. Lenzerini, and R. Rosati. Linking Data to
Ontologies. J. on Data Semantics, 10:133-173, 2008.
R. Ramakrishnan and J. Gehrke. Database
Management Systems. McGraw Hill, 2003.

O. Romero. Automating the Multidimensional Design
of Data Warehouses. PhD thesis, Universitat
Politecnica de Catalunya, Barcelona, Spain, 2010.
www.tesisenxarxa.net/TESIS_UPC/AVAILABLE/
TDX-0528110-134628//TOR/,M1del.pdf.

O. Romero and A. Abell6. Automating
Multidimensional Design from Ontologies. In Proc. of
ACM 10th Int. Workshop on Data Warehousing and
OLAP, pages 1-8. ACM, 2007.

O. Romero and A. Abellé. A Survey of
Multidimensional Modeling Methodologies. Int. J. of
Data Warehousing and Mining, 5(2):1-23, 20009.

O. Romero and A. Abell6. Automatic Validation of
Requirements to Support Multidimensional Design.
Data € Knowledge Engineering, 69(9):917-942, 2010.
O. Romero, D. Calvanese, A. Abell6, and

M. Rodriguez-Muro. Discovering Functional
Dependencies for Multidimensional Design. In ACM
12th Int. Conf. on Data Warehousing and OLAP,
pages 1-8. ACM, 2009.

Y. Sismanis, P. Brown, P. J. Haas, and B. Reinwald.
GORDIAN: Efficient and Scalable Discovery of
Composite Keys. In 32nd Int. Conf. on Very Large
Data Bases, pages 691-702. ACM, 2006.

I. Song, R. Khare, and B. Dai. SAMSTAR: A
Semi-Automated Lexical Method for Generating
STAR Schemas from an ER Diagram. In 10th Int.
Workshop on Data Warehousing and OLAP, pages
9-16. ACM, 2007.

C. Soutou. Relational Database Reverse Engineering:
Algorithms to Extract Cardinality Constraints. Data
& Knowledge Engineering, 28(2):161-207, 1998.

R. Wieringa and W. de Jonge. Object Identifiers,
Keys, and Surrogates: Object Identifiers Revisited.
Theory & Practice of Object Systems, 1(2):101-114,
1995.

R. Winter and B. Strauch. A Method for
Demand-Driven Information Requirements Analysis in
DW Projects. In 36th Annual Hawaii Int. Conf. on
System Sciences, pages 231-239. IEEE, 2003.

D. Yeh, Y. Li, and W. C. Chu. Extracting E-R
diagram from a table-based legacy database. J. of
Systems and Software, 81(5):764-771, 2008.

23]

[24]

[25]

[26]

[27]

[28]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

