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It iswidely accepted that the conceptual schemaof a datawarehousemust be structuredaccording to
themultidimensionalmodel. Moreover, it has been suggested that the ideal scenario for deriving the
multidimensional conceptual schema of the datawarehousewould consist of a hybrid approach (i.e.,
a combination of data-driven and requirement-driven paradigms). Thus, the resulting
multidimensional schema would satisfy the end-user requirements and would be conciliated with
the data sources.Most currentmethods follow either a data-driven or requirement-driven paradigm
and only a few use a hybrid approach. Furthermore, hybrid methods are unbalanced and do not
benefit from all of the advantages brought by each paradigm.
In this paperwe present our approach for multidimensional design. Themost relevant step in our
framework isMultidimensional Design by Examples (MDBE), which is a novel method for deriving
multidimensional conceptual schemas from relational sources according to end-user
requirements. MDBE introduces several advantages over previous approaches, which can be
summarized as threemain contributions. (i) TheMDBEmethod is a fully automatic approach that
handles and analyzes the end-user requirements automatically. (ii) Unlike data-driven methods,
we focus on data of interest to the end-user. However, the user may not be aware of all the
potential analyses of the data sources and, in contrast to requirement-driven approaches, MDBE
can propose new multidimensional knowledge related to concepts already queried by the user.
(iii) Finally, MDBE proposes meaningful multidimensional schemas derived from a validation
process. Therefore, the proposed schemas are sound and meaningful.

© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Data warehousing systems were designed to support decision-making within organizations. These systems homogenize and
integrate data in a huge repository (i.e., the data warehouse) to create a single, detailed representation of the organization from
which relevant knowledge can be extracted and applied in the organization's decision-making processes.

It is widely accepted that the conceptual schema of a data warehouse must be structured according to the multidimensional
model. The multidimensional (MD) conceptual view of data is distinguished by the fact/dimension dichotomy and represents data
as if placed in an n-dimensional space, which facilitates the interpretation and analysis of data in terms of facts (the subjects of
analysis) and dimensions showing the different perspectives from which a subject can be analyzed.

Since a data warehouse is the result of homogenizing and integrating relevant data in a single, detailed view, it is assumed that
theMD conceptual schema of the data warehousemust be derived from the organization's data source schemas. Traditionally, this
process has been performedmanually, but automation is essential as it removes the dependency on an expert's ability to properly
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apply the method chosen and the need to analyze the data sources, which is a tedious and time-consuming task (which can be
unfeasible when working with large databases). In recent years, several approaches have been proposed for automating this
process, most of which follow a data-driven model in which data sources are analyzed thoroughly to derive the data warehouse
schema in a reengineering process that overlooks the end-user MD requirements. However, as discussed in [36], a requirement
analysis phase is crucial in ensuring that end-user's needs and expectations are met. Otherwise, end-users may become frustrated
as they would not be able to analyze data of interest to them, which would result in the failure of the whole system. The literature
contains several requirement-driven methods, but all of them must be carried out manually. Automating requirement-driven
approaches would require the formalization of end-user requirements (i.e., translating them into a computer understandable
language), whereas current methods handle requirements that are mainly stated in languages (such as natural language) which
lack the required degree of formalization.

As discussed in the literature [24,36], the ideal scenario for deriving the data warehouse conceptual schema would consist of a
hybrid approach (i.e., a combination of data-driven and requirement-driven paradigms). Therefore, the resulting MD schema
would satisfy end-user requirements and be conciliated with the data sources simultaneously (i.e., capturing the analytical
potential in the data sources and able to be populated with data within the organization). However, current automatable methods
follow a fully data-driven approach, and current requirement-driven approaches are not automatable because they tend to work
with requirements at a high level of abstraction.

In this paper we present a largely automated approach for supporting MD design based principally onMultidimensional Design
By Examples (MDBE), which is an automated method conciliating both types of paradigms. Unlike other hybrid approaches, MDBE
does not carry out two well-differentiated phases (i.e., data-driven and requirement-driven) that need to be conciliated a
posteriori but instead performs both phases simultaneously. Consequently, each paradigm benefits from feedback obtained by the
other, and eventually MDBE is able to derive more valuable information than approaches in which the two phases are carried out
sequentially (a detailed list of the main advantages of MDBE over previous approaches is given in Section 2).

In our approach we derive MD conceptual schemas from relational sources according to end-user requirements. There are two
steps: requirement formalization and theMDBEmethod (see Fig. 1). As in previous requirement-drivenmethods (or requirement-
driven stages within hybrid methods), a prior requirements elicitation step is required. However, our approach is not based on a
step-by-step manual process in which the requirements and data sources that will eventually derive the MD schema are analyzed
in details, but rather on a largely automatable approach.

Requirements are typically expressed at a high level of abstraction and need to be formalized prior to automation of the
analysis step. In our framework, requirements are expressed as SQL queries over the relational data sources (i.e., at the logical level
over the data sources). SQL queries provide a clearly defined structure that will facilitate full automation of theMDBEmethod (the
second step in our approach). Although requirement formalization must be performed manually, translating requirements into
SQL queries requires considerably less effort than carrying out any of the step-by-step requirement-driven approaches in current
use (see Section 2 for further discussion of this issue). In our approachwe have reduced the amount of manual operations as much
as possible (i.e., removing ambiguous semantics by formalizing the requirements) and delegated most of the design workload to
the MDBE method, which will use the semantics captured in the requirements and the data sources to automate the rest of the
process.

The inputs of the MDBE method are the end-user information requirements (expressed as SQL queries) and the integrated
logical model of the data sources. The output is a constellation schema [18] (i.e., a conceptual schema for each fact identified)
derived from the data sources and capable of retrieving data requested in the input requirements. Briefly, MDBE validates whether
each input SQL query represents a valid MD query (i.e., if the query retrieves data that can be analyzed from a MD perspective).
Note that we translate requirements into regular SQL queries over the transactional data sources and do not require a specific
translation that wouldmakeMD sense. MDBE analyzes each input SQL query to validate whether it represents anMD requirement
and notifies if it is able to derive at least one multidimensional schema that can retrieve data requested in the SQL query.
Conciliation of the schemas proposed for each query produces the output constellation schema.

To illustrate a practical application of our approach we now introduce the TPC benchmark H (TPC-H) [1]. TPC-H is a decision
support benchmark that introduces a relational database logical schema (see Fig. 2) and a suite of 22 business-oriented queries.
Fig. 1. Overview of our approach.
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This benchmark was designed to represent a real-world information system, so its database schema and queries have been chosen
for their industry-wide relevance. The database schema presented portrays the activity of a wholesale supplier. TPC-H does not
represent the activity of a particular business sector but rather that of any industry in which a product needs to be managed, sold
or distributed internationally (e.g., car rental, food distribution, parts, suppliers, etc.). Queries presented in the benchmark have
been given a realistic context and were chosen to be representative and to answer to real-world questions. The queries are defined
by the following components:

• A high-level description of the business question, which illustrates the context in which the query could be used. For example,
“report the amount of business that was billed, shipped, and returned” (Q1), “list the revenue volume done through local suppliers”
(Q5), “determine the value of goods shipped between certain nations to help in the re-negotiation of shipping contracts” (Q7) or
“identify customers who might be having problems with the parts that are shipped to them” (Q10).

• The functional query definition, which uses the SQL-92 language to define the function to be performed by the query. As an
example, business query #5 (Q5) is expressed in SQL as:

SELECT n_name, sum(l_extendedprice*(1−l_discount)) as revenue
FROM customer, orders, lineitem, supplier, nation, region
WHERE c_custkey=o_custkey and l_orderkey=o_orderkey and
l_suppkey=s_suppkey and c_nation key=n_nationkey and
s_nationkey=n_nationkey and n_region key=r_regionkey and
r_name=‘[REGION]’ and o_orderdate>=‘[DATE]’ and
o_orderdate<‘[DATE]’+‘1’ year
GROUP BY n_name
ORDERBY revenue desc;
Fig. 2. TPC-H relational schema.



Fig. 3. Constellation schema derived from the TPC-H benchmark case study.
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TPC-H is a decision support benchmark, and it would make sense to propose a MD schema (i.e., develop a data warehouse) for
analyzing this data. This has already been considered in data warehouse research. One example is the Star-Schema benchmark
(SSB) [27], which was devised from the TPC-H benchmark and introduces an MD schema derived manually from the TPC-H
relational schema. In this paper we use TPC-H to demonstrate how to derive the MD schema with our approach. We then confirm
the reliability of the result obtained by comparing it to that of the MD schema proposed in SSB (see Section 5.2).

We consider the TPC-H relational schemaas the integrated relational schemaof thedata sources, and the high-level descriptions of
the business queries as the end-user information requirements (gathered in the requirements elicitation step). TPC-H also provides the
SQL query for each end-user requirement (i.e., the requirement formalization required in our approach). Consequently, it provides all
of the inputs needed to launch the MDBE method. Eventually, MDBE will generate a set of MD schemas (see Fig. 3) from the data
sources (in this case, the TPC-H logical schema) that meet the end-user requirements (the 22 TPC-H SQL queries).

In summary, MDBE has three main benefits: (i) It is a fully automatic approach that handles and analyzes the end-user
requirements automatically. (ii) Unlike data-drivenmethods, we focus on data of interest to the end-user. However, the usermay not
be aware of all the potential analyses of the data sources [13,24,36] and, in contrast to requirement-driven approaches, MDBE can
propose new MD knowledge related to concepts already queried by the user. (iii) Finally, MDBE proposes meaningful MD schemas
derived fromavalidationprocess. Input queries are validated todeterminewhether theymakeMDsense, so the schemasproposedare
sound and meaningful. As such, MDBE could be used as a validation tool for MD requirements in addition to its design function.

In this paperwe provide a detailed description of our approach. In Section 2we discuss relatedwork in the literature and highlight
themain advantages of MDBE over alternative approaches. In Section 3we present our framework and discuss the foundations of our
approach indepth. Section4 focuseson the coreof our approach, theMDBEmethod. Finally, in Section5wepresent the statistics of our
approach over the TPC-H case study and compare the results with those presented in the Star-Schema Benchmark.

2. Related work and main contributions

The literature contains descriptions of several methods for deriving conceptual MD schema from the data sources. However,
most of them must be carried out manually (following a step-by-step guide) and only a few automate the process. According to
Winter et al. [36], these methods can mainly be classified in a supply-driven or demand-driven framework:

• Supply-driven: These approaches start from a detailed analysis of the data sources to determine the MD concepts in a
reengineering process. Many methods presented in the literature follow this paradigm, including [14,17,26], among others.

• Demand-driven: These approaches focus on determining the end-user MD requirements (as typically performed in other
information systems) to later map them on to data sources, as described in [13,16,30,36], among others.

• Hybrid approaches: Some authors have proposed combining the two approaches to design the data warehouse from the data sources
taking into account end-user requirements. Examples of methods combining the two approaches can be found in [9,13,24,28], among
others.

Most of these approaches do not automate (most of) the definition process and simply give a set of steps (i.e., guidelines) to be
followed by an expert for deriving the MD conceptual schema. Most of the methods use different patterns or heuristics to discover
concepts likely toplayanMDrole, soexpertsmusthaveaccess towell-documenteddata sources (suchasup-to-date conceptual schemas)
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in order to implement these approaches. However, in a real organization, documentation ondata sourcesmay be incomplete, incorrect or
evennon-existent [14], and itwouldbedifficult for anon-expertdesigner to followtheseguidelines. To solve theseproblems, automatable
methods [13,14,17,24,28] work directly over relational database logical schemas (i.e., getting up-to-date data) and always rely on a
thorough analysis of the relational sources. Most methods of this type have three common limitations:

End-user requirements not considered. Although end-user requirements are essential for satisfying the expectations of end-users
[36], they are generally not considered in these methods. In most cases a set of design patterns is introduced to identify the MD role
that each relational concept may play, and the MD schema is eventually derived from the relational schemas by applying these
patterns in a reengineering process. Among the automatable approaches, only [13,24] consider requirements, but the demand-driven
stages must be performed manually (as in any other demand-driven approach) and only the supply-driven stages are automated.

Design patterns to identify facts. Identifying facts automatically is a complex task [28], and some of these methods rely on heuristics
such that may identify false facts or overlook real ones [11,20]. Specifically, [28] identifies facts from tables with numerical fields
whereas [17] identifies facts semi-automatically (i.e., involving the user) bymeans of table cardinalities and the presence ofmeasures
(which are identified by a bayesian network). The other approaches require facts to be identified manually [13,14,24].

Dependency on normalization. Design patterns used to identify dimensional data are mainly based on “foreign” (FK) and “candidate
key” (CK) constraints. InMDdesign, it iswell-known that facts anddimensionsmust be relatedbymany-to-one relationships (i.e., one
fact instance is related to just one instanceof eachdimension; see Section3.1 for further information). Therefore, theaccuracyof results
depends on the degree of normalization of the logical schema, since some FKs and CKs are lost if we do not use a schema up to third
normal form.

In addition, supply-driven approaches generally risk wasting resources by handling much unnecessary information [36]; since
they overlook the MD requirements, they must apply their patterns across all data sources. Each automatable method in the
literature is described in detail below:

• Golfarelli et al. [14] introduced the first semi-automatable method for deriving the MD conceptual schema. However, facts have
to identified manually. Once this step has been completed, a conceptual schema is derived following the many-to-one
relationships for each fact proposed, i.e., dimensions are identified following FK constraints. As such, this method cannot handle
denormalized schemas or requirements.

• Phipps and Davis [28] proposed a supply-driven method that is validated a posteriori by a demand-driven stage. They propose
potential MD schemas that are then validated by end-user requirements expressed as MDX queries [25]. This approach fully
automates the supply-driven stage but thedemand-driven stagemustbeperformedmanually.Moreover, requirements arenot used
to guide the process but only to filter results, so new knowledge cannot be derived from requirements and the results are simply
pruned in the demand-driven stage. Furthermore, this approach relies on a weak heuristic to identify facts: any relational table
containing numericalfields is identified as a potential fact, and dimensional data are identified following FK chains from those tables
identified as facts. Although this method relies mainly on FK constraints to identify dimensional data, to our knowledge this is the
onlymethod thatpartially supportsdenormalized input relational schemas, as each remainingattribute in a table identifiedasanon-
numerical and non-key fact is considered to be an interesting analysis dimension for that fact. However, this approach generates too
many results, and filtering them through a manual demand-driven stage would be a difficult and time-consuming task.

• Jensen et al. [17] presented a method in which data mining techniques are used to analyze the data sources. Assuming that the
database does not contain composite keys, this method derives valuable metadata such as functional and inclusion dependencies
and key or cardinality information, which identifies potential snowflake schemas [18]. To infer the metadata, the authors access the
instances and apply data mining techniques, which could be unsuitable for large data sources. Moreover, since they are looking for
snowflake schemas, they rely on “foreign key”–“candidate key” relationships to identify functional and inclusion dependencies, as in
the methods discussed previously. Finally, the complexity of this approach may become problematic due to the high number of
permutations computed when searching for inclusion dependencies (as all permutations of potential candidate keys and foreign
keys are constructedwith the consequent computational cost), since requirements are overlooked and patterns introducedmust be
computed for all instances.

• Giorgini et al. [13] presented ademand-drivenapproach for deriving the conceptualMDschema, although they claim that it can also
be used as a hybrid approach. They propose togatherMD requirements asdescribed in thedemand-driven stage and thenmap them
on to the data sources in a conciliation process, but the degree of automation achieved is relatively low. Facts, dimensions and
measures identified during the requirements analysismust bemappedmanually over the data sources. Once this has been done, the
aggregation hierarchies are completed using an automatic algorithm similar to the one presented in [14]. Finally, the authors
propose a refinement step inwhich theMD schema is rearranged to better suit theuser's needs; this information can then be used to
reorder dimensions or try to find new directions of analysis, although this process must be performed manually.

• Mazón et al. [23,24] presented amethod inwhich requirements and data sources are conciliated. To our knowledge, this is the first
method to introduce a balanced hybrid approach, which makes it the closest to our own proposal. An MD conceptual schema is
derived from the end-user requirements, and a set of Query/View/Transformation (QVT) relations is then applied to guarantee that
the conceptual schema obtained is consistent with the data sources. However, the conceptual schema derived from requirements
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(i.e., the demand-driven stage) is obtained manually. In a second step, a second schema that is consistent with the data sources is
derived automatically from the initial schema taken from the end-user requirements. In our case, both steps are carried out
automatically and simultaneously,which improves thefinal result, asdiscussed in the following subsection. Finally, in contrast to our
approach, Mazón et al. assume that the data sources are normalized up to third normal form.

Finally, [5] and [34] present two largely automatable approaches working at the conceptual level. Both approaches overlook
requirements (i.e., follow a supply-driven paradigm) and present a similar approach to the one presented in [28]. These works
automate the analysis of the sources ([5] from domain ontologies and [34] from ER schemas) in order to extract as much
multidimensional knowledge as possible. They later use this knowledge to simplify and guide the compulsory demand-driven
stage that we will need to perform.

These approaches are complementary to MDBE, as they can be used in other scenarios where our approach does not apply.
Thus, they cannot be smoothly compared to our method. Nevertheless, the contribution of MDBE regarding them is clear: it
considers requirements as first-class citizens while they do not. Consequently, i) our output schema fits better to the end-user
necessities and ii) similar to [28], their demand-driven stage can be even unfeasible for large ontologies or ER schemas.
2.1. Contributions of the MDBE method

For the sake of clarity we divide this section into two subparts: one discussing our contributions regarding demand-driven
approaches (or demand-driven stages within hybrid approaches) and another focusing on automatable approaches working from
relational sources.
2.1.1. Demand-driven approaches
In general, matching requirements over the data sources demands a good knowledge of the data sources. As discussed, this is the

major drawback of current demand-driven approaches, and is compounded by the time required to analyze the data sources. In our
approach, although we also need a reasonable knowledge of the sources to create the SQL queries (i.e., formalize the requirements),
the required effort is considerably lower.Weuse awell-established language suchas SQL to facilitate themappingof the requirements
over the data sources. Consequently, we only need an expert to create these queries, and many real organizations will have access to
someone with these skills. Our framework has two main advantages over current demand-driven approaches:

• MDBE, like current automatable methods, works exclusively with relational data sources. This means that the organization has a
relational transactional system, which makes it very likely that a number of employees will possess the skills required to create
the queries; the database administrator, for example, would have a perfectly suited profile. On this point, we make the same
assumptions as used in current automatable approaches.

• Althoughourapproach follows ahybridparadigm,mostof the tasks are automated. Briefly, thismeans that theuser is not required to
deeply analyze the sources. This contrasts with current demand-driven approaches, which require detailed and exhaustive analysis
of the data sources; hints and tips are given (in case of themost formalmethods,MDpatterns) that the datawarehouse expertmust
then search for manually across all data sources (logical or conceptual schemas, depending on the approach chosen). The time-
consuming nature of this task can render it unfeasible when large databases are used.
For example, [26] introduces a commonly citedmethod for deriving theMD schema from anER schema. It requires each ER entity to
be classified as a transactional (the basis for fact tables), component (details or components of business events that will produce
dimensions) or classification (that will be used to shape the dimension hierarchies) entity. The authors give advice on how these
entities can be identified. Thus, “transactional entitiesmust describe events that happens at a point in time and containmeasures or
quantities that can be summarized”. Formal rules are given for each type of entity to give shape to the MD schema. For example, a
typical rule is discovering functional dependencies (FDs) to identify dimensional data. Manual discovery of FDs is an unfeasible task
for most systems [7,11,35], and automatic methods for identifying FDs need to address this task at the physical level (i.e., using the
instance semantics). These methods have various drawbacks, propose solutions that are computationally expensive, and register
drops in performance when a large number of attributes or instances are processed [15,22,33,35].
Other important demand-driven approaches, such as [16], use a formal framework to derive the MD schema. However, little
information is given about how to identify the MD concepts over the data sources. This scenario is repeated in the most recent
demand-driven approaches; for example, [30] derives theMD conceptual, logical and physical (using theOracleMOLAP Tool) with a
UML-based method that introduces a metamodel and a set of transformations to perform the mapping between each metamodel.
However, this approach suffers from the samedrawback as previous approaches, and analysis of the sourcesmay still be unfeasible if
it has to beperformedmanually.More comprehensive descriptions of thesemethods andhow theywork can be found in [8] and [12].
In contrast, our approach introduces a manual formalization step but the user does not need to analyze the data sources or perform
the completemappingof the requirements over the data sources. Importantly, the exhaustive analysis and iterative application of the
MD patterns are delegated to the MDBE method. In other words, the counterpart to our method would require the entire process
described in Section 4 to be carried outmanually (by properly applying theMDpatterns introduced in Sections 3.1 and 3.2), which is
the case of current demand-drivenmethods. Therefore, themanual workload in our proposal is considerably lighter than in previous
approaches.
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2.1.2. Automatable approaches
The MDBE method was designed to overcome the limitations shared by current automatable methods. To our knowledge,

(i) MDBE is the first method with an automated demand-driven stage. Our approach requires end-user requirements to be
formalized as SQL queries, after which MDBE validates each SQL query to determine whether it makes MD sense (see Section 3.1
for further information). The main contribution in this area is that (ii) MDBE validates the explicit and implicit MD knowledge in
the query. For example, relationships between concepts depict the potential MD role that each concept could play, and joins stated
in theWHERE clause identify relationships (i.e., concept associations) explicitly stated by the user that, in some cases, may not be in
the logical schema of the data sources. For example, consider a database overlooking foreign keys. In these cases, previous
approaches that rely on primary key–foreign key relationships would overlook this information. In contrast, in our approach, these
missing relationships will be stated (if they are of relevance for the user) by means of concept associations (i.e., joins) in the SQL
query. Thus, if a join attribute is identified as dimensional data, this MD role is propagated to its join counterpart (like a supply-
driven approach would do if the proper primary key–foreign key relationship were defined). Another example would be a
denormalized database. In this case, if the query performs data grouping (i.e., it contains a GROUP BY clause) or contains
comparison clauses in the WHERE clause, the attributes involved in these clauses are identified as dimensional data. In other
words, the SQL queries may provide additional relevant knowledge to that captured in the sources. Nevertheless, we also harness
the knowledge contained in the data sources (as in supply-driven approaches), such as foreign key and candidate key constraints,
if present. In addition, (iii) MDBE works at the attribute level (SQL queries handle attributes), whereas other automatable methods
work at the table level. Consequently, relational attributes can be labeled as dimensional or factual data and, in turn, relational
tables are identified as dimensional data, factual data or tables containing factual data and dimensional data [18].We can therefore
identify the role played by each attribute in each relation and split it into different concepts in the resulting MD schema. Thanks to
these contributions, (iv) MDBE is able to handle denormalized relational schemas to some extent. The analysis of requirements at
the attribute level allows MDBE to identify dimensional or factual attributes that previous approaches would overlook. However,
regarding dimensional data identified from denormalized relations, MDBE cannot automatically generate the dimension
hierarchies as the domain FDs needed to shape hierarchies are missing in the source schema. In other words, each requirement
(i.e., SQL query) will identify attributes representing interesting analysis perspectives, but the relationships between these
attributes (i.e., the dimension hierarchies) cannot be extracted from denormalized data sources. In these cases, the designerwill be
responsible for restructuring this kind of dimensional data. However, note that the automatic methods for identifying FDs can help
in this task, since the set of attributes to work with is considerably smaller than in the general case.

MDBE also provides the advantage of carrying out the demand-driven and supply-driven stages simultaneously in many aspects.
This means that we are able to produce more and better-quality outputs than methods in which the two stages are performed
sequentially. For example, (v)MDBE canderive implicit knowledge according to the input query and the data sources. Someattributes
in the query may not play a relevant role in the output produced, in which case they could be overlooked. However, we analyze all of
the potential alternatives, as well as metadata in the logical schema, and consider how these alternatives would affect the output
schema, in some cases deriving interesting alternatives overlooked by the user. This contribution is important because it is often
assumed in data warehouse modeling that the user may not recognize the analytical potential of all the data sources and, therefore,
may overlook potentially useful analytical alternatives. However, analyzing all of the data sources can be expensive and produce too
much noise in the final result [36]. In this paper we present an intermediate solution, in which concepts are analyzed to determine
their analytical potential if they are implicitly related to concepts already stated in the end-user requirements (see step 6 in Section 4.1
for further details).

In addition, (vi) MDBE can derive new concepts that are not stated in the logical schemas. Since we handle requirements
automatically, we can analyze them in depth and identify information such as concept specializations or newly derived measures
(see Section 3.1.1 for further details). (vii) MDBE also keeps track of relevant metadata extracted from the requirements, which
will be relevant in the implementation stage: specifically, interesting data granularity within a fact (see Step 2 in Section 4.1) and
data summarizability properties (see Steps 1 and 3 in Section 4.1).

It is important to note that the method presented in this paper is a natural development of the one presented in [4]. We have
improved many aspects of our previous work: MDBE can now handle denormalized logical schemas, and we have improved the
conciliation between the demand-driven and supply-driven stages (see (vi)). We have also relaxed some of the theoretical
patterns introduced in the preliminary version, to cope with practical issues. Finally, we present a detailed case study and relevant
statistics about our process obtained using the MDBE tool.

3. Our approach

Themain aim of our approach is to support the datawarehouse design process. It consists of two steps: requirement formalization
and the MDBE method (as shown in Fig. 1). Furthermore, as in any classical design process, a requirement elicitation pre-process is
needed.Although this pre-process falls outside the scope of this paper, some relevant features shouldbenotedhere.Datawarehousing
systems differ in various aspects from conventional operational systems (since they are designed to support decision-making) and
need specialized requirement elicitation processes [24,36]. However, this issue has been studied in depth, and there are several
methods that can be used in preliminary step (for example, [13,24,29,32,36]). Nevertheless, note that we gather information
requirements in this step. Information requirements [36] are designed tomeet end-user information necessities, which is the objective
of a datawarehouse [24]. Unlike in other systems, end-users can easily determine their informationnecessities because they consist of
data that is required in their decision-making processes. Consequently, information requirements can be stated in the end-users' own
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words and closely reflect their reality. For example, “examine stocks provided by suppliers” or “analyze customer purchaseswith regard to
region, product and time” would be typical information requirements.

Thenext step in our approach formalizes the requirements gathered. As discussedpreviously,we aim to automate themanipulation
of requirements (i.e., integrate them in a fully-automated method), so they must be translated into a computer understandable
language. In our approach, end-user requirements are expressed as SQL queries over the relational data sources (i.e., at the logical level
over the data sources). This step must be carried out by a database expert capable of lowering the level of abstraction of the input
requirements to the logical level (see Section 2.1.1 for a detailed discussion of the advantages and disadvantages of this step).

As shown in Fig. 1, the next step in our approach is to apply the MDBE method, which has two inputs: the end-user information
requirements (expressed as SQL queries) and the logical model of the data sources. As output, MDBE presents an MD schema derived
from the data sources, which allows the user to retrieve data demanded in the input requirements. In this step, MDBE determines
whether each input SQL query represents a validMDquery, i.e., if the query retrieves data that can be analyzed fromaMDperspective; this
is the case if the input SQLquery represents a valid set ofmultidimensional operators over aMDschema (i.e., if the query represents data
retrieved from aMD schema after performing valid data manipulations according to theMDmodel). For this purpose, we carried out a
study to identifywhich constraints shouldbeguaranteedbyaquery inorder to represent a combinationofMDoperators (seeSection3.1
for further information). These constraints can be summarized as follows: data retrieved should be (1) free of data summarizability
anomalies, and (2) placeable in anMD space. If these constraints are satisfied, wemay find a set of MD operators whichwould retrieve
that data from theproposedMDschema. Finally, note that each query (i.e., eachMD requirement) produces a potentialMD schema. The
last step in theMDBEmethodwould allow the user to conciliate those results into aminimal set of conceptual schemas that meet all of
the requirements (i.e., a constellation of MD schemas).

3.1. Foundations

As there is not yet a standard MD notation, we now introduce the notation used in this paper.
[Notation] Multidimensional modeling: Multidimensionality is based on the fact/dimension dichotomy. Dimensional concepts

produce the MD space in which the fact is placed. Dimensional concepts are those concepts likely to be used as a new analytical
perspective, which have traditionally been classified as dimensions, levels and descriptors. Thus, we consider that a dimension
consists of a hierarchy of levels representing different granularities (or levels of detail) for studying data, and a level containing
descriptors (i.e., level attributes). In contrast, a fact contains Cellswhich, in turn, containmeasures. As in [26], we consider that a
factmay contain not just one but several different materialized levels of data granularity. Therefore, one Cell represents individual
cells of the same granularity that contain data relating to the same fact (i.e., a Cell is a “Class” and cells are its instances). Specifically, a
Cell of data is related to one level for each of its associated dimensions of analysis. For example, consider Fig. 3. The lineitem fact
contains several Cells. Wemay analyze this fact from its finest data granularity (i.e, {lineitem_dim×part×supplier×orders_dim}) or
from a coarser data granularity (for example, {lineitem_dim×part×nation×customer}). Each level of data granularity available for a
given fact gives rise to a Cell within that fact, and any of the factual instances within the Cell is called a cell. For example, every
lineitem_dim, part, nation and customer tuple univocally identifies a cell of data (i.e., a l_quantity, l_extendedprice, l_discount, l_tax
and a derived_measure). Finally, one fact and several dimensions for its analysis produce a star-schema.

Next, we present the criteria upon which the study is based, namely those used to validate the input SQL query (i.e., the
information requirement) as a suitable MD requirement. A query makes multidimensional sense if it retrieves data that can be
analyzed from a MD perspective; in other words, if the data retrieved form a data cube [18]. We carried out a study [6] to identify
the constraints that an SQL query must satisfy in order to make MD sense.

Data manipulation in the MD model should be restricted to the multidimensional operators. Unfortunately, we do not yet have a
standardMDalgebra, and severalMDoperators have been suggested in the literature. To overcome this problem,we surveyed all of these
MD operators and analyzed how they should be translated into SQL queries in a relational implementation of the data warehouse. We
found thatMDdatamanipulation (i.e.,multidimensionality) focuses on twoaspects: (i) theplacementof data in anMDspace; and (ii) the
correct summarizability of the data. If the data retrieved satisfy both constraints they can be depicted as a data cube (i.e., orthogonal
dimensions fully functionally determining the fact) free of summarizability problems [6]. In other words, this query would represent the
translation of a set of MD operators into SQL. Below, we provide definitions of the basic axioms identified in our study.

Definition 1. The cube-query template

The standard SQL'92 query template to retrieve a Cell of data from the RDBMS was first presented in [18]:

SELECT l1.ID, …, ln.ID, [ F( ]c.Measure1[ ) ], …

FROM Cell c, Level1 l1, …, Leveln ln
WHERE c.key1=l1·ID AND … AND c·keyn=ln·ID [AND li·attr Op. K]
[GROUP BY l1.ID, …, ln·ID ]
[ORDER BY l1.ID, …, ln·ID ]

The FROM clause contains the “Cell table” and the “Level tables”. These tables are properly linked in theWHERE clause by “joins” that
represent concept associations. TheWHERE clause also contains logical clauses restricting a specific level attribute (i.e., a descriptor) to a
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constant using a comparison operator. TheGROUPBY clause shows the identifiers of the levels atwhichwewant to aggregate data. Those
columns in the groupingmust also be in the SELECT clause to identify the values in the result. Finally, the ORDER BY clause is designed to
sort the output of the query.

Note that we talk about Cells instead of facts. The reason is that every SQL query will produce a single data cube (i.e., a specific
level of data granularity) and in our method, we will first identify Cells of interest and later, facts.

Definition 2. The multidimensional space arrangement

Dimensions arrange theMD space (i.e., the data cube) in which the Cell under study is depicted. Each instance of factual data is
identified (i.e., placed in the MD space) by a point in each of its analysis dimensions. Conceptually, this means that a Cellmust be
related to each analysis level by a to-one relationship; that is, every instance of the Cell (i.e., every cell) is related to exactly one
instance of an analysis dimension, and every dimension instance may be related to many instances of the Cell.

Definition 3. The base concept

We use base to denote a minimal set of levels functionally determining a Cell. This guarantees that two different instances of data
cannot be placed in the same point of theMD space; in other words, given a point in each of these dimensions, they determine only one
instance of data. In addition, dimensions (and thus, levels) that produce a basemust be orthogonal (i.e., functionally independent) [2].
Otherwise,wewouldusemoredimensions than strictlyneeded to representdata,whichwouldgenerateemptymeaningless zones in the
space. In a relational implementation of the data warehouse, the base concept would be implemented as the Cell primary key.

Definition 4. The necessary conditions for correct summarizability

Data summarizationmust be correct, which is ensured by applying three necessary conditions (which, intuitively, are also sufficient)
[21]: (1)Disjointness (the sets of objects to be aggregatedmust be disjoint); (2) Completeness (the union of subsetsmust constitute the
entire set); and (3) Compatibility of the dimension, the type of measure being aggregated and the aggregation function. Compatibility
must be satisfied, since certain functions are incompatible with some dimensions and types of measures. For example, we cannot
aggregate Stock over Time dimension by means of sum, as some repeated instances would be counted. Unfortunately, compatibility
cannot be automatically verified. Nevertheless, ourmethod keeps track of the compatibility information extracted from the requirements
(see Steps 1 and 3 of Section 4.1; there, data summarizability properties identified from the query are considered and properly stored).

TheMDBE validation process checks if each SQL query can produce ameaningfulMD cube. For our purpose, an SQL query is considered
to make MD sense if it satisfies the following semantic constraints (which can be easily derived from the definitions presented above):

• [C1]Multidimensional compliance: The SQL querymust follow the cube-query template. Thus, any attribute involved in the querymust
play either a dimensional or a factual role. In other words, every attribute must be labeled as one of the MD concepts described in our
notation (see Definition 1).

• [C2] Star-schema: Cells are related to levels by to-one relationships (see Definition 2).
• [C3] Uniqueness: Every two different data instances retrieved by the query must be placed in different points of the MD space
(see Definitions 1 and 3).

• [C4] Orthogonality: The set of concepts that produce the MD space must be orthogonal (see Definition 3).
• [C5] Completeness: Data summarization performed in the querymust be complete. Thus, the conceptual relationships involved in
the query should not allow NULL values when relating factual to dimensional data (see Definitions 2 and 4).

• [C6] Disjointness: Data summarization performed in the query must be disjoint. Thus, the conceptual relationships involved in
the query should avoid double-counting instances; for example, Cartesian products (see Definitions 2 and 4).

• [C7] Restricted selection: Joins performed in the query cannot be used to select data. In the MD model, selections must be
performed through comparisons in the WHERE clause (see Definition 1).

These constraints are applied to identify the MD role played by each relational concept and to guarantee that the schemas
proposed by our method will be able to retrieve (by using MD operators) data demanded in the requirements. Specifically, [C2],
[C3] and [C4] guarantee that the SQL query produces a valid MD space; [C5] and [C6] preserve data summarizability; and [C7]
guarantees that data manipulation is restricted to the MD operators.

3.1.1. Additional considerations
As stated above, the constraints are used to validate the final output. If they are not satisfied in a given query, we can end the

process and inform the user that the current requirement does not make MD sense. Otherwise, the final result forms a data cube
and we can say that the input query is a valid MD requirement. However, even if [C5], [C6] and [C7] are not satisfied, a valid data
cube of interest to the end-user may still be retrieved.

3.1.1.1. Relaxing completeness and disjointness. Our method can identify when disjointness and completeness are not preserved in
the logical schema of the data sources. However, end-user requirements may include new concepts that have not been captured in
the data sources but which may still be derived from them. Specifically, (i) in the SQL query, the user may require a concept
specialization not preserving completeness in the logical schema or ii) a derived measure not preserving disjointness. Consider
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Fig. 2. The first case would apply if, for example, a lineitem does not require a suppkey when inserting data (i.e., if suppkey allows
NULL values). Note that it would make sense, as we may assign the supplier later, by means of another task that, for example,
minimizes expenses. In this case, if we want to use supplier as an analytical perspective of lineitem it would not preserve
completeness regarding the data sources. According to the constraints discussed in this section (see [C5]), NULL values should not
be allowed when relating factual data to dimensional data. However, this relationship (and thus, this query) would make sense if
we are interested in analyzing only those lineitem with supplier (i.e., a specific specialization of lineitem not depicted in the
sources). Thus, we may relax [C5] and produce this result if the user is interested in this specialization.1 Nevertheless, it is
important to note that [C5] is relaxed regarding the data sources, but it is guaranteed by considering the specialization.

In the second case, two values not satisfying the disjointness constraint may produce a meaningful derived measure; for
example, if the measure is properly weighted in the query. TPC-H Q9 is an example of this case. This query is expressed in SQL as:

SELECT nation, o_year, sum(amount) as sum_profit
FROM (SELECT n_nameasnation, extract(year from o_order date) as o_year,
l_extended price*(1−l_discount)−ps_supply cost*l_quantity as amount
FROM part, supplier, lineitem, part supp, orders, nation
WHERE s_suppkey=l_suppkey AND ps_suppkey=l_suppkey
AND ps_partkey=l_partkey AND o_orderkey=l_orderkey
AND s_nationkey=n_nationkey AND p_name like ’%[COLOR]%) as profit
GROUP BY nation, o_year
ORDER BY nation, o_year desc;

See the graph in the right side of Fig. 8. This query selects factual data from two different nodes (lineitem and partsupp). However,
these nodes are related by means of a many-to-one relationship that, in principle, will produce double-counting (factual data from
partsuppmaybe considered several timeswhen joining it to factual data in lineitem).According toour criteria (see [C6]), double-counting
must be forbidden to preserve disjointness. However, double-countingmay happen and yetmakemultidimensional sense. Indeed, this is
the case of Q9. This query, weights the l_quantity attribute of lineitem with the ps_supplycost of partsupp (one ps_supplycost may be
related tomany l_quantityvalues) and this value is takenaway fromthe incomeobtained fromthe sale. Inotherwords, it is calculating the
profit obtained on a given line of parts. Clearly, despite not preserving disjointness, the semantics of Q9 doesmakeMD sense. In general,
our method produces results which satisfy [C5] and [C6]. However, in the MDBE method we apply the following rule:

R1: If we cannot produce an output by satisfying [C5] and [C6], our method tries to identify relevant derived measures or concept
specializations (not captured in the data sources) by relaxing these constraints.

In this paperwewill clearly note those steps inwhich this assumption stands. Steps affected by this assumptionwill try to guarantee
both constraints, but if no result is produced the steps have to be relaunched and [C5] and [C6] relaxed. In otherwords, if [C5] and [C6] are
not preserved regarding the data sources, we propose alternative solutions preserving them (i.e., considering specializations or derived
measures not captured in the sources). In such cases, MDBEmay produce schemas that do not preserve the completeness or disjointness
of the data sources, and we inform the user that results are only correct if either a concept specialization or a new derived measure is
considered.

3.1.1.2. Allowing selections by means of joins. In some cases, the input SQL query may use joins to select data that, according to [C7],
would not make MD sense. However, this could occur if the person creating the queries is not sufficiently skilled for the task. For
example, by means of alternative join paths between two concepts.

Consider Fig. 2 and a query containing two different join paths between lineitem and nation in theWHERE clause. For example, one
path following the lineitem–orders–customer–nation foreign key–primary key relationships, and another following the lineitem–

partsupp–supplier–nation foreign key–primary key relationships. Clearly, these joins are used to select lineitems having as customer and
supplier people living in the samenation (i.e.,we select factual data having the samevalue for both paths). But this querywouldnotmake
multidimensional sense: there is no multidimensional operator performing such operation and thus, there is no OLAP tool that could
produce this query. Consequently, MDBE should disregard this query. However, it may happen that both paths are equivalent (i.e., both
values of nation always coincide for each and every lineitem). For example, it would be the case if the following integrity constraint holds
within the organization: every customer will be provided with items supplied by a supplier of his/her own country. Indeed, such constraint
would make sense in many organizations.

For this reason, if the query contains alternative join paths between two concepts we may distinguish two cases: whether the user
guarantees that bothpaths are equivalent (i.e., instances selected througheachpath are exactly the same) then,we can rewrite it in such a
way it preserves [C7]. Otherwise, the query should be disregarded. In the first case, the querymust be rewritten by defining two different
alias for nation (for example, nation n1 and nation n2) and use each in one of the paths. The resulting query would be semantically
equivalent to the previous one and it will make MD sense (i.e., this query could be generated by OLAP tools).

In the implementation of our method, the user is responsible for relaxing this constraint (the MDBE tool has a check-box for
activating or deactivating the constraint).
1 Note that this type of context-sensitive summarizability is also considered in the multidimensional normal forms introduced in [19].
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3.2. Internals

In this section we show how multidimensional concepts are identified from the relational concepts involved in each SQL query.
MDBE aims to analyze the knowledge available from the SQL query and the relational schema to infer the MD role played by each
relational concept. For this purpose, it uses a graph to store information elicited from the overall process, which we will refer to as
the multidimensional graph.

Briefly, the MD graph represents the relational schema fragment captured in the SQL query (and not the whole relational sources). It
is composed of nodes, which represent relational tables involved in the query, and edges, which relate nodes joined in the query
(i.e., keep track of concept associations). Furthermore, each node contains information about the relational attributes involved in
the query. Importantly, note that a node does not fully represent a relational table. Nodes capture those table attributes of relevance
for the query analyzed (i.e., the table fragment of interest). Similarly, edges represent the relationships between graph nodes (and
not between relational tables).

In our approach, MDBE aims to validate the MD graph (i.e., the input query) as a suitable MD requirement. It labels each graph
node and its attributes as MD concepts, in such a way that the whole labeling satisfies the MD constraints described in Section 3.1.
Thus, MDBE tries to find a MD meaning for the relational schema fragment captured in the graph (roughly speaking, we may say
that it looks for a MD interpretation of the graph).

This section discusses how each relational concept may be labeled. Here, we present the criteria used to identify the MD role of
attributes, nodes and edges according to our foundations (see Section 3.1). Later, Section 4.1 introduces an algorithm that applies
these criteria. The algorithm analyzes the SQL query and the relational schema to look for the labeling criteria introduced in this
section and accordingly, labels the graph.

3.2.1. Attribute labeling
Agiven relational attributeofMDinterestmayplayadimensional or a factual role. If it has auseful analytical value itwill be labeledas a

measure (i.e., factual data) and if it represents an interesting analytical perspective for the MD data it will be labeled as a dimensional
concept (i.e., dimensional data).When an attribute is labeled as a dimensional concept, depending on its semantics, itmay be identified
as a level or a descriptor.

We use the 7 constraints introduced in Section 3.1 to identify the MD role played by an attribute in the SQL query. Note that a given
attribute may be labeled as both a dimensional concept and a measure. In their MD model, Agrawal et al. [3] proposed handling
measures and dimensions uniformly (they presented two MD operators to transformmeasures into dimensions and vice versa). This
ideawasalso incorporated into laterMDmodels (see [6]).MDBEallowsmultiple labelingof a relational attribute (whichwewill refer to as
dual attributes), so thefinalMDschemawill containameasureandadimensional conceptderived fromthesameattribute. Itwill happen
if a given attribute is labeled as factual data according to any of our criterion, and as dimensional data by another.

3.2.2. Node labeling
At this point, it is important to remark the subtle difference between relational tables and graph nodes. Nodes do not represent

the whole relational table but the set of table attributes involved in the query and, according to the kind of attributes they contain,
can be labeled as either dimensional data or factual data (or even both, as discussed later in this subsection):

• Dimensional data (L): If the node contains attributes representing a useful analytical perspective for the MD data, it will be
labeled as a level (i.e., as L).

• Factual data (CM or C): If the node contains factual data, we label it as a Cell. However, we distinguish between two different
types of Cells:

– Cell With Measures (CM): These nodes represent Cells that containmeasures. According to [C3], these nodes will also contain
dimensional concepts that determine the MD space in which to place the data. There are three possible cases: the Cell
directly contains (i) the MD base, (ii) a candidate base (i.e., a set of attributes preserving a one-to-one relationship with the
MD base) or (iii) a set of attributes fully determining the MD base.
To preserve [C3], in the (i) and (ii) cases, it means that either the MD base (candidate base) corresponds to a table CK (also
represented in the node) or, if performing data aggregation in the query, the GROUP BY clause contains attributes from the
node. In the latter case (iii), consider the TPC-H business query #5 introduced in Section 1, and the TPC-H relational schema
shown in Fig. 2. In this query, the name attribute (from the nation node) forms the MD base and lineitem plays a Cell role. To
Fig. 4. Decision diagram for labeling nodes representing factual data.



Fig. 5. Decision diagram for labeling nodes representing dimensional data.
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preserve [C3], lineitem is properly linked to name in such a way that every instance of factual data is related to just one nation
name value. In other words, lineitem functionally determines the nation of the supplier (indeed, this dependency is properly
captured in the relational schema by means of FKs). In this paper, we use link attributes to denote the dimensional concepts
contained in a Cell placing factual data in the MD space (i.e., the (i), (ii) or (iii) cases discussed).

– Cell (C): These nodes represent “factless facts” [18]. This definition is equivalent to the previous one, but this type of Cell does
not contain measures. These facts are very useful for describing events and coverage and can be used to formulate many
interesting questions [18].

To determine the factual label of a node, we follow the decision diagram shown in Fig. 4, which generates questions about the
query and the table metadata. These questions derive directly from constraints introduced in Section 3.1, and we distinguish
between two possible scenarios: one in which the current input query performs data grouping (i.e., it contains a GROUP BY clause)
and another in which it does not. In the first case, and according to [C1], if the SELECT clause contains an aggregated attribute (i.e.,
summarized by an aggregation function), that attribute will play a measure role. Consequently, the node is labeled as CM.
Otherwise, if no aggregated attribute is selected, it is labeled as a factless fact C (i.e., the Cell does not contain measures).

Similarly, if no data grouping is performed in the query but we are able to produce an MD space (i.e., a table CK is selected), the
nodewill be labeled as a Cell: CM if attributes other than the key are selected (i.e., if it containsmeasures); otherwise, C. According
to [C6], any other alternative would not make multidimensional sense as a Cell (depicted in the figure by the X mark).

When checking if any measure other than a table key is selected, we do not only consider numerical attributes. Traditionally,
numerical attributes produce measures because they are perfectly additive but, as discussed in [18], semi-additive or non-additive
values could be of interest to the end-user. Moreover, there are some areas in which non-numerical values are additive. For example,
the spatial databases area contains algorithms for the aggregation of text values representing geographical information (see [10]).

Note the MD semantics involving each alternative in the decision diagram discussed above. Cells identified without grouping
will represent “atomic factual data” [2] (i.e., the finest granularity of data in the data warehouse), whereas those Cells identified by
data aggregation will represent “aggregated factual data” (i.e., coarser data granularities of interest).

Similarly, to determine the dimensional role of a node we follow the decision diagram shown in Fig. 5. Again, it generates
questions about the query and the table metadata. First, we check if the input query performs data grouping, and according to [C3],
attributes in the GROUP BY (i.e., contains attributes being part of the MD base) will play a level role. Consequently, the nodes
containing these attributes are labeled as L. If no data grouping is performed or none of the node attributes are used to group data,
we check the WHERE clause. We distinguish between two possible scenarios: if any of the node attributes are involved in a
comparison clause or in a join. In the first case, according to [C7], selections are performed over dimensional data and thus, that
attribute will be identified as dimensional data. In the second case, according to [C1], joins in the WHERE clause represent
conceptual associations. Thus, if a node contains an attribute joined to a dimensional attribute (i.e., an attribute already identified as
dimensional data) then, both attributes represent dimensional data. Any other scenario would notmake sense as dimensional data
and the node is not labeled (see the X mark in the figure).

3.2.2.1. Supporting denormalization. As discussed in Section 2, our method can handle denormalized input schemas, which implies
that a given node may play a factual and dimensional role simultaneously. This scenario occurs when a graph node is identified as
factual data by the decision diagram shown in Fig. 4, and as dimensional data by the decision diagram shown in Fig. 5.

In this case, we introduce two new labels to identify hybrid nodes containing factual and dimensional data. Note, however, that
a factual node (i.e., those labeled as CM or C) always contains dimensional data forming the MD space (i.e., the link attributes).
However, hybrid nodes contain additional dimensional data: either attributes playing a degenerated dimension [18] role and/or
attributes playing the role of denormalized dimensional data (i.e., partial or whole denormalized dimension hierarchies):

• Cell With Measures and Additional Dimensional Data (CDM): This label is equivalent to the CM label (this node therefore contains
the link attributes as well as measures) with additional dimensional data. The additional dimensional data represent other
analytical levels and descriptors that form other analytical perspectives.



Fig. 6. State diagram showing the transition between node labels.

2 We assume, as all systems do, that a FK can only point to a CK set of attributes.
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• Cell with Additional Dimensional Data (CD): Similarly, nodes representing factless facts with additional dimensional data are
labeled as CD.

For example, consider the TPC-H business query Q5 introduced in Section 1. If this query contained an additional comparison
clause such as l_shipdate= ‘12-02-2009’ in the WHERE clause, MDBE would identify lineitem as a hybrid node: according to the
decision diagram shown in Fig. 4, lineitem is labeled as CM (because the query contains grouping and lineitem contains two
aggregated attributes— i.e., l_extendedprice and l_discount— in the SELECT clause) and, according to the decision diagram shown
in Fig. 5, it will also identify lineitem as dimensional data (because lineitem does not contain any attribute in the GROUP BY clause,
but it contains l_shipdate, which is involved in a comparison clause of the WHERE). As result, MDBE labels this node as a hybrid
node (CDM) since it contains measures, the link attributes and also an additional dimensional attribute.

Once we know how to label attributes (by means of the 7 constraints introduced in Section 3.1) and nodes (by means of the
decision diagrams previously introduced in this section), the node labeling state diagram can be produced, as shown in Fig. 6. The
transitions between possible labels are shown. Every node is unlabeled in its initial state (i.e., at the beginning of the labeling
process) and the label is then updated according to the explicit knowledge extracted from the query. For example, from the initial
state, we can label each node as either CM (if one of its attributes is identified as ameasure) or L (if one of its attributes is identified
as a dimensional concept). From the CM state, we can keep the same label if any othermeasure is identified or update it to CDM if
an attribute playing a dimensional role and not part of the link attributes is identified (i.e., if this node contains factual and
dimensional data).

Some transitions shown in the state diagram are labeled with the NKD (New Knowledge Discovery) tag. In MDBE, a state
transition can take place due to either the explicit knowledge extracted from the query or the implicit knowledge derived both
from the input query and the data source metadata. The latter case represents a scenario in which either the query does not
explicitly establish a node role (thus, the node is not yet labeled) or the implicit knowledge available suggests an alternative
labeling. In these cases we analyze every labeling alternative for the node in question. As discussed in Section 2.1 and presented in
detail in Section 4.1 (see Step 6), this process is used to derive new MD knowledge that is not stated in the requirements.

3.2.3. Edge labeling
Edges relate nodes and keep track of joins in the WHERE clause of the query. They provide information about how relational

concepts are related in the relational schema fragment captured in the query. For our purpose, a given edge is labeled according to
the MD conceptual relationship it may represent (i.e., the MD interpretation we may infer). We consider four potential labels:
Cell–Cell, Cell–Level, Level–Cell and Level–Level. For example, a Cell–Level edge label would mean that the relationship could relate
factual data (i.e., a node playing a Cell role) to dimensional data (i.e., a level). Note that edge labels only depict the conceptual role
that each node may play relative to a given edge. Therefore, these labels show how factual and dimensional data may be related
but, as previously discussed, MDBE has different labels to identify factual and dimensional nodes. Specifically, a node playing a
factual role may be labeled as CM, C, CDM or CDwhereas a node playing a dimensional role can only be labeled as L. In other words,
regarding edges, hybrid nodes can only play a Cell role, as justified later in this section.

Next, we introduce the edge labeling process:

(i) For each join between tables in the WHERE clause, we first infer the relationship multiplicity with regard to the schema
constraints of the join attributes (i.e., FKs, CKs or Not Null values). In the relational model, the multiplicity of a relationship
depends on how attributes involved are defined in the schema:Whether they (as awhole, sincewe considermulti-attribute
joins) play the role of a relation CK and/or if they are defined as a FK to the other attribute(s) and/or if they allow null
values. Joining to a CK guarantees to match at most one instance of the relation.2 Otherwise it may match many of them.



Table 1
Summary of rules used to infer relationship multiplicities.

CKn1 CKn2 FKn1 FKn2 NNn1 NNn2 Relationship Multiplicity

× × × × ? ? Attr.→Attr. N−M
✓ × × ✓ ✓ ✓ CK→FK+NN 1−o N
✓ × × ? ✓ ? CK→Attr. 1 o−o N
× ✓ ✓ × ✓ ✓ FK+NN→CK N o−1
× ✓ ? × ? ✓ Attr.→CK N o−o 1
✓ ✓ ✓ ✓ ✓ ✓ CK+FK→FK+CK 1−1
✓ ✓ ✓ × ✓ ✓ CK+FK→CK 1 o−1
✓ ✓ × ✓ ✓ ✓ CK→CK+FK 1−o 1
✓ ✓ × × ✓ ✓ CK→CK 1 o−o 1

Table 2
Valid multidimensional relationships in a relational schema.

Multiplicity Level–Level Cell–Cell Level–Cell Cell–Level

1−1 ✓ ✓ ✓ ✓

1 o−1 ✓ ✓ ✓c ✓

1 o−o 1 ✓ ✓ ✓c ✓c

N−1 ✓ ✓ × ✓

N o−1 ✓ ✓ × ✓

N o−o 1 ✓ ✓ × ✓c

N−o 1 ✓ ✓ × ✓c

N−M × ✓d × ×
N−o M × ✓dc × ×
N o−M × ✓dc × ×
N o−o M × ✓dc × ×
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Similarly, an attribute not allowing null values and being defined as FK will surely match one and just one instance.
Otherwise, it may introduce zeros. Table 1 summarizes all those relationshipmultiplicities that wemay find in the relational
model with regard to the attributes metadata. There, each row represents a specific relationship between nodes (i.e., a kind
of join). Notation used is the following: the first six columns represent all possible combinations with regard to the
constraints of join attributes (the subscripts n1 and n2 refer to each one of the attribute sets joined): As CK, as a FK pointing
to the other attribute(s) or as NN (not null) attribute(s). If an specific cell is ticked (i.e., ✓), it means that that attribute is
constrained according to that column. Otherwise, it is marked with a × mark. Notice that not all the combinations are
allowed and some columns determine the following ones. For instance, CK attribute(s) cannot accept null values. Moreover,
a cell is marked with a ? mark if previous columns already determine a certain multiplicity, meaning that this constraint
does not affect the obtained multiplicity. Finally, the last two columns inform about the specific join depicted as well as the
multiplicity inferred. There, an Attr. represents unconstrained attribute(s); that is, not defined either CK nor FK and
allowing null values.

(ii) Next, according to the semantics of the multiplicity inferred, we label each edge with those MD relationships it could
represent (i.e., the MD concepts it could relate). Potential edge labels are shown in Table 2, and those combinations making
MD sense (according to [C2], [C5] and [C6]) are marked with a ✓. For example, a many-to-one relationship, depending on
zeros, could represent a Cell–Level, Cell–Cell or a Level–Level relationship but not a Level–Cell relationship, since it would not
satisfy [C2]. However, completeness could eventually be relaxed to identify concept specializations, as explained in
Section 3.1.1. These cases, in which completeness would be relaxed a posteriori, are shown in Table 2 as ✓c.

It can also be seen that many-to-many relationships would not generally produce a valid labeling. According to the
constraints presented in Section 3.1, a many-to-many relationship is meaningless in the MD model. Nevertheless, there is one
case in which we may consider many-to-many relationships, since we could eventually relax disjointness to identify derived
measures, as explained in Section 3.1.1; this exception, in which disjointness would be relaxed a posteriori, is shown in Table 2
as ✓d.

Finally, and as previously stated, we would like to remark that a node required to play a dimensional role by an edge label, can
only be labeled as L and not as CDM or CD. Although these two labels represent hybrid nodes (and thus, they also contain
dimensional data), their semantics are different from those of the L label. Importantly, edges relate nodes, and they determine the
role that the related nodesmay play according to the join conditions. Consider again Table 2. A nodemay play a level role whether:
(i) it is placed in the to-one end of a relationship (see second, fourth and fifth column) or (ii) it is placed in the to-many end of a
Level–Level one-to-many relationship (see second column).

By definition, the cardinality of factual data within a hybrid node is greater than (or in a degenerate case, equal to) that of the
dimensional data it contains. Thus, in the (i) case, when an edge relates a node n to a hybrid node h by means of a to-one



Fig. 7. Summary of the MDBE process.

931O. Romero, A. Abelló / Data & Knowledge Engineering 69 (2010) 917–942
relationship, the link relates n to the factual data in h. Otherwise, if the link were relating n to the dimensional data in h, it would
not raise the to-one multiplicity. For this reason, hybrid labels cannot be used in this case. In the (ii) case the reason is subtler.
According to Table 2, the node in the to-many endmay represent a level (see second column) or a Cell (see third and fifth column).
However, labeling it as a hybrid node entails that this node contains factual and dimensional data and, by the same reasoning as in
the previous case, we are relating the factual data in h (i.e., the hybrid node) to the data in n (i.e., its counterpart node) bymeans of
a many-to-one relationship. For this reason, the semantics of this edge would capture a Cell–Level or a Cell–Cell relationship
(depending on the role of n), but never a Level–Level relationship. Indeed, a Level–Level relationship can only be obtained by
considering h to play a strict dimensional role (i.e., labeling it as L).

Summing up, from the perspective of the edge labeling process and concerning hybrid nodes, factual data is of more
relevance than dimensional data. Note that this is sound with the hybrid node definition: they contain factual data (and thus,
like any other Cell, the link attributes) and additional dimensional data (that in the general case will introduce redundancy of
data).

4. The MDBE method

The MDBE method has two inputs: the end-user information requirements (expressed as SQL queries) and the logical
model of the data sources. As output, our method produces a constellation schema from the data sources, which allows the
user to retrieve the data requested in the input requirements. In this scenario, each query is analyzed to derive an MD schema
that meets the information requirements. This automatic process is depicted in Fig. 7 and can be divided into four different
stages:

• For each input query, the first stage (see Section 4.1) extracts the MD knowledge contained in the query (i.e., the MD role played
by each concept in the query and the conceptual relationships between concepts), which is properly stored in the MD graph. For
this purpose, we apply the labeling methods discussed in Section 3.2. In this stage, the role played by the data sources will be
crucial in inferring the conceptual relationships between concepts.

• The second stage (see Section 4.2) validates the MD graph created in the first stage according to the constraints introduced in
Section 3.1. The aim is to checkwhether the concepts and relationships stated in the graph collectively produce a data cube. From
the graph building perspective, the first stage of the MDBE method is designed to derive an MD labeling (i.e., label attributes,
nodes and edges) to be validated in the second stage (i.e., checking the overall soundness of the graph). Therefore, this stage
determines whether we would be able to use a set of MD operators to retrieve data requested in the input query from the MD
schema represented by theMD graph. If the validation process fails our method ends, since the required data cannot be analyzed
from a MD perspective (i.e., we are not be able to retrieve the requested data simply by using MD operators). Otherwise, the
resulting MD schema is directly derived from the MD graph.

• The third stage (see Section 4.3) finds the most representative results among those obtained. The step in which new MD
concepts are discoveredmay introduce new results (i.e., labelings) of potential interest, and we introduce a rule for determining
which results should be presented to the user.

• Finally, the fourth stage (see Section 4.4) conciliates the MD schemas obtained for each query. The result is a minimal
constellation schema subsuming each of the schemas obtained for the input queries.

Importantly, MDBE establishes a framework that can be used incrementally: by launching queries we can see the impact on the
final conceptual schema. This feature facilitates the maintenance of the MD conceptual schema.

4.1. First stage: concept labeling

The first stage is designed to build the MD graph in 6 steps by applying the labeling standards introduced in Section 3.2. In this
section, we introduce a detailed algorithm in pseudo-code (the MDBE algorithm) for implementing the first MDBE stage. This
algorithm is followed by a brief explanation and an example of the execution of each step (based on the TPC-H schema). For the
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purposes of the study, the comprehensibility of the pseudo-code took priority over its performance (nevertheless, some
optimizations have already been applied for its implementation in the MDBE tool):

declare MDBE ALGORITHM as
1. For each table in the FROM clause do
(a) Create a node and Initialize node properties;

2. For each attribute in the GROUP BY clause do
(a) Label attribute as Level;
(b) node=get_node(attribute); Label node as Level;
(c) For each attr2 in follow_conceptual_relationships (attribute, WHERE clause) do

i. Label attr2 as Level;
ii. node=get_node(attr2); Label node as Level;

3. For each attribute in the SELECT clause not in the GROUP BY clause do
(a) Label attribute as Measure;
(b) node=get_node(attribute); Label node as Cell with Measures selected;

4. For each comparison in the WHERE clause do
(a) attribute=extract_attribute(comparison);
(b) if !(attribute labeled as Level) then

i. Label attribute as Descriptor;
ii. node=get_node(attribute); Label node as Level;

(c) For each attr2 in follow_conceptual_relationships(attribute, WHERE clause) do
i. if !(attribute labeled as Level) then
A. Label attribute as Descriptor;
B. node=get_node(attribute); Label node as Level;

5. For each join in the WHERE clause do
(a) /*NoticeaconceptualrelationshipbetweentablesmaybemodeledbyseveralequalityclausesintheWHERE*/
(b) set_of_joins=look_for_related_joins(join);
(c) multiplicity=get_multiplicity(set_of_joins); relationships fitting={};
(d) For each relationship in get_allowed_relationships(multiplicity) do

i. if !(contradiction_with_graph(relationship)) then
A. relationships fitting=relationships fitting+{relationship};

(e) if !(size of (relationships fitting)) then return notify_fail(“Node relationship not allowed”);
(f) Create an edge(get_join_attributes(set_of_joins)); Label edge to relationships fitting;

(g) if (unequivocal_knowledge_inferred(relationships_fitting)) then propagate knowledge;
6. for each g in New_Knowledge_Discovery(graph) do
(a) output+=validation_process(g); //A detailed pseudo-code of this function may be found inSection 4.2
return output;

The algorithm analyzes each query clause according to Definition 1:

Step1:Each table in theFROMclause is representedasanode in theMDgraph.Aspresented in Section3.2,MDBEwill try to label every
node, attribute andedgedepicted in thequery. Eachnodewill keep trackof relevantmetadata inferredduring theprocess. Specifically,
we retain relevantmetadata related to thequeryandreferring to thedata cube retrieved(if itmakesMDsense): thedata cubebaseand
compatibility information.

Example: Consider the TPC-H business question #5 (Q5) that “lists the revenue volume done through local suppliers”. We will
present, a detailed view of each step for Q5. The SQL translation of this query can be found in Section 1. In this first step, the graph
initially has six nodes: customer, orders, lineitem, supplier, nation and region.
Step 2: This step is designed to find explicit dimensional data used to arrange the MD space. According to [C3], the GROUP BY clause
(see [C1])must fully functionally determine data. Thus,fields in this clause represent interesting perspectives fromwhich to base data
analyses. In addition, fields joined to these attributes in the WHERE clause will also be labeled as dimensional data (since joins
represent conceptual associations stated in the end-user requirements [C1]).
Current methods rely on foreign keys to identify dimensional data, so results depend on the degree of normalization of the data
sources (see Section 2 for further information). In our approach we are not tied to design decisions affecting the data source
logical schemas and can identify them from the requirements. For example, when the user states relationships not depicted in
the logical schemas of the data sources (for instance, data grouping). Consequently, every attribute identified in this step is
labeled in the MD graph as an interesting level of analysis.
In these steps, each time an attribute is labeled, the label of the node to which it belongs will be properly updated according to the
decision diagram shown in Fig. 6. Finally, we add the identified data cube base to the graph metadata.

Example: Attribute n_name from node nation is labeled as a level and accordingly (see Fig. 6), nation is labeled as a node
containing dimensional data (i.e., L). Furthermore, to propagate that knowledge, we verify any concept association in the WHERE
clause inwhich n_name is involved. However, there is no join involving that attribute. If c_nationkey had been used in the GROUP BY
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clause instead of n_name, s_nationkey and n_nationkey would have been identified as dimensional concepts as well since there are
two joins in theWHERE clause relating all of the attributes (i.e., c_nationkey=s_nationkey and s_nationkey=n_nationkey). Finally,we
store the n_name as the data cube base in the graph metadata.
Step 3: This step is designed to find explicit factual data. Aggregated attributes in the SELECT clause (see [C1]) play a measure role.
However, if the input query does not contain a GROUP BY clausewe do not have to aggregatemeasures in the SELECT clause, and this
step cannot identify them (these types of Cells and those not containingmeasureswill be identified in Step 6). If the query does not
performaGROUPBY,we store theprimary keyused as the data cubebase in the graphmetadata (see Fig. 4 for further details). Finally,
we also track the compatibility information identified in the node metadata.

Example: In this step, l_extendedprice and l_discount are identified as measures, and accordingly, table lineitem is
labeled as a Cell withmeasures (CM).We also add to the graphmetadata the compatibility information stated in the query: the
(l_extendedprice⁎(1− l_discount)) can be summarized by using sum function for all the dimensions in the data cube base
(i.e., n_name; see previous step).
Step 4: This step is designed to find explicit dimensional data used to restrict the MD space. Since a selection (i.e., a comparison
between an attribute and a constant value)must be carried out over dimensional data (see [C1] and [C7]), this step labels attributes as
dimensional concepts looking for comparisons in the WHERE clause, following the concept association criteria presented in step 2.
Attributes identified in this stepare labeledasdescriptorsunless theyhavebeenused toarrange theMDspace (in this case theywould
have been labeled as levels in Step 2).

Example: The SQL query #5 contains three comparison clauses between attributes and constants in the WHERE clause
(r_name= ‘[REGION]’,o_orderdateN= ‘[DATE]’ando_orderdateb ‘[DATE]’+ ‘1’year). Consequently, r_nameando_orderdateare labeled
as descriptors. Accordingly, orders and region are labeled as dimensional data (L). In this step, we again verify joins in the WHERE
clause involving anyof these attributes topropagate theMDknowledge through concept associations.However, noneof the attributes
are involved in a join.
Step5: Theprevious steps are aimed at creating and labeling nodes and their attributeswhereas this step creates and labels edges (i.e.,
concept associations). Conceptual relationships are depicted in an SQL query by joins in theWHERE clause (see [C1]). In theMDgraph
joins are represented as edges, and this step is designed to label them following the process described in Section 3.2.3.
A list of potential edge labels is inferred according to the multiplicity inferred for a conceptual association in theWHERE clause (see
Table2). Thesealternatives arecheckedprior to labeling theedge, anda label is overlooked if it contradicts currentknowledgedepicted
in the graph. For example, this may occur if a node has already been labeled and the edge label requires it to be relabeled in an
incompatibleway. An incompatible labeling happenswhen a node labeled as C, CM, CD or CDM is required to play a dimensional role.
Once every alternative has been validated there are two potential scenarios: we will either have been able to label that edge with at
least one alternative, orwewill not. In thefirst case the algorithmcontinues, and ifwe have been able to infer unequivocal knowledge
for a given edge (i.e., if a unique edge label stands) this knowledge is propagated in cascade to the rest of the graph. However, in the
second case the algorithm stops since we have identified a conceptual relationship that does not make MD sense.

Example: (i) We infer the relationship multiplicity for each conceptual relationship in the WHERE clause. In this
example, each conceptual relationship is defined by a single-attribute join, although in practice they might be depicted by
multi-attribute joins; for example, l_orderkey=o_orderkey represents a relationship between lineitem and orders. According to
Table 1 (second row), this join produces a many-to-one relationship between lineitem and orders that allows zeros in the to-
many side of the relationship (since o_orderkey is defined as the primary key of orders and l_orderkey is defined as a foreign
key to o_orderkey).
(ii) Next, according to Table 2, this one-to-many relationship may represent a Level–Level, a Cell–Cell or a Level–Cell
relationship. However, the Level–Level relationship contradicts current knowledge in the graph since lineitem has been labeled
as CM and this edge label requires it to be labeled as dimensional data. In contrast, the Cell–Cell relationship is consistent with
current knowledge depicted in the graph. Although orders has already been labeled as dimensional data in Step 4, according to
Fig. 6 it could also be considered a hybrid node (see the NKD transition), which means that it could also be labeled as either
CDM or CD. In this case, according to Fig. 4 it should be labeled as CD (since the query performs data grouping but there is no
orders attribute aggregated in the SELECT clause). Finally, the Level–Cell relationship is allowed, so the current edge is labeled
with both possibilities (Level–Cell and Cell–Cell). A graphical representation of the MD graph after Step 5 can be seen in Fig. 8.

Once these steps have been completed the MD graph has been deployed. Tables (i.e., nodes), attributes (i.e., node attributes)
and their conceptual relationships (i.e., edges) are depicted in the graph, and every edge has been labeled. However, some nodes
(if none of their attributes have been labeled)may have not been labeled. Specifically, explicit concepts requested by the user (and
nodes to which they belong) will be labeled after Step 5. This is because when writing the SQL query of a given requirement we
may need to introduce intermediate concepts to relate explicit concepts stated by the user. In general, nodes containing
intermediate concepts remain unlabeled after Step 5 (unless they have been labeled by the propagation rule of Steps 2 and 4). In
addition, some nodes already labeled after Step 5 may have potentially interesting alternatives, which can occur if the query
structure does not clearly identify measures (see Step 3) or if we are looking for interesting factless facts. In this paper, we will
refer to intermediate nodes and nodes with interesting alternative labels as implicit nodes.

As discussed in Section 2.1.2, we propose an intermediate solution for automatically derive newMD knowledge not considered
by the user. In our approach, we focus on the implicit concepts of the query, and analyze the available labeling alternatives. The
aim of this step is to determine how these alternatives would affect the output schema, deriving (in some cases) interesting
analytical alternatives that may have been overlooked by the user.
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Step 6: This step is designed to derive newMD knowledge from unlabeled nodes or, according to the NKD transitions in Fig. 4, to test
alternative labels for nodes already labeled. Each unlabeled node can be considered to play a dimensional role (i.e., labeled as L) or a
factual role (labeled asCorCM, according to Fig. 4).However, nodeswithpotential alternatives of interestwill introduce an alternative
label. For each possible combination of new labels, an alternative graph is created if the labels do not contradict knowledge already
depicted in the graph. Subsequently, each of these graphs will be validated as explained in Section 4.2, and only those that makeMD
sensewill finally be considered. Therefore, a query could produce several validMDgraphs. In that case,MDBEwould be able to derive
multiple MD schemas for a single query.
Essentially, this step guarantees that all of the possible MD labelings for the input requirements will be generated (each one
represented as an alternativeMD graph). As such, it is possible for all of the nodes in a given graph to be labeled as dimensional
data. However, this type of graph is directly disregarded by ourmethod because anMDgraphmust contain at least one Cell [C1].

Example: We have two unlabeled nodes (i.e., customer and supplier, labeled as ? in Fig. 8) and three nodes that,
according to Fig. 6, may play a factual role in addition to their current dimensional role (i.e., orders, nation and region, marked
with an * in Fig. 8). For each combination that does not contradict knowledge depicted in the current graph, an alternative
graph is generated.
After Step 6, we have 5 nodes with two potential labeling alternatives that produce 8 different MD graphs. Note that we do not
generate 32 graphs (i.e., 25 combinations) because many of them are meaningless in the MD model. From Step 5, a given
labeling is overlooked if it contradicts knowledge depicted in the graph. For example, consider the following labeling
alternative inwhich customer, orders, supplier and region are labeled as C, whereas nation is labeled as L. According to the edge
between region and nation, if region is labeled as C then nation should also be labeled as C; otherwise, it would not make MD
sense (see Table 2). This type of contradiction removes 24 of 32 possible combinations. The remaining 8 combinations (shown
in Table 3) will then be validated in the second stage of MDBE. As we will see, most of these will be invalidated, and only two
will eventually be found to make MD sense (the last column of Table 3 shows which step invalidates which combination).

4.2. Second stage: multidimensional graph validation

In this stage we validate each of the MD graphs generated in the previous stage. The validation process also guarantees the
multidimensional normal forms presented in [19] and [20] for validating the output MD schema. Again, we use a detailed algorithm in
pseudo-code (the validation_process algorithm) to implement ourmethod, followed by a brief explanation and an example of each one
of its steps. This algorithm is called once for each alternative graph generated in Step 6 (see Step 6a of the MDBE algorithm in the
previous section):

declare VALIDATION_PROCESS as
7. If !connected(graph)then returnnotify_fail(“Aggregation problems because of cartesian product.”);
8. For each subgraph of Levels in the multidimensional graph do

(a) if contains_cycles(subgraph) then

i. /* Alternative paths must be semantically equivalent and hence raising the same multiplicity. */

ii. if contradiction_about_paths_multiplicities(subgraph) then return notify_fail(“Cycles
cannot be used to select data.”);

iii. else ask user for semantic validation;
Fig. 8. Left, the MD graph for Q5 after Step 5; right, the MD graph for Q9 after Step 12.



Table 3
Graph labelings generated after the first stage of MDBE.

Id Lineitem Customer Orders Supplier Nation Region Step

1 CM C CD C CD CD 10
2 CM C CD C CD L 10
3 CM C CD C L L 9
4 CM C CD L L L 9
5 CM L CD C L L 9
6 CM L CD L L L OK
7 CM L L C L L OK
8 CM L L L L L 8b
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(b) if exists_two_Levels_related_same_Cell(subgraph) then return notify_fail(“Non-orthogonal
Analysis Levels”);

(c) For each relationship in get_1_to_N_Level_Level_relationships(subgraph) do
i. if left_related_to_a_Cell_with_Measures(relationship) then return notify_fail(“Aggregation

Problems.”);

9. For each Cell pair in the multidimensional graph do
(a) For each 1_1_correspondence(Cellpair) do Create context edge between Cell pair;

(b) For each 1_N_correspondence(Cellpair) do Create directed context edge between Cell pair;
(c) If exists_other_correspondence(Cellpair) then return notify_fail(“Invalid correspondence

between Cells.”);
10. if contains_cycles(Cells path) then

(a) if contradiction_about_paths_multiplicities(Cells path) then return notify_fail(“Cycles
cannot be used to select data.”);

(b) else ask user for semantic validation;Create context nodes(Cells path);
11. For each element in get_1_to_N_context_edges_and_nodes(Cells path) do

(a) If CM_at_left(element) then return notify_fail(“Aggregation problems between Measures.”);
12. If exists_two_1_to_N_alternative_branches(Cells path) then return notify_fail(“Aggregation

problems between Cells.”);

Step 7: The MD graph must be connected to avoid the “Cartesian Product” ([C6]). Furthermore, the MD graph should be
composed of valid edges that produce a path between Cells (factual data) and connected subgraphs of levels (dimensional
data) surrounding it — these constraints will be properly checked in the following steps.
Example: In our example, the 8 MD graphs to be validated (see Table 3) are connected.
Step 8: This step validates levels subgraphs (i.e., subgraphs only containing level nodes)with regard to Cells placement: According to
[C4], two different levels in a subgraph cannot be related to the same Cell (Step 8b); to satisfy [C5] and [C6], level–level edges raising
aggregation problems in Cells with selected measures must be forbidden (Step 8c). Finally, every subgraph must represent a valid
dimensionhierarchy (i.e., not being used to select data) [C7]. Thus,wemust be able to identify twonodes in the level subgraphwhich
represent the top and bottom levels of the hierarchy, and if there ismore than one alternative path between these nodes, theymust be
semantically equivalent (8a). As discussed in Section3.1.1, this stepmay eventually relax [C5] and [C6] (i.e., disjointness) if required in
Step 8c.

Example: i) Step 8a: In our example, none of the graphs contain a cycle within a level subgraph so that all of them satisfy this
step. ii) Step 8b: Consider the alternative graph depicted in row 8 of Table 3. All of the nodes except for lineitem are labeled as levels.
Therefore, this alternative does not preserve 8b, since orders and supplier belong to the same level subgraph and both are related to
lineitem.Consequently, thevalidationprocess fails and this alternative is discardedbecause theCell is related to twodifferentpoints of
the same analysis perspective (which does notmakeMD sense). iii) Step 8c: In our example, lineitem is the only node labeled as Cell
withmeasures, but it does not raise any aggregation anomalies in any of the graphs.
Step 9: Cells determine MD data and must be related in the graph to produce a single Cell path. If this is not the case, they cannot
retrievea singledata cube [C1]. For everypair ofCells in thegraph,weaimtovalidate thepathsbetween themasawhole, inferringand
validating the multiplicity raised as follows: (i) if a one-to-one correspondence between two Cells exists, we replace all of the
relationships involved in that correspondencewith a one-to-one context edge between the two Cells (i.e., a context edge replaces the
subgraph representing the one-to-one correspondence). As shown in Fig. 9.1, thismeans that awhole Cell CK is linked by one-to-one
paths to the whole CK of the other Cell. (ii) Alternatively, if both CKs are related by one-to-many paths or the first CK matches the
second one partially, we replace the relationships involved with a one-to-many directed context edge (see Fig. 9.1). (iii) From a data
source perspective, many-to-many relationships between Cells should be invalidated because they do not preserve disjointness [C6].
Nevertheless, this step may eventually relax disjointness, as discussed in Section 3.1.1.

Example: In our example 3 of the 7 remaining labeling alternatives produce incoherent context graphs that do not
satisfy the MD constraints. For example, the labeling alternative shown in the third row of Table 3 would produce a



Fig. 9. Examples of cells paths in a context graph.

936 O. Romero, A. Abelló / Data & Knowledge Engineering 69 (2010) 917–942
forbidden many-to-many relationship between customer and supplier in the context graph. There are only four viable
alternatives for this step: if every node in the graph cycle is considered as factual data (rows 1 and 2 of Table 3) or if orders
(row 6) or supplier (row 7) are considered to play a factual role. Any other alternative would produce an invalid context
graph.
Steps 10, 11 and 12: The previous step validated the correspondences between Cells, whereas these steps validate the Cell
path (MD data retrieved) as a whole: According to [C7], Step 10 validates cycles in the path of Cells to ensure that they are
not used to select data, similarly to the validation of levels cycles (see 8a). Once the cycle has been validated, the Cells
involved are clustered in a context node labeled with the cycle multiplicity, as shown in Fig. 9.2. According to [C5] and
[C6], Steps 11 and 12 look for potential aggregation problems; the first looks for Cells with measures selected at the left
side of a one-to-many context edge or node, and the second looks for alternative branches with one-to-many context
edges or nodes each, which would produce a forbidden many-to-many relationship between the Cells involved (as
depicted in the right side of Fig. 9.2). Finally, as in any step involving [C5] and [C6], this step may eventually relax
disjointness as discussed in Section 3.1.1.
Example: i) Step10: Inour example, thiswouldbe the case if everynode in thegraph cyclewas considered toplay a factual role (row1
of Table 3) or if all of them except region played a factual role (row 2 of Table 3). In both cases, identified cycles would not makeMD
sensebecause theydonotpreservedisjointnessof lineitem(whichcontainsmeasures). Consequently, bothalternatives arediscarded.
ii) Steps 11 and 12: At this point, we only have two valid alternatives (rows 6 and 7), but neither produces aggregation problemswith
lineitem.
Another interesting example is the graph obtained from Q9 (see Fig. 8), in which a one-to-many relationship is shown between two
Cells (lineitem and partsupp). According to Table 2 this edge is allowed between Cells but Step 11 invalidates it. This query does not
preserve disjointness [C6] between both Cells with measures (a Cell with measures is selected at the left side of a one-to-many
context edge). In this case, no resultwould be produced and, according to R1 (see Section 3.1.1 for a detailed definition of this rule)we
relax [C6]. Now,we obtain a validMD graph, but the user is informed of the situation and asked to validate the result obtained. In this
example, according to the query semantics, we are calculating a derivedmeasure (weighting the l_quantity with the ps_supplycost),
which determines the profit made on a given line of parts (see [1]). Clearly, this derivedmeasure (and thus, this query) makes sense
and must be considered a valid MD data cube.

The secondMDBE stagewould eventually have validated each graph as corresponding a data cube, and only those guaranteeing
every step discussed above would be presented to the user.

Example: At the end of the validation process, two of the eight initial labeling alternatives (see rows 6 and 7 of Table 3) are
sound and make MD sense. Therefore, MDBE would produce two different MD schemas that would satisfy Q5 (these can be
determined from Fig. 8 and rows 6 and 7 of Table 3).

4.3. Third stage: finding representative results

Step 6 in the first stage of the MDBE method may produce several alternative graphs for the same query. Unlabeled nodes
(and those with interesting alternatives, according to Fig. 6) are proved to be factual and dimensional data in alternative graphs,
which are validated in the second MDBE stage. Eventually, those graphs that make MD sense will be considered in the
conciliation process (see next section). Consequently, more than one MD schema can be produced for a given query. However,
an alternative graph could make MD sense but not represent a new and potentially interesting analytical perspective. Indeed,
dimensional data could always be considered as an alternative factless fact, although in most cases it will not be relevant to the
end-user. Therefore, this step is designed to determine the representativeness of new alternatives produced by Step 6, according
to the following rule:

R2: If, for a given query, we obtain two sibling graphs that suggest analyzing a given dimensional node as a factless fact, we disregard
the potential factual role of that node.

Two sibling graphs differ only in the labeling of one node. Therefore, they have exactly the same labels except for one
node, which is considered to play a factless fact role in one graph and a strict dimensional role in the other. As an
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example, consider the following table, which depicts the alternative graphs obtained after the validation step for a given
query:
co
Id
3 In this step we
nceptual MD mo
4 An atomic leve
Node A
are devising the MD c
del. For example, [2].
l is the finest granula
Node B
onceptual schema. We

rity level within a dim
Node C
therefore talk about cl

ension hierarchy and
Node D
asses and attributes in

is directly related to th
this section, but

e fact [2].
we could use th
e notation from
1
 CM
 CD
 C
 L

2
 CM
 L
 C
 L

3
 CM
 L
 C
 CD
According to the previous definition, alternative Graphs 1 and 2 (which only differ in the label of B), and Graphs 2 and 3
(differing in the label of D) are siblings. In this case, and according to R2, for the first sibling relationship we disregard the first
graph and choose Graph 2 as the most representative; for the second pair we disregard Graph 3 and choose Graph 2 again.
Eventually, this query will produce a single MD schema. In short, sibling graphs do not provide new interesting analytical
perspectives. MDBE uses them to analyze the potential factual data that a dimension may contain. However, in most cases,
the end-user would not be interested in this type of analysis. Knowledge inferred from Step 6 is therefore disregardedwhen it
produces sibling graphs and is only considered and presented to the user in one of two cases. (i) In the first case, the
knowledge identifies a dimensional node that may also play a factual role with measures. This scenario can only arise in a
query without data grouping, in which case Step 6 would identify an atomic Cellwithmeasures (see Section 3.2.2 for further
details). Note that this type of node is relabeled in Step 6 as CDM and, as such, does not fit the sibling definition and will not be
pruned in this step. (ii) In the second possible case, we have a factless fact that cannot play a dimensional role (i.e., there is no
sibling graph for this labeling).

Example: The latter case (ii) occurs in the Q5 validation process. Consider Table 3. The two valid labels are shown in rows 6 and
7; since they do not have sibling graphs, none will be pruned in this step. Essentially, MDBE highlights that Q5will makeMD sense
if either supplier or orders plays a factless fact role (the query semantics can be checked to confirm that this is consistent with the
query definition).

4.4. Fourth stage: conciliation

MDBE validates each input requirement and obtains a potential set of MD schemas for each query (see the three previous
stages presented above). In this sectionwe present an algorithm that conciliates the results for the input queries into aminimal set
of schemas covering all of the queries.

Before proceeding to the conciliation, a pre-process must be carried out to normalize the MD graphs; each hybrid node in every
MD graph is normalized. This means that any node labeled as CDM or CD will produce two different nodes: according to the
discussion introduced at the end of Section 3.2.3, hybrid nodes contain factual data (and thus, like any other Cell, the link
attributes) and additional dimensional data (that in the general case will introduce redundancy of data). In fact, hybrid nodes could
be represented as factual data (i.e., a node labeled as CM or C) related by a many-to-one (or in a degenerate case, a one-to-one)
relationship to dimensional data (i.e., a node labeled as L); in other words, we could normalize them.We then apply the following
algorithm (for clarity, the comprehensibility of the algorithm took priority over its performance):

• (1) MDBE looks for all the facts identified in the MD graphs, and creates a new factual class3 for each one (every class will
eventually produce an MD schema at the end of the conciliation process). Two other tasks are performed in this step: i) we
enrich each class by adding themeasures identified in the graphs as attributes of the factual class; and ii) we draw the conceptual
relationships between facts depicted in the graphs by semantic relationships between classes.
Example: Consider a simplified scenario of the TPC-H case study in which we only need to conciliate the MD graphs created for
Q5 and Q9 (see Fig. 8). First, we create four factual classes (lineitem, orders, supplier and partsupp) for each node labeled as
either CM or C. Then, we add the measures identified in these graphs to each class. Consequently, l_extendedprice, l_discount
(from Q5 and Q9) and l_quantity (from Q9) are added to the lineitem class and ps_supplycost (from Q9) is added to partsupp.
The remaining classes will not contain measures as they were identified as factless facts (see Q5).
In addition, since partsupp is related to lineitem in Q9, we keep track of this conceptual relationship by drawing a semantic
relationship between the two classes. The same is done with lineitem and order, and lineitem and supplier (Q5).

• (2) Next, we conciliate the dimension hierarchies identified by the input queries. We first look for compatible hierarchies. Two
hierarchies are compatible if they share their atomic level.4 Every set of compatible hierarchies must be conciliated (i.e., produce
a single dimension subsuming all of them). This process is carried out by checking the hierarchies graphs. From the perspective of
the MD graph, a hierarchy is represented by the subgraph containing the nodes that form the dimension. For example, the
customer→nation→region hierarchy identified in Q5 (see Fig. 8 and Table 3) is directly derived from the subgraph formed by
these three nodes.
any



938 O. Romero, A. Abelló / Data & Knowledge Engineering 69 (2010) 917–942
Therefore, a hierarchy h subsumes a hierarchy h′ if the subgraph representing h′ is contained (except for the descriptors) in the
subgraph representingh. At this point, it should benoted that a one-to-one relationship is contained in a one-to-manyor amany-to-
one relationship. Having said that, we conciliate a set of compatible dimensions by applying the following properties iteratively:
– (2.1) If a given hierarchy h subsumes a hierarchy h′ and h′ also subsumes h, both hierarchies are equivalent and we only need

to keep one of them aligning all of the descriptors of both dimensions. The other hierarchy must be removed from the set of
compatible hierarchies.

– (2.2) Alternatively, if h subsumes h′ and h′ does not subsume h, the descriptors of h′ are mapped to h, and h′ is removed from
the set.

– (2.3) Finally, if h does not subsume h′ and h′ does not subsume h, they are conciliated as follows: i) first, we conciliate (by
keeping the common structure and aligning their descriptors) the overlapping part shared by the hierarchies (note that, by
definition, theywill share at least their atomic levels; see the compatible hierarchies definition above); second, ii) we draw two
alternative branches in the resulting hierarchy, one branch for each disjoint part of the subgraphs.

Example: In our example, Q5 and Q9 provide two sets of compatible dimensions (i.e., the first set contains the supplier→na-
tion→region from Q5 and supplier→nation from Q9, and the second set contains orders_dim from Q9 and Q5, and
orders_dim→customer→nation→region from Q5). In this scenario, conciliation of the two sets corresponds to the second case
presented above: one hierarchy is contained in the other but the reverse is not true. Therefore,we keep the richest hierarchy and enrich
it with the descriptors of the discarded one.
The conciliated dimension hierarchies and those that are not compatible with any other are depicted in the MD schema. For example,
consider the orders_dim→customer→nation→region dimension; its atomic level was related to lineitem and orders. Consequently,
we relate this newconciliated dimension to these two factual classes. By carrying out this process,wewill obtain a star-schema for each
factual class identified. Note that conciliated dimensions enrich the conceptual schema: they provide other factual classes with new
analytical perspectives considered in other star-schemas. For example, orders only considered theorders_dim level,whereas it nowhas
a detailed conciliated hierarchy.

• (3) Finally, a pruning step is carried out. MDBE identifies those star-schemas that are semantically poor. We can also introduce a
non-representative requirement, which would produce an unneeded star, for example: every star-schema composed of just one
dimension is proposed to be disregarded (note that we could use any other criterion introduced in the literature [5,34], if desired).
However, the final decision is taken by the user, since the star-schema is derived from the end-user requirements and he/she
must decide if it really makes sense or it was an error.
Example: In the TPC-H case study, this would be the case of supplier and customer. Both have been identified as factless facts
during the process, but their star-schemas are rather simple (one dimension each). After considering the requirements from
which they were derived, we may decide to eliminate them (as was the case in the final schema shown in Fig. 3).

Twomain points should bemade about this process. First, it does not introduce a summarizability problem, because we are only
merging compatible labels (i.e., factual data and only fully compatible dimensional data). It is also very important to note the
relevance of semantics in the conciliation process. In a data warehousing design task, semantic relationships must be carefully
considered. For example, two different relationships between the same concepts A and Bmust produce two different perspectives.
The reason is clear: each relationship relates a different set of instances from the two classes and, therefore, produces two different
analytical perspectives. This explains why two dimension hierarchies such as A→B and A→C→B cannot be conciliated as
A→C→B. Had we proceeded like this, we would have lost semantics. It should be considered that we are working with relational
sources, so if we travel from A to B along two different paths there must necessarily be two different conceptual paths between
them. As explained in Step 2.3 of the conciliation process, the hierarchies should be conciliated as: B←A→C→B; i.e., with two
alternative branches starting from A (the common part).

The second point is that the orthogonality of theMD spaces thatmay be produced is not lost, sincewe keep track of themetadata
inferred fromeach query at the constellation level (see Section 4.1; steps 2 and 3). Note that each input query represents a data cube
of interest. Consequently, our output schema retains the metadata about these datacubes: the MD space depicted (i.e., the cube
base) and the information about the compatibility of the data summarization performed (i.e., which functionmay be used for their
measures and in which dimensions). This type of information will be relevant for the OLAP tool once it has been implemented.

Finally, this stage, like the three previous stages, is fully automatic and we therefore obtain a star-schema for each fact
identified; this, as a whole, produces a constellation schema (see Fig. 3). Note that this figure only shows facts, measures and
dimension hierarchies identified in the process, whereas descriptors have been overlooked to avoid disrupting the final result.
Nevertheless, it should be stressed that MDBE works at the attribute level and keeps track of the role assigned to each attribute
when deriving partial schemas from each query. Consequently, we are able to split some tables (for example, orders produced two
different concepts in the MD schema, since the dimensional attributes contained in the relational orders table are represented
explicitly in orders_dim).

5. Analysis of the TPC-H empirical results

In this section we discuss several statistics about the overall TPC-H case study. MDBE was carried out for the 22 TPC-H queries
that together produced the constellation schema shown in Table 3. Below, we focus on four interesting aspects of this case study:
the amount of input queries needed to obtain an interesting output, the output correctness, the extra knowledge obtained in the
output thanks to the novel contributions of the MDBE method, and the computational complexity of the algorithm.
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5.1. Input queries needed

One interesting aspect of the study is the number of queries needed to produce the resulting conceptual schema. In the output
schema we identify 3 factual classes (containing 9 measures) and 9 dimension hierarchies (containing a total of 18 level classes
and 39 descriptors):

• In the worst case, we would need 11 queries to identify all of the factual classes and dimension hierarchies in the MD model. In
other words, some queries are redundant and are not relevant to the final result. Had we executed them in the worst possible
order, we would have identified all the MD classes and most of the attributes even with 11 queries (8 out of 9 measures and 17
out of 39 descriptors).

• In contrast, in the best case, we would have been able to identify all of the factual classes and dimension hierarchies with just 4
queries (and 6 out of 9 measures and 10 out of 39 descriptors — it would also be possible to give more relevance to descriptors
and then identify 16 out of 39 descriptors but 5 out of 9measures, also with 4 queries). For example, Q5 is a key requirement as it
identifies 4 dimension hierarchies and 2 factual classes. Indeed, Q5 and Q9 identify all three factual classes and 4measures of the
resulting MD schema.

If we considered a random order of input queries (i.e., without any consideration other than choosing the order of the query
execution at random)wewould need an average of 8 queries to identify themain structure of the schema (i.e., facts, measures and
dimension hierarchies). This result is sound as it is relatively easy to identify the MD classes with only a small number of queries.
Indeed, the MD design task proposed in this paper is incremental, and it is up to the user to decide when to stop adding new
queries. Once most of the structure has been defined, it can be customized as in traditional approaches.

For example, consider a case in which we are satisfied with the number of facts, measures and dimension hierarchies identified
byMDBE. Suppose that we have identified the 3 factual classes, the whole dimension hierarchies and the 9measures. In an average
case, these concepts can be defined with 8 queries and we would have approximately 14–19 descriptors (depending on the input
queries used). To proceed further, it would be easier to identify the rest of the descriptors among the dimensional data table
attributes than by launching new queries. Note that MDBE can easily support this last step: we can browse the attributes of each
level identified and let users add those that are of interest to them.

To continue with our example, at this point the region level class would contain r_regionkey and r_name but the r_comment
attribute in the relational table would not have been selected yet. However, it would be easier to browse the region attributes and
add r_comment to the output schema than to launch a new query specifically for the purpose.

5.2. Output correctness

As discussed in Section 1, the Star-SchemaBenchmark (or SSB) [27] presents aMD logical schema that is derivedmanually from the
TPC-H schema. This schema was devised to improve the querying performance of the data warehouse by denormalization. Data
denormalization, achieved by implementing a logical star-schema [18], is fairly common in data warehouse systems and is used to
speedupcertain queries [18]. Unlike SSB, theMDBEmethodproduces a conceptual schema, but the SSB logical schemacanbe obtained
by applying the same design decision taken by the SSB authors: to implement the output schema as a logical star-schema (i.e.,
denormalize dimensional data as much as possible). Therefore, we can obtain the SSB logical schema in one of the following ways:

• By denormalizing the dimensions of analysis as much as possible. Therefore, nation and region data will be denormalizedwithin
supplier, partsupp and customer. Dimensional attributes that produced new level classes (i.e., orders_dim, lineitem_dim and
partsupp_dim) must also be denormalized.

• By merging the three schemas that form our constellation (since we have three factual classes) into a single schema. Therefore,
lineitem, orders and partsupp will produce a single table. This decision is consistent with our conceptual schema, which relates
these three facts (therefore, our conceptual schema allows us to “drill-across” [6] between them, obtaining the same results as if
they were merged in a single table).

To summarize, the MDBE method can derive the same MD schema as SSB but, in contrast to the SSB, it does so in an
automated way.

5.3. Computational complexity and performance

We present an in-depth analysis of the 22 business queries in the TPC-H benchmark and use the findings as the basis for
discussing the complexity and performance of the algorithm. Table 4 summarizes some of the relevant statistics for each query. In
brackets, Statistics for their subqueries, if any, are shown in brackets (briefly, subqueries must be validated by their own, as they
can be considered a materialized factual table and must therefore make MD sense as well). The first column represents the query
id and the other columns should be read as follows: the second column shows the number of implicit nodes we have for the query
(i.e., nodes that remain unlabeled up to Step 6 or which are relabeled at that point). According to the number of implicit nodes, we
can produce 2#implicit nodes label combinations (note that Step 6 only tries two label alternatives for unlabeled nodes). However, as
discussed previously, many of these combinations are not even generated, since they raise contradictions with knowledge already
depicted in the graph and, therefore, do not satisfy the MD constraints. Ungenerated combinations are shown in the third column,



5 The computer used in these test was equipped with an Intel Core 2 Duo 2.16 GHz processor, 3 GB of RAM.

Table 4
MDBE statistics for the TPC-H case study.

Id Implicit nodes Edges contradict. Alternative graphs Validation process Siblings #Results Factless facts New dim. attrs.

Q1 0 0 1 0 0 1 0 3
Q2 5(3) 23(4) 9(4) 1(1) 7(2) 1(1) 0 0(1)
Q3 2 1 3 0 2 1 0 (1)
Q4 1(1) 0 2(2) 1(1) 0 1(1) 0 2(1)
Q5 5 24 8 6 0 2 2 0
Q6 0 0 1 0 0 1 0 3
Q7 5(6) 20(51) 12(13) 0(1) 11(11) 1(1) 0 1(1)
Q8 7(8) 98(225) 30(31) 0(1) 29(29) 1(1) 0 0
Q9 4(4) 4(4) 12(12) 0 11(11) 1(1) † 1(1) 0
Q10 3 4 4 0 3 1 0 1
Q11 2(2) 1(1) 3(3) 0 2(2) 1(1) 0 2(0)
Q12 2(2) 1(1) 3(3) 1(1) 1(1) 1(1) † 5(5) 0
Q13 2 1 3 1 1 1 1 0
Q14 1(2) 0(1) 2(3) 0(1) 1(1) 1(1) 0(1) 1(0)
Q15 1(2) 0(1) 2(3) 0(1) 1(1) 1(1) 0(1) 1(0)
Q16 2(1) 1(0) 3(2) 2(1) 0 1(1) 1(1) 0
Q17 1(1) 0 2(2) 0 1(0) 1(1) 0 1(1)
Q18 2(1) 1(0) 3(2) 0(1) 2(0) 1(1) 0 0(1)
Q19 1(1)(1) 0 2(2)(2) 0 1(1)(1) 1(1)(1) 0 3(3)(3)
Q20 2(1)(0) 1(0)(0) 3(2)(1) (1)(1)(0) 1(0)(0) 1(1)(1) 1(1)(0) 0(0)(3)
Q21 4(1)(1) 9(0)(0) 7(2)(2) 1(1)(1) 5(0)(0) 1(1)(1) 0(1)(1) 0
Q22 0(0)(1) 0 0(0)(2) 0(0)(1) 0 1(1)(1) 0(0)(1) 2(2)(0)
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and the fourth column shows the number of many alternative graphs (to be validated) generated for each query. The fifth column
shows the number of MD graphs that are discarded in the MDBE validation stage, and the sixth column shows the number of
graphs that are collapsed, according to the sibling rule introduced in Section 4.3.

The MDBE tool execution time for the TPC-H benchmark is negligible (∼1 s5). Our approach only has a potential combinatorial
explosion in Step 6 (note that the conciliation process carried out — see Section 4.4 — is linear regarding the number of schemas
obtained and, therefore, it does not raise the computational complexity of the MDBE process). However, most combinations of
labels generated by Step 6 are discarded on the basis of edge semantics (see the third column), which produces a tractable
algorithm. In all queries, the final set of graphs to be validated is considerably smaller than 2#implicit nodes (see the fourth column).
This statement is based on the empirical results provided, but we can intuitively identify why Step 6 will never generate an
exponential number of combinations: the whole MD graph must be semantically valid, which means that several nodes and edge
labelingswill not be allowed. For example, Table 2 shows 25 forbidden combinations (we count those allowed by relaxing [C5] and
[C6], as they will only be considered if no result is generated. Thus, if considered, we obtain just one result at most). Consequently,
many combinations of labels will fail to makeMD sense. Furthermore, the first five steps of the MDBE process always label most of
the nodes/edges for MD requirements. Only implicit nodes (see the discussion prior to Step 6 in Section 4.1 for further details) can
produce unlabeled nodes. Consequently, the exponent value in the 2#implicit nodes expression will be typically a small number. For
example, in the statistics shown, only two queries (Q7 and Q8) have more than 6 implicit nodes. However, Q7 invalidates 51 of 64
alternative graphs (and is computed in ∼0.1 s) according to edge semantics, and 225 of 256 in Q8 (computed in ∼0.12 s). Let us
consider a query with a large number of implicit nodes. In this case, we will only generate all possible combinations of labels (i.e.
exponential computational complexity) if these tables are related by one-to-one relationships with a double FK pointing between
each pair (see Tables 1 and 2). However, this would be an unlikely real-world scenario and, in any case, an SQL query is unlikely to
have a large number of tables in its FROM clause. The MDBE validation process takes an average of 0.007 s, so in the worst-case
scenario discussed above a query with 10 unlabeled tables in the FROM clause would generate 1024 label combinations, which
would be processed in 7.168 s.

5.4. Additional output inferred

In this section we measure the impact of the main contributions of MDBE on the output. The first six columns of Table 4 show
statistics about the MDBE process, whereas the last three show statistics about the results for each query. The seventh column
shows the number of final star-schemas retrieved byMDBE for the corresponding query (i.e., the number of alternative graphs that
have been completely validated). The next column shows the number of factless facts identified for the query, and the final column
shows the number of new dimensional attributes identified in the process (if any). These attributes are those identified as
dimensional data in a hybrid node (i.e., dimensional attributes in CD and CDM nodes). The † symbol denotes that [C5] and [C6] have
been relaxed to produce the output result for that query. These results highlight some interesting features of our method:

• First, theMDBE validation process. In this stage, 14 of 22 queries invalidate alternative graphs thatmay initially appear to be correct.
Consequently, simply labeling nodes is not sufficient and it is necessary to consider the semantics of the results proposed as awhole.
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• Our process for obtaining new knowledge from implicit nodes is carried out in most of the queries. In the TPC-H case study, the
sixth step of our method labels (or relabels) nodes in 20 of 22 queries (see the second column), which reveals the importance of
this step in retrieving additional information to that explicitly requested by the user.

• Denormalization is very important in our approach. Although the TPC-H logical schema is normalized and well-formed, from an
MD perspective some of its tables contain degenerated dimensions, as a result of which many nodes have been labeled as CD or
CDM during the labeling process. For example, in one of the solutions proposed for Q5, orders is labeled as a factless fact CDwith
o_orderdate as a degenerated dimension [18]. This result is sound, since time and date are typical analysis dimensions in any
data warehouse and, in fact, some current methods always complement their results with these two dimensions (e.g., [28]).
Therefore, in our final result these concepts are explicitly stated according to their MD role. In our example, 15 of 22 queries
identify at least one new dimensional attribute for the corresponding query (see the final column); for example, shipdate,
returnflag and shipmode from lineitem. In addition, we may also identify dual attributes (see Section 3.2.1); for example,
ps_supplycost from partsupp. Consequently, the resulting conceptual schema contains a dimensional attribute and a measure
derived from this relational attribute.

• Our process can identify interesting additional information that is traditionally overlooked by other methods. Our method
supports factless facts (see column 8) and can also identify new derived measures (see †) that are not captured in the relational
sources but which can be derived from them.
6. Conclusions and further work

In this paper we presented a novel approach for supporting the data warehouse design process. The MDBE method is a hybrid
approach for automatically generating MD schemas from end-user requirements and relational data sources. This method differs
from previous approaches by combining the best features of each design paradigm: (i) it considers requirements as first-class
citizens within a largely automated approach; (ii) it improves the quality of the final output by improving communication
between the supply-driven and demand-driven stages— in fact, the two stages are merged in MDBE and depend on each other to
produce the output schema; (iii) it constitutes a novel approach that helps users to discover the analytical potential of the data
sources; and (iv) it can identify new concepts such as specializations or newmeasures derived from the data sources. Importantly,
the conceptual schemas produced by MDBE are derived from a validation process of the input requirements, which ensures that
they are sound andmeaningful. Consequently, this process can be used to validate MD requirements and to determine whether an
MD system is required. For example, we can validate our information needs, and if they are MD it would be sound to use an OLAP
tool in the organization in question.

We also demonstrated the practical application of our method, using the TPC Benchmark H case study to illustrate the potential
of the approach and to provide a detailed example of how the method is executed. The MDBE method opens up a range of new
research opportunities. For example, our approach is incremental and provides a solid foundation for the maintainability and
evolution of the conceptual schema, which is a topic that has gained importance in recent years [31].
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