
Multidimensional Design by Examples

Oscar Romero and Alberto Abelló

Universitat Politècnica de Catalunya, Jordi Girona 1-3, E-08034 Barcelona, Spain

Abstract. In this paper we present a method to validate user multidi-
mensional requirements expressed in terms of SQL queries. Furthermore,
our approach automatically generates and proposes the set of multidi-
mensional schemas satisfying the user requirements, from the organiza-
tional operational schemas. If no multidimensional schema is generated
for a query, we can state that requirement is not multidimensional.

Keywords: Multidimensional Design, Design by Examples, DW.

1 Introduction

In this paper we present a method to validate user multidimensional require-
ments expressed in terms of SQL queries over the organizational operational
sources. In our approach, the input query is decomposed to infer relevant im-
plicit and explicit potential multidimensional knowledge contained and accord-
ingly, it automatically proposes the set of multidimensional schemas satisfying
those requirements. Thus, facts, dimensions and dimension hierarchies are iden-
tified, giving support to the data warehouse design process. Conversely, if our
process has not been able to generate any multidimensional schema, we would
be able to state that the input query is not multidimensional.

Our main contribution is the automatization of identifying the multidimen-
sional concepts in the operational sources with regard to the end-user require-
ments. Demand-driven design approaches ([12]) focus on determining the user
requirements to later map them onto data sources. This process is typically car-
ried out by the DW expert and it is hardly automatized. Therefore, it is up to the
expert criterion to properly point out the multidimensional concepts giving rise
to the multidimensional schema. Conversely, in our approach we automatically
generate and propose a set of multidimensional schemas validating the input
requirements, giving support to the DW expert along the design process.

Notice we propose a method within a supply/demand-driven framework. Our
method starts analyzing the requirements stated by the user (in terms of SQL
queries), as typically performed in demand-driven approaches. However, it ana-
lyzes the operational relational data sources in parallel, as typically performed
in supply-driven approaches, to extract additional knowledge needed to validate
the user requirements as multidimensional.

We start with section 2 presenting the related work in the literature; section 3
presents the foundations our method is based on whereas section 4 introduces our
approach. For the sake of a better comprehension, section 5 presents a practical
application of our method and finally, section 6 concludes the paper.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 85–94, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

86 O. Romero and A. Abelló

2 Related Work

As presented in [12], the DW design process can be developed within a supply-
driven or a demand-driven approach. Several methodologies following both
paradigms have been presented in the literature. On one hand, demand-driven
approaches ([12], [5]) focus on determining the user multidimensional require-
ments (as typically performed in other information systems) to later map them
onto data sources. As far as we know, none of them automatize the process. On
the other hand, supply-driven approaches ([11], [3], [7], [6] and [2] among others)
start thoroughly analyzing the data sources to determine the multidimensional
concepts in a reengineering process. In that case, the approach presented in [6]
is the only one partially automatizing the process.

Asmentioned,ourapproachcombinesademand/supply -drivenapproachassug-
gested in [10]. Other works have already combined both approaches, like [5] and [4].
Main differencewith our approach is that the first one does not fully automatize the
process whereas the second one does not focus on modeling multidimensionality.

3 Framework

In this section we present the criteria our work is based on. That is, those used
to validate the input query as a valid multidimensional requirement:

[C1] Relational modeling of multidimensionality: Multidimensionality is
based on the fact/dimension dichotomy. Hence, we consider a Dimension to
contain a hierarchy of Levels representing different granularities (or levels of
detail) to study data, and a Level to contain Descriptors. On the other hand,
a Fact contains Cells which contain Measures. Like in [11], we consider a Fact
can contain not just one but several different materialized levels of granularity
of data. Therefore, one Cell represents those individual cells of the same gran-
ularity that show data regarding the same Fact (i.e. a Cell is a “Class” and
cells are its instances). Specifically, a Cell of data is related (in the relational
model, by means of FK’s) to one Level for each of its associated Dimension
of analysis. Finally, one Fact and several Dimensions to analyze it give rise
to a Star, to be implemented in the relational model through an “star” or an
“snow-flake” schemas as presented in [8].

[C2] The cube-query template: The standard SQL’92 template query to
retrieve a Cell of data from the RDBMS was first presented in [8]:
SELECT l1.ID, ..., ln.ID, [F(]c.Measure1[)], ...
FROM Cell c, Level1 l1, ..., Leveln ln
WHERE c.key1=l1.ID AND ... AND c.keyn=ln.ID [AND li.attr Op. K]
[GROUP BY l1.ID, ..., ln.ID]
[ORDER BY l1.ID, ..., ln.ID]

The FROM clause contains the “Cell table” and the “Level tables”. These
tables are properly linked in the WHERE clause, where we can also find logic
clauses restricting an specific Level attribute (i.e. a Descriptor) to a constant K
by means of a comparison operator. The GROUP BY clause shows the identifiers
of the Levels at which we want to aggregate data. Those columns in the grouping

Multidimensional Design by Examples 87

must also be in the SELECT clause in order to identify the values in the result.
Finally, the ORDER BY clause is intended to sort the output of the query.

[C3] The Base integrity constraint: Dimensions of analysis should be or-
thogonal. Despite it could be possible to find Dimensions determining others
in a multidimensional schema, it must be avoided among Dimensions arrang-
ing the multidimensional space in a cube-query, in order to guarantee cells are
fully functionally determined by Dimensions ([1]). Therefore, we call a Base
to those minimal set of Levels identifying unequivocally a Cell, similar to the
“primary key” concept in the relational model.

[C4] The correct data summarization integrity constraint: Data summa-
rization performed in multidimensionality must be correct, and we warrant this
by means of the three necessary conditions (intuitively also sufficient) introduced
in [9]: (1) Disjointness (Sets of cells at an specific Level to be aggregated must
be disjoint); (2) Completeness (Every cell at a certain Level must be aggre-
gated in a parent Level) and (3) Compatibility (Dimension, kind of measure
aggregated and the aggregation function must be compatible). Compatibility must
be satisfied since certain functions are incompatible with some Dimensions and
kind of measures. For instance, we can not aggregate Stock over Time Dimen-
sion by means of sum, as some repeated values would be counted. However, this
last condition can not be automatically checked unless additional information
would be provided, since it is not available neither in the requirements nor in
the source schemas.

Multidimensionality pays attention to two main aspects; placement of data
in a multidimensional space and summarizability of data. Therefore, if we can
verify that the SQL query given follows the cube-query template; it does not
cause summarizability problems and data retrieved is unequivocally identified in
the space, we would be able to assure it undoubtedly makes multidimensional
sense. Moreover, since it is well-known how to model multidimensionality in the
relational model, we can look for this pattern over the operational schemas to
identify the multidimensional concepts. Additionally, we introduce other optional
criteria to validate the query, to be used depending on the DW expert:

[C5] Selections: Multidimensional selections must be carried out by means
of logic clauses in the WHERE clause (i.e. field comparison operator constant).
However, we could allow to select data joining two relations through, at least, two
different conceptual relationships between them and therefore, not navigating
but selecting data equally retrieved by those joins.

[C6] Degenerate dimensions: Multidimensionality is typically modeled forc-
ing Cells to be related, by means of FK’s, to its analysis Dimensions (see [C1]).
However, in a non-multidimensional relational schema this may not happen, and
we could have a table attribute representing a Dimension not pointing to any
table (for instance, dates or control numbers). In the multidimensional model,
these rather unusual Dimensions were introduced in [8], and they are known
as “degenerate dimensions”.

88 O. Romero and A. Abelló

4 Our Method

Our approach aims to automatically validate a syntactically correct SQL query
representing user multidimensional requirements, as a valid (syntactically and
semantically) cube-query. An SQL query is a valid cube-query if we are able
to generate a non-empty set of multidimensional schemas validating that query.
Otherwise, the input query would not represent multidimensional requirements.
Multidimensional schemas proposed will be inferred from those implicit restric-
tions, presented in previous section, an SQL query needs to guarantee to make
multidimensional sense; playing the operational databases schemas a key role.
This process is divided into two main phases: first one creates what we call the
multidimensional graph; a graph concisely storing relevant multidimensional in-
formation about the query, that will facilitate the query validation along the
second phase. Such graph is composed of nodes, representing tables involved in
the query and edges, relating nodes (i.e. tables) joined in the query. Our aim is
to label each node as a Cell (factual data) or a Level (dimensional data). A
correct labeling of all the nodes gives rise to a multidimensional schema fitting
the input query. Along this section, due to lack of space, we introduce a detailed
algorithm in pseudo code to implement our method, followed by a brief expla-
nation of each one of its steps. For the sake of readability, comprehension of the
algorithm took priority over its performance:

1. For each table in the FROM clause do

(a) Create a node and Initialize node properties;
2. For each attribute in the GROUP BY clause do

(a) node = get_node(attribute);
(b) if (!defined_as_part_of_a_CK(attribute)) then Label node as Level;
(c) else if (!degenerate dimensions allowed) then

i. FK = get_F K(attribute); node_dest = node; attributes_F K = attribute;
ii. while chain_of_F Ks_follows(F K) and F K_in_W HERE_clause(F K) do

A. FK = get_next_chained_F K(F K); node_dest = get_node(get_table(F K));
attributes_F K = get_attributes(F K);

iii. /* We must also check #attributes selected matches #attributes at the end of the chain. */
iv. if (FK == NULL and #attrs(attribute) == #attrs(attributes_F K)) then

A. Label node_dest as Level;

3. For each attribute in the SELECT clause not in the GROUP BY clause do

(a) node = get_node(attribute); Label node as Cell with Measures selected;
4. For each comparison in the WHERE clause do

(a) node = get_node(attribute);
(b) if (!defined_as_part_of_a_CK(attribute)) then Label node as Level;
(c) else if (!degenerate dimensions allowed) then

i. attribute = get_attribute(comparison); FK = get_F K(attribute); node_dest =
get_node(attribute); attributes_F K = attribute;

ii. while chain_of_F Ks_follows(F K) and F K_in_W HERE_clause(F K) do

A. FK = get_next_chained_F K(F K); node_dest = get_node(get_table(F K));
attributes_F K = get_attributes(F K);

iii. if (FK == NULL and #attributes(attribute) == #attributes(attributes_F K)) then

A. Label node_dest as Level;

5. For each join in the WHERE clause do

(a) /* Notice a conceptual relationship between tables may be modeled by several joins in the WHERE */
(b) set_of_joins = look_for_related_joins(join);
(c) multiplicity = get_multiplicity(set_of_joins); relationships fitting = {};
(d) For each relationship in get_allowed_relationships(multiplicity) do

i. if (!contradiction_with_graph(relationship)) then

A. relationships fitting = relationships fitting + {relationship};
(e) if (!sizeof(relationshipsfitting)) then return notify_fail("Tables relationship not allowed");
(f) Create an edge(get_join_attributes(set_of_joins)); Label edge to relationships fitting;
(g) if (unequivocal_knowledge_inferred(relationships_fitting)) then propagate knowledge;

Multidimensional Design by Examples 89

Table 1. Valid multidimensional relationships in a relational schema

Multiplicity L - L C - C L - C C - L

1 - 1 � � � �
1 o- 1 � � × �
N - 1 � � × �

N o- 1 � � × �
N o-o 1 � � × ×
N -o 1 � � × ×
1 o-o 1 � � × ×

The algorithm starts analyzing each query clause according to [C2]:

Step 1: Each table in the FROM clause is represented as a node in the multi-
dimensional graph. Along the whole process we aim to label them and, if in
a certain moment, an already labeled node is demanded to be labeled with
a different tag, the process ends and raises the contradiction stated.

Step 2: The GROUP BY clause must fully functionally determine data
(see [C3]). Thus, fields on it represent dimensional data. However, we can not
label them directly as Levels since, because of [C1], Cells are related to Lev-
els by FK’s and dimensional data selected could be that in the Cell table.
Hence, we label it as a Level if that field is not defined as FK or it is but we
are able to follow a FK’s chain defined in the schema that is also present in
the WHERE. Then, the table where the FK’s chain ends plays a Level role.
If [C6] is assumed, we can not rely on FK’s to point out Levels.

Step 3: Those aggregated attributes in the SELECT not present in the GROUP
BY surely play a Measure role. Hence, each node is labeled as a Cell with
selected Measures. If the input query does not contain a GROUP BY clause,
we are not forced to aggregate Measures by means of aggregation functions
in the SELECT, and this step would not be able to point them out.

Step 4: Since a multidimensional Selection must be carried out over dimen-
sional data, this step labels nodes as Levels with the same criteria regarding
FK’s presented in step 2.

Step 5: Previous steps are aimed to create and label nodes whereas this step cre-
ates and labels edges. For each join between tables in the WHERE clause,
we first infer the relationship multiplicity with regard to the definition of the
join attributes in the schema (i.e. as FK’s, CK’s or Not Null). According to
the multiplicity, we look for those allowed multidimensional relationships de-
picted in table 1, not contradicting previous knowledge in the graph. If we find
any, we create an edge representing that join and label it with those allowed
relationships. Finally, if we are just considering one possible relationship, or
we can infer unequivocal knowledge (i.e. despite having some different alter-
natives, we can assure that origin/destination/both node(s) must be a Cell
or a Level), we update the graph labeling the nodes accordingly. If we update
one such node, we must propagate in cascade new knowledge inferred to those
edges and nodes directly related to those updated.

Next, we need to validate the graph as a whole. However, notice the graph
construction may have not labeled all the nodes. By means of backtracking, we
first look for all those non-contradictory labeling alternatives, to be validated
each one as follows:

90 O. Romero and A. Abelló

6. If !connected(graph) then return notify_fail("Aggregation problems because of cartesian product.");
7. For each subgraph of Levels in the multidimensional graph do

(a) if contains_cycles(subgraph) then

i. /* Alternative paths must be semantically equivalent and hence raising the same multiplicity. */
ii. if contradiction_about_paths_multiplicities(subgraph) then return notify_fail("Cycles

can not be used to select data.");
iii. else ask user for semantical validation;

(b) if exists_two_Levels_related_same_Cell(subgraph) then return notify_fail("Non-orthogonal
Analysis Levels");

(c) For each relationship in get_1_to_N_Level_Level_relationships(subgraph) do

i. if left_related_to_a_Cell_with_Measures(relationship) then return
notify_fail("Aggregation Problems.");

8. For each Cell pair in the multidimensional graph do

(a) For each 1_1_correspondence(Cellpair) do Create context edge between Cell pair;
(b) For each 1_N_correspondence(Cellpair) do Create directed context edge between Cell pair;
(c) If exists_other_correspondence(Cellpair) then return notify_fail("Invalid correspondence

between Cells.");
9. if contains_cycles(Cells path) then

(a) if contradiction_about_paths_multiplicities(Cells path) then return notify_fail("Cycles can
not be used to select data.");

(b) else ask user for semantical validation; Create context nodes(Cells path);
10. For each element in get_1_to_N_context_edges_and_nodes(Cells path) do

(a) If CM_at_left(element) then return notify_fail("Aggregation problems among Measures.");
11. If exists_two_1_to_N_alternative_branches(Cells path) then return notify_fail("Aggregation

problems among Cells.");

Step 6: The multidimensional graph must be connected to avoid the “Cartesian
Product” ([C6]). Moreover, it must be composed of valid edges giving rise
to a path among Cells (factual data) and connected subgraphs of Levels
(dimensional data) surrounding it.

Step 7: This step validates Levels subgraphs with regard to Cells placement:
According to [C3], two different Levels in a subgraph can not be related to
the same Cell (step 7b); to preserve [C4], Level - Level edges raising aggre-
gation problems on Cells with Measures selected must be forbidden (step
7c), and finally, if we do not consider [C5], every subgraph must represent
a valid Dimension hierarchy (i.e. not being used to select data). Thus, we
must be able to point out two nodes in the subgraph representing the top and
bottom Levels of the hierarchy, and if there are more than one alternative
path between those nodes, they must be semantically equivalent (7a).

Step 8: Cells determine multidimensional data and they must be related some-
how in the graph. Otherwise, they would not retrieve a single Cube of data.
For every two Cells in the graph, we aim to validate those paths between
them as a whole, inferring and validating the multiplicity raised as follows:
(1) if exists a one-to-one correspondence between two Cells, we replace all
relationships involved in that correspondence, by a one-to-one context edge
between both Cells (i.e. a context edge replaces that subgraph represent-
ing the one-to-one correspondence). As depicted in figure 1.1, it means that
there are a set of relationships linking, as a whole, a Cell CK, also linked
by one-to-one paths to a whole CK of the other Cell. (2) Otherwise, if both
CK’s are related by means of one-to-many paths or the first CK matches
the second one partially, we replace involved relationships by a one-to-many
directed context edge. Finally, many-to-many relationships between Cells
would invalidate the graph since they do not preserve disjointness.

Steps 9, 10 and 11: Previous step has validated the correspondences between
Cells whereas these steps validate the Cells path (multidimensional data
retrieved) as a whole: According to [C5], step 9 validates cycles in the path of
Cells to assure they are not used to select data, similar to the Levels cycles

Multidimensional Design by Examples 91

Fig. 1. Examples of Cells paths of context edges and nodes

validation. Once the cycle has been validated, Cells involved are clustered
in a context node labeled with the cycle multiplicity, as showed in figure 1.2.
Steps 10 and 11, according to [C4], look for potential aggregation problems.
First one looks for Cells with Measures selected at the left side of a one-to-
many context edge or node whereas second one looks for alternative branches
with one-to-many context edges or nodes each, raising a forbidden many-to-
many relationship between Cells involved (as depicted in figure 1.2).

5 A Practical Example

In this section, we present a practical example of the method introduced along
this paper. We consider figure 2 (where CK’s are underlined and FK’s dash-
underlined) to depict part of the operational schema of the organization. There-
fore, given the following requirement: "Retrieve benefits obtained with regard to
supplier ’ABC’, per month", it could be expressed in SQL as:
SELECT m.month, my.supplier, SUM(mp.profit)
FROM Month m, Monthly sales ms, Monthly supply my, Monthly profit mp, Supplier s, Prodtype pt, Product p
WHERE mp.month = ms.month AND mp.product = ms.product AND s.month = m.month AND ms.product = p.product AND my.month = m.month
AND my.supplier = s.supplier AND my.prodtype = pt.prodtype AND p.prodtype = pt.prodtype AND s.supplier = ’ABC’
GROUP BY m.month, my.supplier
ORDER BY m.month, my.supplier

We aim to decide if this query makes multidimensional sense. If it does, our
method will propose the set of multidimensional schemas satisfying our multi-
dimensional needs. First, we start constructing the multidimensional graph. In
our case, we do not consider degenerate dimensions (see [C6]):

Step 1: We first create a node for each table in the FROM clause. Initially,
they are labeled as unknown (?) nodes.

Step 2 and 3: For each attribute in the GROUP BY clause, we try to identify
the role played by those tables which they belong to:

– m.month: This attribute belongs to the Month table. Since it is not part of a
FK, we can directly label that node as a Level.

– my.supplier: This attribute belonging to the Monthly supply table is de-
fined as a FK pointing to the supplier attribute in the Supplier table.
This equality can be also found in the WHERE clause, and therefore, we
can follow the FK chain up to the Supplier node, where the FK chain ends.
Consequently, we label the Supplier node as a Level.

Finally, for each attribute in the SELECT not in the GROUP BY (i.e. mp.pro-
fit), we identify the node it belongs to as a Cell with Measures selected.

Step 4: In this step, we analyze the s.supplier = ’ABC’ comparison clause.
First, we extract the attribute compared (supplier) and identify the table it

92 O. Romero and A. Abelló

Prodtype(prodtype)
Supplier(supplier, name, city)
Product(product, prodtype (→prodtype.prodtype), discount)
Month(month, numdays, season)
Monthly profit(month (→month.month), product(→product.product), profit)
Monthly sales(month (→month.month), product(→product.product), sales)
Monthly supply(month(→month.month),prodtype(→prodtype.prodtype),supplier(→supplier.supplier))

Fig. 2. The organizational relational database schema

belongs to (Supplier). Since it is not part of a FK, this table must be labeled as
a Level. However, since it has been already labeled and there is no contradiction,
the algorithm goes on without modifying the graph.

Step 5: For each join in the WHERE clause, we firstly infer the relationship
multiplicity. For instance, mp.month = ms.month joins two attributes that are
part of two CK’s in their respective tables. Therefore, we first look if the whole
CK’s are linked. In this case, this is true since mp.product = ms.product also
appears in the WHERE clause. Consequently, we are joining two CK’s, raising
up a 1 o-o 1 relationship. Since this relationship asks to preserve the multidi-
mensional space due to zeros, at this moment, we should suggest to the user to
outer-join properly both tables.

Secondly, according to the multiplicity inferred, we look at table 1 looking
for those allowed multidimensional relationships between both nodes. That is,
C - C or L - L. However, last alternative raises a contradiction, since it asks to
label the Monthly profit node as a Level when it has been already labeled as
a Cell with Measures. Consequently, it is eluded. Since the set of relationships
allowed is not empty, we create an edge and we label it accordingly.

Finally, we propagate current knowledge. That is, according to that edge,
the Monthly sales table must also be a Cell, and therefore, it is labeled as a
Cell without selected Measures. After repeating this process for every join, we
would obtain, at the end of this step, the graph depicted in figure 3.

To validate the graph, first, we check if the graph is connected (in this case,
it is). Next, since some nodes have not been labeled, we find out all the valid
alternatives by means of backtracking. For instance, if the Product node was
labeled as a Level, according to the edge between Product and Prodtype, the
latter should be also labeled as a Level. Moreover, the Monthly supply node
may be labeled as a Cell or a Level. The backtracking algorithm ends retriev-
ing all those non-contradictory labeling alternatives depicted in table 2 (those
crossed out are eluded in this step since they raise up contradictions).

For each labeling retrieved by the backtracking algorithm, we try to validate
the graph. For instance, we will follow in detail the validation algorithm for the
first alternative, where all three unknown nodes are labeled as Cells:

– We validate each subgraph of Levels (namely those isolated Levels depicted
in figure 3) with regard to Cells. Since they do not contain cycles (alternative
paths) of Levels; there is neither two Levels in the same subgraph related
to the same Cell nor forbidden Level - Level relationships, both are correct.

– Next, we create the context edges between Cells. In this case, we are not
able to replace all the edges, since the Monthly supply and Monthly sales

Multidimensional Design by Examples 93

Fig. 3. The multidimensional graph deployed

unique correspondence (through the Month node) can not be replaced by a
context edge (they are only linked through their Month field; i.e. joining
two pieces of CK’s and raising a forbidden many-to-many context edge).

Since we have found a contradiction, we elude this labeling and try the next
one. Second labeling is forbidden because it raises a one-to-many Level - Level
relationship (i.e. Monthly supply - Month) where the one side is related to a
Cell with selected Measures (i.e. Monthly profit). Third alternative raises
the same problem than the first one whereas the fourth one relates two Levels
of the subgraph with the same Cell. Finally, the last alternative is valid, since
we are able to replace Monthly supply and Monthly sales correspondence by
a one-to-many directed context edge (in fact, they are related by joins raising
a many-to-many relationship, but the comparison over the supplier field in
the WHERE clause turns it into a one-to-many). Furthermore, the Cells path
do not conform a cycle; Cells at the left side of the one-to-many context edge
(i.e. Monthly supply) do not select Measures, and there are not alternative
branches with one-to-many context edges or nodes each either.

Summing up, the algorithm would conclude that requirement is multidimen-
sional and would propose the Monthly supply, Monthly profit and Monthly
sales as factual data whereas Supplier, Product and Prodtype, and Month
would conform the dimensional data.

6 Conclusions

Based on the criteria that an SQL query must enforce to make multidimensional
sense, we have presented a method to validate multidimensional requirements
expressed in terms of an SQL query. Our approach is divided into two main
phases: first one creates the multidimensional graph storing relevant multidi-
mensional information about the query, that will facilitate the query validation

Table 2. Labeling alternatives retrieved

Monthly supply Prodtype Product Remarks

C C C Illegal context edge
L L C Invalid subgraph of Levels
C L C Illegal context edge
L L L Non-orthogonal dimensions
C L L �
C C L ×
L C C ×
L C L ×

94 O. Romero and A. Abelló

along the second phase. Such graph represents tables involved in the query and
its relationships, and our aim is to label each table as factual data or dimensional
data. A correct labeling of all the tables gives rise to a multidimensional schema
fulfilling the requirements expressed in the input query. Thus, if we are not able
to generate any correct labeling, the input query would not represent multidi-
mensional requirements. As future work, we will focus on how to conciliate those
labeling proposed by our method for different multidimensional requirements.

Acknowledgments. This work has been partly supported by the Ministerio de
Educación y Ciencia under project TIN 2005-05406.

References

1. A. Abelló, J. Samos, and F. Saltor. YAM2 (Yet Another Multidimensional
Model): An extension of UML. Information Systems, 31(6):541–567, 2006.

2. M. Böhnlein and A. Ulbrich vom Ende. Deriving Initial Data Warehouse Struc-
tures from the Conceptual Data Models of the Underlying Operational Information
Systems. In Proc. of 2nd Int. Workshop on Data Warehousing and OLAP (DOLAP
1999), pages 15–21. ACM, 1999.

3. L. Cabibbo and R. Torlone. A Logical Approach to Multidimensional Databases.
In Proc. of 6th Int. Conf. on Extending Database Technology (EDBT 1998), volume
1377 of LNCS, pages 183–197. Springer, 1998.

4. D. Calvanese, L. Dragone, D. Nardi, R. Rosati, and S. Trisolini. Enterprise Mod-
eling and Data Warehousing in TELECOM ITALIA. Information Systems, 2006.

5. P. Giorgini, S. Rizzi, and M. Garzetti. Goal-oriented requirement analysis for data
warehouse design. In Proc. of 8th Int. Workshop on Data Warehousing and OLAP
(DOLAP 2005), pages 47–56. ACM Press, 2005.

6. M. Golfarelli, D. Maio, and S. Rizzi. The Dimensional Fact Model: A Conceptual
Model for Data Warehouses. Int. Journals of Cooperative Information Systems
(IJCIS), 7(2-3):215–247, 1998.

7. B. Hüsemann, J. Lechtenbörger, and G. Vossen. Conceptual Data Warehouse
Modeling. In In Proc. of DMDW’00). CEUR-WS.org, 2000.

8. R. Kimball, L. Reeves, W. Thornthwaite, and M. Ross. The Data Warehouse
Lifecycle Toolkit: Expert Methods for Designing, Developing and Deploying Data
Warehouses. John Wiley & Sons, Inc., 1998.

9. H.J. Lenz and A. Shoshani. Summarizability in OLAP and Statistical Data Bases.
In Proc. of SSDBM’1997. IEEE, 1997.

10. S. Luján-Mora and J. Trujillo. A comprehensive method for data warehouse design.
In In Proc. of DMDW’2003, volume 77. CEUR-WS.org, 2003.

11. D.L. Moody and M.A. Kortink. From Enterprise Models to Dimensional Models: A
Methodology for Data Warehouse and Data Mart Design. In Proc. of DMDW’2000.
CEUR-WS.org, 2000.

12. R. Winter and B. Strauch. A Method for Demand-Driven Information Require-
ments Analysis in Data Warehousing Projects. In In Proc. of HICSS’03, pages
231–239. IEEE, 2003.

	Introduction
	Related Work
	Framework
	Our Method
	A Practical Example
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

