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Abstract. In this work we propose, for an environment where multidimensional 
queries are made over multiple Data Marts, techniques for providing the user 
with quality information about the retrieved data. This meta-information 
behaves as an added value over the obtained information or as an additional 
element to take into account during the proposition of the queries. The quality 
properties considered are freshness, availability and accuracy. We provide a set 
of formulas that allow estimating or calculating the values of these properties, 
for the result of any multidimensional operation of a predefined basic set. 

1 Introduction 

The use of OLAP systems has become common practice, and in current times 
enterprise managers have the possibility to analyze the whole enterprise information 
with a multidimensional visualization. This information is obtained querying many 
databases, whose data is prepared for this kind of analysis. These databases are called 
Data Marts (DM). Each DM contains information that is represented in a 
multidimensional manner, is oriented to certain subject of interest, and comes from 
other databases, such as enterprise Data Warehouses or operational databases. 

The user, who receives the answers of the queries submitted to the DMs, is quite 
far from the generation of the information (unknowing how and when it was 
generated at sources and loaded to DMs), therefore it would be extremely useful for 
him to count with additional information. This meta-information would make him feel 
more confident about the decisions he is making based on the information retrieved 
by the queries and, on the other hand, would allow him to eventually reformulate his 
queries. 

Data quality is being deeply studied since some years ago. There exists various 
quality properties defined in the literature, such as completeness, accuracy, 
accessibility, freshness, availability. In this direction, there is much work for the 
particular case of information systems that are fed from multiple sources [1] [2] [3]. 
The possibility to provide a considerable amount of quality information to the users of 
such systems, and its importance, is globally recognized. 

The meta-information associated to the retrieved information from the DMs may 
consist of a set of values corresponding to certain quality properties. We consider 
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freshness, availability and accuracy constitute an interesting group of quality 
properties for this context, due to functional characteristics of the DMs and intrinsic 
characteristics of the information received by the user. On one hand, each DM is 
periodically maintained, which generates constraints in the DM availability and 
restricts the freshness of its data. On the other hand, the information obtained by the 
user is the result of combinations of data coming from different sources, with 
probably heterogeneous levels of accuracy, thus the accuracy of this information is 
not a trivial meta-information and is a significant added value for the user. 

As an example, consider a director of a multi-national enterprise, who needs 
information about its sales throughout several countries. For obtaining it, he makes 
queries over DMs belonging to the different countries’ subsidiaries. These DMs 
follow certain standards of formats, codification, etc., so that their information can be 
integrated by multidimensional operations. Suppose the director obtains sales 
amounts corresponding to South-America, discriminated by products, for each month 
of the current year. We believe that this person would be really grateful if he also 
obtained meta-information such as when the involved data was loaded in the DMs and 
how accurate it is. And still more, if previous to the execution of the query he is 
informed about the availability of the data he is requiring, and alternative DMs for 
obtaining the non-available information are suggested to him. 

Some works about federations of OLAP systems and other technologies can be 
found in the literature [4] [5]. This work is situated in the context of an environment 
where multidimensional queries are made over multiple DMs, sometimes combining 
various DMs in the same query. Our goal is to propose techniques for giving support 
to users, providing them quality information about the information retrieved, as an 
added value over the obtained information or as an additional element to consider 
during the proposition of the queries. 

Given a query over DMs, proposed by the user, and the freshness, availability and 
accuracy values of each DM, the problem we address consists on calculating: (i) 
availability of the needed DMs’ information, and (ii) freshness and accuracy of the 
information resulting from the executed query. The techniques we propose use 
existing proposals for quality properties propagation in Relational Algebra operations 
[1][6][7] as a reference point. Nevertheless, they involve particular criteria that are 
related with a multidimensional classification of the relational elements and other 
particularities of the OLAP context. 

The contribution of this work is the proposal of: (i) a specific scenario where 
OLAP-queries results are enriched with quality meta-information, and (ii) techniques 
for calculating the availability, freshness and accuracy values of information that was 
obtained through application of OLAP queries to multiple DMs. 

The rest of the paper is organized as follows. Section 2 presents the context of the 
work, Section 3 presents the quality properties we use, in Section 4 we present our 
proposal for quality evaluation, and finally in Section 5 we present the conclusions. 
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2 Context 

We establish here a concrete scenario, for which we propose the quality management 
techniques. First, we describe the basic scenario that we consider as starting point for 
our work. After, we present the enriched scenario, which is the basic one enriched 
with our proposal. 

2.1 Basic Scenario 

We consider a ROLAP system (OLAP over RDBMS), where users execute 
multidimensional queries. These queries are composed by multidimensional 
operations. In this section we present the scenario and the multidimensional-
operations set considered. 

OLAP functionality is characterized by dynamic multidimensional analysis of 
consolidated enterprise data supporting end user analytical and navigational activities 
(interactively exploring cubes). In an OLAP system each multidimensional operation 
is a function that takes Cubes (a set of cells placed in an n-dimensional space) as 
arguments and returns a Cube. “ROLAP” tools automatically generate a SQL query 
according to the operations performed by the user, see Figure 1. Many times end users 
navigate from Cube to Cube not just applying isolated operations but performing 
sequences of operations; this sequence is performed as a sequence of SQL queries.  

multidimesion
al operations

Datamart A Datamart C

cube-query 
result

Datamart B  
Fig. 1. ROLAP System. 
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Fig. 2. Relational implementation of 

multidimensional concepts. 

Given that it does not exist any standard multidimensional algebra or data model, 
we use YAM2 [9] multidimensional algebra for the set of operations, because it 
provides a direct translation to SQL and it allows making any multidimensional 
query; in [8] this algebra is stated as complete, which assures us the expressiveness 
offered. Multidimensional operations are represented as SQL queries using a cube-
query template that was proposed in [8] for retrieving a Cell of data that conforms to a 
Cube, from the RDBMS. Figure 2 shows the correspondences between an OLAP and 
a ROLAP system, each multidimensional operation can be translated to a cube-query 
and each cube can be translated to a relation. 
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Each DM in this scenario is a set of cubes that correspond to the same subject of 
analysis, i.e. to the same fact. These cubes are represented by the Relational Model, 
through the star (see Figure 3), snowflake (see Figure 4) or a hybrid schema. 
Completely normalizing each Dimension we get a snowflake schema and not 
normalizing them at all results in a star schema. We choose the generic approach, like 
in [10]. With respect to the Fact, it is defined as a set of Cells, which are 
materializations of different levels of aggregations of the same fact. The Dimension 
Levels may be materialized according to the materializations of the Cells, since the 
latter have FKs that must point to the corresponding PKs in the Level relations. 
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Fig. 3. Star schema. 
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Fig. 4. Snowflake schema. 

We define two kinds of DMs, according to the volatility of their data, and we 
assume that our system is organized this way: (1) Stable DM, contains only historical 
information, whose fact-dates range between two certain dates in the past. Therefore, 
this DM is not refreshed nor loaded any more. (2) Non-stable DM, contains  
information that comes up to the present date. This DM is periodically refreshed. 
 
Multidimensional Operations. We use the SQL template (Cube-query), for 
constructing the different multidimensional operations. 
Cube-query: RESULT = SELECT l1.ID, …, ln.ID, c.Measure1, … 

FROM Cell c, Level1 l1, …, Leveln ln 
WHERE c.key1 = l1.ID AND … AND c.keyn = ln.ID 
GROUP BY l1.ID, …, ln.ID 
ORDER BY l1.ID, …, ln.ID 

The following are the intuitive operations definitions and the associated SQL code. 
 
Dice. By means of a predicate P over a Dimension attribute, this operation allows to 
choose the subset of points of interest out of the whole n-dimensional space. 

 

SELECT l1.ID, …, ln.ID, c.Measure1, … 
FROM Cell c, Level1 l1, …, Leveln ln 
WHERE c.key1 = l1.ID AND … AND c.keyn = ln.ID 
AND P 
GROUP BY l1.ID, …, ln.ID 
ORDER BY l1.ID, …, ln.ID 

 
Projection. This just selects a subset of Measures from those available in the Cube. 
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SELECT l1.ID, …, ln.ID, c.Measure1, … 
FROM Cell c, Level1 l1, …, Leveln ln 
WHERE c.key1 = l1.ID AND … AND c.keyn = ln.ID 
GROUP BY l1.ID, …, ln.ID 
ORDER BY l1.ID, …, ln.ID 

 
Drill-across. This operation changes the image set of the Cube. The n-dimensional 
space remains exactly the same, only the cells placed in it change. 

 

SELECT l1.ID, …, ln.ID, c.Measure1, …, 
c’.Measure1’, … 
FROM Cell c,Cell’ c’, Level1 l1, …, Leveln ln 
WHERE c.key1 = l1.ID AND … AND c.keyn = ln.ID  
AND c’.key1 = l1.ID AND … AND c’.keyn = ln.ID 
GROUP BY l1.ID, …, ln.ID 
ORDER BY l1.ID, …, ln.ID 

 
Roll-Up. It groups cells in the Cube based on an aggregation hierarchy, modifying the 
granularity of data. Assuming the two levels are materialized separately, suppose 
level1 and levelk are two contiguous levels from the same dimension (it exists a 
foreign key from level1 to levelk), and we want to roll up from level l1 to level lk. 

 

SELECT lk.ID, …, ln.ID, F(c.Measure1), … 
FROM Cell c,Level1 l1, …, Leveln ln, Levelk lk 
WHERE c.key1 = l1.ID AND … AND c.keyn = ln.ID 
AND l1.keyk = lk.ID 
GROUP BY lk.ID, …, ln.ID 
ORDER BY lk.ID, …, ln.ID 

 
Change Base. This operation reallocates exactly the same instances of a Cell in a new 
n-dimensional space with exactly the same number of points. Thus, it actually 
modifies the analysis dimensions used. 

 

SELECT n1.ID, …, nn.ID, c.Measure1, … 
FROM Cell c, Level1 l1, …, Leveln ln, 
NewLevel1 n1, …, NewLeveln nn 
WHERE c.key1 = l1.ID AND … AND c.keyn = ln.ID 
AND l1.att1 = n1.ID AND … AND ln.attn = nn.ID 
GROUP BY n1.ID, …, nn.ID 
ORDER BY n1.ID, …, nn.ID 

 
Union. We propose a variant of Union operation proposed in [8], because, is very 
important to consider the possibility of combining cubes, which we know they have 
the same schema and formats, but we do not know anything about the data they 
contain. This operation performs the union of two n-dimensional identical cubes.  

 

SELECT l1.ID, …, ln.ID, c.Measure1, … 
FROM Cell c, Level1 l1, …, Leveln ln 
WHERE c.key1 = l1.ID AND … AND c.keyn = ln.ID 
GROUP BY l1.ID, …, ln.ID 
ORDER BY l1.ID, …, ln.ID 
UNION 
SELECT l1.ID, …, ln.ID, c.Measure1, … 
FROM Cell’ c, Level1’ l1, …, Leveln’ ln 
WHERE c.key1 = l1.ID AND … AND c.keyn = ln.ID 
GROUP BY l1.ID, …, ln.ID 
ORDER BY l1.ID, …, ln.ID 
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2.2 Enriched Scenario 

We enrich the scenario presented in last section with the quality evaluation of the 
queries that are posed by the user. In the following, we present the way it would work. 
The user of the OLAP system poses an OLAP query over various DMs. This query is 
decomposed into various multidimensional operations and translated to SQL. 
Availability is calculated through the sequence of operations, knowing if the 
information required by the user is available or not. The user is informed about it. 
Suppose it is available. Next, the user asks the system for the estimations of freshness 
and accuracy of the cube he will obtain. The system gives him a freshness value of the 
cube and an accuracy value for each of the cube measures he will obtain. The user 
decides to change a bit his query, excluding one of the participating DMs, and the 
estimated values improve. Finally, the user executes the query, obtaining the cube 
with its associated quality metadata, which was exactly calculated by the system. This 
metadata includes, the cube freshness value, the accuracy values for each cube 
measure, and also includes these values for each tuple that can be seen by the user if 
he is interested in going more in detail. 
 
System Metadata. To provide a comprehensive picture of the overall ROLAP system 
we use an extension of the Federation Ontology for Multi-Source Information System 
(MSIS) stated in [11]. It provides six metadata categories of federation information 
(e.g. quality properties indicators, access control directives topology information), 
which are highly flexible. In this context we only need two categories: 
• Data Quality: This category defines the data quality properties of the DM data 

and the multidimensional data result. 
• Source Quality of Service: This category defines the quality properties of the 

service of each DM. The DM resolves each multidimensional operation by means 
of a process or service. 

Each DM provides its own metadata to be used by the OLAP system. 

3 Quality Properties 

The quality properties we have chosen for our scenario are freshness, availability and 
accuracy. This choice is mainly due to two reasons: the usefulness that they may have 
for the DM users, and the existence of previous work about them that can be applied 
to our context. Based on existing approaches and definitions of these properties we 
propose one specific definition for each one, which we think are the most suitable for 
our needs. Besides each definition we state the level of granularity at which we apply 
the property, e.g. a whole DM, a cube, a table, each tuple, etc. 

3.1 Freshness 

Several definitions can be found in the literature for quality properties related to the 
age of the information. Some of them can be found in [12][13][1], while in [14] they 
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present a summary and classification of a wide set of existing approaches for this 
property. For this work we propose the definition: Freshness is the time elapsed since 
the data was loaded in the DM until it is received by the user through a query. 

We propose for the assignment of freshness values to the system, a DM 
granularity, a cube granularity and in some cases a tuple granularity. At each DM we 
do not manage tuple granularity, because we assume it is entirely loaded on a periodic 
basis, therefore it would be useless to have the possibility of different freshness values 
in different portions of the DM. 

The metadata needed for freshness information at the DM is the following: 
• Loading Period (lp): An integer that represents the quantity of hours passed 

between the starting time of two loading processes (period between loadings). 
• Loading Duration (ldur): An integer that represents an approximation of the 

quantity of hours that passes between the starting time of the loading process (the 
downing of the DM service) and its ending time (the starting service instant). 

• Last Loading Date/Time (lastl): A decimal that represents the date and time when 
the last loading process was started. 

• Stable-or-Not (st): A boolean that indicates if the DM is stable, i.e. if the DM is 
not refreshed because its information should cover just until certain date (as we 
explained in Section 2.1). 

In the case the DM is stable: 
 

 lp = ldur = 0 . 
lastl = NOW . 

(1) 
(2) 

 
where NOW is a special value, which means the actual moment. 
 
The metadata needed for freshness information in the whole system is the following: 
For each fact table (cube): 
• Freshness Value (fv): An integer that represents the quantity of hours elapsed 

since the table data was loaded in the DM. 
For each fact table, for each tuple: 
• Freshness Value by Tuple (fv_by_tuple): An integer that represents the quantity 

of hours elapsed since the tuple was loaded in the DM. 
The freshness information at the DM allows us to calculate the exact value of 

freshness at a certain moment at the DM (fv), and also the maximum and minimum 
freshness values (maxfv and minfv) that are possible at the DM.  
We calculate these DM values through the following formulas: 
 

 fv = round(actual_datetime – lastl) . 
maxfv = lp + ldur . 

minfv = ldur . 

(3) 
(4) 
(5) 

 
Note that for stable DMs: 
 

 fv = maxfv = minfv = 0 . (6) 
 
Each fv_by_tuple of each DM fact table is set to the fv of the DM. 
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3.2 Accuracy 

The term accuracy is frequently used to describe many different aspects related to the 
data itself. Semantic correctness, syntactic correctness, precision and fuzziness are 
some of the concepts related to accuracy that are used with similar intentions [1], [6], 
[15], [16]. For this work we propose the definition: Accuracy is the probability of an 
attribute value to be correct. A value is correct if corresponds to reality. 

The granularity we use for this property is at attribute level, but we manage 
accuracy information only for the measure attributes. This is because we consider this 
kind of attributes is the most relevant for the OLAP analysis, and also this restriction 
allows us to find solutions that are more specific to certain type of information. For 
each measure attribute we manage DM, cube and, sometimes, tuple granularity. At 
each DM we do not manage tuple granularity, because the measurement of accuracy 
at the DMs could not be made for each value of the attributes, since they are numeric 
values and cannot be easily verified (considering errors generated by wrong 
digitations). For example, it is not possible to use tools such as dictionaries or look-up 
tables, which allow verifying string values belonging to determined domains. 
Therefore, we suppose that the accuracy values at the DMs are estimated through 
statistic methods or by people involved in the generation of the data. 

The metadata needed for accuracy information is the following: 
For each fact table, for each measure attribute: 
• Accuracy Value (av): A decimal number between 0 and 1 that represents the 

probability of being correct for the values of the attribute. 
For each fact table, for each measure attribute, for each tuple: 
• Accuracy Value by Tuple (av_by_tuple): A decimal number between 0 and 1 that 

represents the probability of being correct for the value. 
At the DMs, each av_by_tuple of each measure of the fact tables is set to the av of the 
measure attribute. 

3.3 Availability 

Availability is a measure of a system or service readiness to perform its function 
when it is needed [17], [12]. For this work we propose the definition: Availability 
indicates if a service is ready for use at a given instant. 

We assume that the only factor that influences the availability of the DM is the 
loading process and that the DM is totally unavailable during this process. We 
manage a DM granularity and in the rest of the system a cube granularity. 

The metadata needed for availability information at the DM is the same as for 
freshness: i) loading period (lp), ii) loading duration (ldur), iii) last loading date/time 
(lastl) and iv) stable-or-not (st). 

The metadata needed for availability information in the whole system is the 
following: 
• Avalilability Value (vv): A Boolean that represents if the DM is available (vv = 

TRUE) or not (vv = FALSE). 
The metadata at the DM allows us to calculate the availability of the DM at a 

certain moment (vv). We calculate this value through the following formula: 
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 vv = actual_datetime >= (lastl + ldur) . (7) 

 
Note that for stable DMs: 
 

 vv = true(due to lastl = actual_datetime and ldur = 0) . (8) 

4 Quality Evaluation of User Queries’ Results 

Our goal is to determine how to obtain the quality values of the information retrieved 
by a query in our defined context. We propose techniques for two kinds of quality 
evaluation: (i) quality values calculation, after the query is executed, and (ii) quality 
values estimation, before the query is executed. For the calculation, we need to 
manage a granularity of tuple, since it takes into account the resulting tuples of each 
operation. In contrast, for the estimation we manage a cube granularity, since we do 
not need the information about the obtained tuples in each operation. 

We provide a formula for each quality property and operation. For a sequence of 
operations, the formulas are composed to obtain the quality values of the final cube. 
The estimations and calculations are done taking into account the SQL specifications 
for each multidimensional operation given in Section 2.1. The formulas we propose 
are based on previously proposed formulas for the Relational Algebra (RA) operators 
[1] [6] [7]. However, they take into account three main aspects that characterize our 
context: (i) the type of the elements that participate in each operation. Different types 
of relational elements are distinguished in the operations specifications. A relation can 
be a Cell (or fact table) or a Level (a table containing dimension data). An attribute 
can be a Measure, the key of a dimension level or some other dimension attribute. (ii) 
the relevance that each type of element has in the resulting quality. We state that the 
quality of the fact tables determines the quality of the user queries results. Therefore 
the fact tables and measure attributes must have the greatest influence in the quality 
evaluation formulas. (iii) the granularity managed. The OLAP context particularities 
suggest us certain granularities for the quality values, which are suitable and useful. 
We consider the cube granularity because each multidimensional operation result is a 
cube (in particular the user query result). We also work with the tuple granularity and 
in the case of accuracy, we manage the granularity at the level of each measure 
attribute. 

For the following sub-sections, consider the SQL specifications for the 
multidimensional operations presented in Section 2.1. 

4.1 Estimations 

In this section we present, for each multidimensional operation, a general formula for 
estimating the quality value of the result of its application. 
 
Freshness. In this context, it is not worth considering the cost (duration) of the 
operations because it is depreciable in comparison to the loading time of a DM and to 
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the period of time between two loadings. We consider facts’ freshness relevant only, 
since we assume dimensions have rather stable information. 

Estimations for RA Operations:  
• Projection, Selection, Aggregation: The original fv is maintained by these 

operations. 
• Join (R,S), Union (R,S): 

 
 fv(Result) = max(fv(R), fv(S)) . (9) 

Estimations for Multidimensional Operations: 
• Dice, Roll-Up, Projection, Change Base: The result has the same freshness value 

as the input fact table. Dice, Roll-Up, and Change Base operations involve joins 
between the fact table and dimension tables. However, the freshness of the 
dimensions does not affect the resulting freshness. 

 
 fv(Result) = fv(Cell) . (10) 

 
• Drill Across: It involves a join between the fact table of the original cube (Cell) 

and another fact table (Cell’). The dimensions that are also involved in the join, 
do not affect the resulting freshness. 

 
 fv(Result) = max(fv(Cell), fv(Cell’)) . (11) 

 
• Union: The union relational operator is applied over two sets of tuples from 

different fact tables. The formula is the same as (11). 
 
Accuracy. We consider as relevant the facts’ accuracy and not the dimensions’ one 
because the dimensions’ values are rather stable and we assume they have a good 
accuracy, while the quantity of measures’ values is constantly growing and these 
values are the main basis for the decision making process. 

Estimations for RA Operations: 
• Projection, Selection, Aggregation: The original av is maintained by these 

operations. 
• Join (R,S): 

 av(Result) = av(R) * av(S) . (12) 
 
• Union (R,S): A weighted average of input tables’ accuracy values, according to 

the tuple quantity of each input table, is done. 
 

 av(Result) = ( av(R) * |R| + av(S) * |S| ) / |R| + |S| . (13) 
 

Note that these estimations are proposed for a relation granularity. 
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Estimations for Multidimensional Operations: In this case, the join operations never 
affect the resulting accuracy values due to the granularity we manage, therefore we do 
not apply the estimation proposed for the RA join. When there is a join between fact 
tables, each measure attribute maintains its accuracy value. 
• Dice, Roll-Up, Projection, Change Base: These operations maintain the accuracy 

values for each measure attribute. 
 

 av(Result, Measurei) = av(Cell, Measurei) . (14) 
 
• Drill Across: It maintains the accuracy values for each measure attribute. 
 

 av(Result, Cell.Measurei) = av(Cell, Measurei) . 
av(Result, Cell’.Measurej) = av(Cell’, Measurej) . 

(15) 
 

 
• Union: For each measure attribute, we do a weighted average as in (13). 
 

 av(Result, Measurei) = (av(Cell, Measurei) * |Cell| +  
av(Cell’, Measurei) * |Cell’|) / |Cell| + |Cell’| . 

(16) 

 
Availability. Given a multidimensional operation, for availability to be true, we need 
that all necessary data for answering the corresponding SQL query are available. 
Therefore, in the estimation of this property the dimensions’ information has the same 
incidence as the facts’ information. 
• Projection, Roll-Up: These operations have as input only one fact table with one 

associated availability value. 
 

 vv(Result) = vv(Cell) . (17) 
 
• Dice: This operation includes a predicate P over an attribute of a dimension table, 

which may not be its key. Therefore, for executing this operation we need not 
only the availability of the fact table, but also the availability of the mentioned 
dimension table. However, all these tables belong to the same DM, therefore, 
assuring availability of the fact table is enough. The formula is the same as (17). 

 
• Change Base: For this operation not only the fact table must be available, but also 

the original and new dimension tables, so that the join between them can be done. 
The new dimension tables may belong to a different DM. 

 
 vv(Result) = vv(Cell) AND vv(NewLevel1) AND … AND 

vv(NewLeveln) . 
(18) 

• Drill Across, Union: In these operations the resulting data comes from both input 
fact tables, which may belong to different DMs. Therefore, the availability value 
of the result is equal to the “AND” of the availability values of the input fact 
tables.  

 
 vv(Result) = vv(Cell) AND vv(Cell’) . (19) 
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4.2 Calculations 

In this section we present, for each multidimensional operation, a general formula for 
calculating properties values of the result. 

For calculations we use a tuple granularity, thus the property values are affected by 
an operation when it generates one tuple from the combination of two or more tuples. 
Therefore, the RA operations that can affect calculations are join and aggregation. 

We use the ideas of estimations for RA operations existing in the literature for the 
cases of join and union, but in most cases we propose calculations that are specific for 
our context and granularity. 
 
Freshness. 
Calculation of fv_by_tuple. After the application of a multidimensional operation, we 
can calculate the fv by tuple. 
• Projection, Change Base, Dice: These operations do not affect tuples’ freshness 

values. Dice and Change Base operations involve joins between fact table and 
dimension tables. However, the freshness of dimension tuples does not affect 
freshness of the resulting tuples. 

 
 fv_by_tuple(t1) = fv_by_tuple(t2) . (20) 

 
for all <t1,t2>, where t1 is a Result tuple and t2 is the corresponding Cell tuple. 

• Union: The union relational operator is applied over two sets of tuples from 
different fact tables, however, when managing tuple granularity, the freshness 
values are not affected. 

 
 fv_by_tuple(t1) = fv_by_tuple(t2) . (21) 
 fv_by_tuple(t3) = fv_by_tuple(t4) .  

 
for all <t1,t2> where t1 is a Result tuple and t2 is the corresponding Cell tuple, for 
all <t3,t4>, where t3 is a Result tuple and t4 is the corresponding Cell’ tuple. 

• Roll-Up: This operation generates tuples that are aggregations from input tuples.  
 

 fv_by_tuple(t) = max(fv_by_tuple(u)) . (22) 
 

for all t, Result tuple, for all u ∈ T, where T is the tuple set of Cell grouped in t. 
• Drill Across: Each resulting tuple is generated by a join that involves two fact 

tables (Cell and Cell’), therefore its freshness is calculated from the freshness of 
the corresponding tuples of the input fact tables. 

 
 fv_by_tuple(t) = max(fv_by_tuple(u), fv_by_tuple(u’)) . (23) 

 
for all t, tuple of Result, where u ∈ Cell, and u’ ∈ Cell’, are the tuples whose 
values participate in t. 

 
Calculation of fv. After the application of a multidimensional operation, we can 
calculate the fv of a relation from the fv_by_tuple of its tuples. 
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 fv(Result) = max(fv_by_tuple(t)) . (24) 

 
for all t, tuple of Result. 

Note that in the case of Projection and Change Base the fv of the cube is 
maintained, while in the case of the other operations it may change. 
 
Accuracy. 
Calculation of av_by_tuple. Since the granularity managed for accuracy is of tuple 
and attribute, the RA join operator does not affect the accuracy of the resulting tuples. 
The value of each measure attribute of the result comes from only one of the input 
fact tables, therefore the accuracy of each tuple for each measure attribute is 
maintained by the join. 
• Projection, Change Base, Dice: These operations do not affect the tuples’ 

accuracy values for each measure attribute. 
 

 av_by_tuple(t1[Measurei]) = av_by_tuple(t2[Measurei]) . (25) 
 

for all <t1,t2>, where t1 is a tuple of Result and t2 is the matching tuple of Cell. 
• Union: Analogously to the case of freshness, the union relational operator is 

applied but it does not affect tuples’ accuracy values. The accuracy of each tuple 
in each measure of the result is the same it was in the corresponding input table. 

 
 av_by_tuple(t1[Measurei]) = av_by_tuple(t2[Measurei]) . (26) 
 av_by_tuple(t3[Measurej]) = av_by_tuple(t4[Measurej]) .  

 
for all <t1,t2>, where t1 is a tuple of Result and t2 is the matching tuple of Cell, for 
all <t3,t4>, where t3 is a tuple of Result and t4 is the matching tuple of Cell’. 

• Drill Across: It does not affect tuples’ accuracy values for each measure attribute. 
 

 av_by_tuple(t1[Measurei])=av_by_tuple(t2[Measurei]) . 
av_by_tuple(t1[Measurej])=av_by_tuple(t3[Measurej]) . 

(27) 
 

 
for all <t1,t2,t3>, where t1 is a tuple of Result, t2 is the corresponding tuple of Cell, 
and t3 is the corresponding tuple of Cell’. 

• Roll-Up: This operation generates tuples that are aggregations of input tuples. 
This calculation is made with the same criteria we use in the calculation of the av 
of a relation (we explain it below). 

 
 av_by_tuple(t[Measurei]) = (av_by_tuple(u1[Measurei]) * 

digits(u1[Measurei]) + … + av_by_tuple(un[Measurei]) * 
digits(un[Measurei])) / digits(u1[Measurei])+…+digits(un[Measurei]) . 

(28) 

 
for all t, tuple of Result, for all ui ∈ T, where T is the set of tuples of Cell 
grouped in t, where ui[Measurei] is the value of the attribute Measurei in tuple ui, 
and digits(n) returns the quantity of digits of number n. 
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Calculation of av: The av of a relation is calculated from the av_by_tuple of its 
tuples. For each measure attribute, we make a weighted average, taking into account 
the values of the measure attribute (multiplying by the number of digits), since we 
consider that the accuracy of greater values must have more influence on the accuracy 
of the whole table. 
 

 av(Result,Measurei) = (av_by_tuple(Cell, Measurei,t1) * 
digits(t1.Measurei) +…+ av_by_tuple(Cell, Measurei,tn) * 

digits(tn.Measurei)) / digits(t1.Measurei) +…+ digits(tn.Measurei) . 

(29) 

 
where t1 … tn are all the tuples of Result, ti.Measurei is the value of the attribute 
Measurei in tuple ti, and digits(n) returns the quantity of digits of number n. 
Note that in the case of Projection and Change Base the av of each measure is 
maintained, while in the cases of the other operations it may change. 
 
Availability. In our approach, the calculation of this property has no sense because 
the availability values never depend on the tuples obtained in each operation, but only 
on the DMs that are involved in the query. Therefore, only estimations can be done. 

5 Conclusion 

In this work we propose a mechanism for adding quality properties meta-information 
to an OLAP system. We state a very specific scenario, where the system is 
implemented as ROLAP and each DM consists of a set of cubes that correspond to the 
same fact. For the definition of this scenario, we base on the work presented in [8], 
[10]. The quality properties we manage are freshness, accuracy and availability. We 
propose a set of formulas for estimating and calculating the values of these properties 
for any possible multidimensional query posed by the user. Estimations and 
calculations are both useful for the user. Estimations can be used for changing the 
query so that a better quality is obtained, and calculations provide a more exact meta-
information that may be very valuable at the moment of making decisions. 

For the performed study, we focused on a given set of SQL queries and on data 
with certain given characteristics, e.g. the measure attributes. Such preconditions 
allowed us to obtain interesting results, such as some formulas for accuracy that take 
into account the values of the attributes. They also showed how some operations in 
general do not affect the quality values, while other ones have a great incidence. 

This study also shows the feasibility of applying techniques of quality evaluation to 
an OLAP environment, emphasizing on the main characteristics of these systems. 

Future work will focus on considering user quality requirements and managing the 
system quality for maintaining their satisfaction. This problem leads to extend the 
scope of our environment, such that the sources of the DMs and the data 
transformations between them be considered. Another aspect that may be addressed is 
the extension of the present study to other quality properties. 
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