On the midpoint of a set of XML documents

Alberto Abellét, Xavier de Palol!, and Mohand-Said Hacid?

! Dept. de Llenguatges i Sistemes Informatics, U. Politecnica de Catalunya
2 LIRIS- UFR d’Informatique, U. Claude Bernard Lyon 1

Abstract. The WWW contains a huge amount of documents. Some of
them share the subject, but are generated by different people or even
organizations. To guarantee the interchange of such documents, we can
use XML, which allows to share documents that do not have the same
structure. However, it makes difficult to understand the core of such
heterogeneous documents (in general, schema is not available). In this
paper, we offer a characterization and algorithm to obtain the midpoint
(in terms of a resemblance function) of a set of semi-structured, heteroge-
neous documents without optional elements. The trivial case of midpoint
would be the common elements to all documents. Nevertheless, in cases
with several heterogeneous documents this may result in an empty set.
Thus, we consider that those elements present in a given amount of doc-
uments belong to the midpoint. A exact schema could always be found
generating optional elements. However, the exact schema of the whole
set may result in overspecialization (lots of optional elements), which
would make it useless.

1 Introduction

The web is a powerful medium for human communication and dissemination of
information. Consequently, the web has become a popular knowledge base, where
people add documents (private, educational and organizational) and navigate
through its content. The rapid growth of information makes it sheer impossible
to find, organize, access and maintain the information as the users require. For
scalability reasons, one important aspect consists in distilling those documents
and extract valuable knowledge from them. There exist multiple formats for
information sources, ranging from unstructured data to highly structured. The
term semi-structured data has emerged to describe data that has some structure
but neither regular, nor known a-priori to the system. It is precisely for this
reason that semi-structured documents are self-describing.

The importance of knowing the structure (or schema) of a set of documents
has been largely described in the literature. For example, [BGMO04] outlines its
importance on integrating and analyzing structure of the WWW. On the other
hand, [ABS00] points out that a known structure would also facilitate the storage
and encourage queries. It is key to improve the access methods to the data, thus
availing query optimization and data interchange among companies.

Here we consider a certain kind of semi-structured data, in particular, XML
documents. XML has been adopted as standard for data interchange, availing

the integration of heterogeneous information sources. A well-formed XML docu-
ment is a document that conforms to the XML syntax rules in [W3C04] (roughly,
markups nest properly and attributes are unique). Moreover, a valid XML doc-
ument is a document that is well-formed and also conforms to the rules of its
DTD. A DTD contains the declarations that provide a grammar for a class of
documents. It determines the elements and attributes that appear in a document,
i.e., the name, type and constraints on every element and attribute.

As defined in [W3C04], an XML document primarily consists of a nested
hierarchy of elements with a single root. Elements can contain character data
(concepts) and child elements, in both cases the element can have attributes.
Child elements consist either of a sequence list of elements or a choice list of
elements. The standard states that elements in a sequence must be ordered.

The choice construct in a DTD indicates that one, and only one, element in
the choice list of contents should appear in the document. The choice construct
is the key to find a perfect typing. In the rare case that all the documents belong
to the same class and use the same terms, the choice construct is not needed to
find a perfect typing. Otherwise, in a grammar that lacks the choice construct
we cannot find a common schema, so we have to approximate it. If we use the
choice construct, finding the schema is reduced to find the best grammar expres-
sion for each element (for example following a normal form like [AGWO01]), so
that all elements in the document belong to the corresponding grammar. Never-
theless, a perfect schema, one DTD that is followed by all the documents, may
arise an overspecialization problem. Some works have overcome overspecializa-
tion by using clustering techniques to approximate typing [NAM98,SPBAO3].
Such approximated schemas are called inexact schemas in [Wid99).

We aim at finding a common schema for a set of correct semi-structured
documents. We take an inexact approach based on the resemblance of documents,
thus using the structure similarity among the documents under study. We call
this common schema the midpoint. We use the resemblance family of functions
in [BGMO04], which take into account extra elements both in the document and
in the DTD. We could then redefine valid XML document as a document whose
resemblance to its DTD is above a given threshold. The main contribution of this
paper is the characterization of the midpoint in terms of a resemblance function
and offer an efficient algorithm to obtain it. Although our approach deals with
DTDs, it also applies to XML schemas.

The structure of the paper is as follows. In the next section we review the
work related with our method. Section 3 presents the formalization of XML
into Description Logics that we propose. Section 4 characterizes the midpoint.
Section 5 shows an efficient algorithm to obtain the midpoint. Finally, section 6
gives the general conclusions and points out our future work.

2 Related work

Several authors worked on the generation of DTDs from XML data. A relevant
result is [NAMO9S], which explains how we can get a well structured schema

(i.e. not a DTD) approximating the documents. [JOKAO02] describes an imple-
mentation of an algorithm to generate a DTD followed by an XML document.
[SPBAO3] classifies the documents in different classes and gets one DTD per
class of documents. This is a good solution if there are a few classes with not
many documents or elements each. However, it may result in lots of different
classes or optional elements for every class, if we are dealing with a huge amount
of heterogeneous documents.

[NAM98] pays attention to inexact schemas, outlining that the size of a
perfect typing may be the order of the data set, prohibiting its use for query
optimization and interfaces. Therefore, we are not searching a perfect typing
but a human-friendly, computationally-tractable, and graphically-representable
approximation. To this end, we should use some kind of resemblance or distance.
The first option would be tree edit distance (like in [BAR04]), but it results in
high complexity (see [ZS89]). Therefore, the most promising option is structure
similarity. [NAMO98] uses Manhattan distance (i.e. the number of different descen-

dants/ancestors of two elements). [BB95] shows different more elaborate resem-
lelem(di)Nelem(ds)|
maz(|elem(d1)],|elem(dz2)]

lelem(di)Nelem(da)| .
[BGMOY] crmarymetem @) ra lelem (di Nelem(do) - elem(@aelemiay] 1S used. We

took this last measure, because it is more general, and allows to distinguish lack
of elements in one side or another.

blance measures. Among those, [SPBA03] uses 3 while in

3 Formalizing XML documents by means of DL

As we can see in [ABS00], an XML document uses to be thought as a rooted
tree. A rooted tree is an acyclic graph (NV,£), that has no more than one root.
N is a set of nodes and £ a set of edges. An edge e is an ordered pair of nodes
(Nsources Ntarget)- A node is a leaf, if it is not the source of any edge in £. Along
this paper we will use Description Logics (DL) notation to formalize those trees.

Since we only take into account element tags (not contents), we are not
actually interested in XML documents, but in a restricted class of DTDs that
can be automatically generated from one XML document. We assume that we
have a pseudo-DTD exactly matching each document. These are obtained just
parsing documents and eliminating data (leaving element tags). Thus, a pseudo-
DTD does not contain choice, nor unnumbered repetitions, nor optional elements,
nor any. The problem tackled in this paper is that of finding a true-DTD from
a set of pseudo-DTDs. From here on, we will use the term DTD for the pseudo-
DTDs, and “midpoint” for the true-DTD.

Regarding XML attributes, they could be used to match different element
tags. For example, “" could be identified with “<b ID="Id1’>" in
spite of the different tag name. Nevertheless, that is not the aim of this paper.
Representing the information either as an attribute or a child is just a design
decision. Thus, from here on, without loss of generality, we will consider XML
attributes as XML child elements without further nesting structure.

As stated in [W3C04], child elements are ordered. Order is an important
characteristic for documents. However, in databases unordered data can be pro-

document 1: <a><c>Hello</c><d><e>Bye</e></d>
document 2: <a><d></d>

document 3: <a><d><e>Bye</e></d>

document 4: <a><d><e>Bye bye</e></d>

dtdy = 3a.(3b.3¢.T 11 3d.3e.T)

element: C (concept)

dtds = Ja.(3b.L M 3d. 1) child element: 3r.C (existential quantification)
sequence: A (conjunction)

dtds = 3a.3d.3e. T PCDATA or String: T (top)

dtd, = 3a.3d.3e.T EMPTY: 1 (bottom)

Fig. 1. DL representation of an XML document

cessed more efficiently, so it uses to be considered in that way (for example in
DOM and SAX). Therefore, we will assume that order is not relevant for us.

We will consider a set of documents as a knowledge base, which comprises
two components, i.e. TBox (the terminology, we could recognize it as the schema)
and ABox (the assertions about individuals, or instances). As explained in
[BCM 03], the TBox contains concepts, and to define a formal semantics of
the logic we use an interpretation Z. An interpretation is a pair [AZ,-Z], where
A7 is the domain (a non-empty set), and - is an interpretation function that
assigns to every atomic concept A a set (AZ C A7) and to every atomic role r
a binary relation (17 C AT x AT). Inductively, this is extended to non-atomic
concepts as follows (C and D are concepts, and r is a role):

17 =90
—I—I :AI
(cnbp)yt =c*nbD*
(Fr.C)F = {a € AT | 3b. (a,b) e " ANbe CT}

As exemplified in figure 1, we will represent a document or piece of document
by a concept “C”. An unordered sequence of pieces of documents will be repre-
sented by a conjunction “C'M D”. Data types (i.e. PCDATA and string) will be
represented by the top concept “T”, while an empty element (i.e. EMPTY") will
be represented by bottom concept “1”. Finally, children will be represented by
means of existential quantification “Jelement.C”. Actually, existential quantifi-
cation allows the presence of more than one element of the same kind. Never-
theless, as stated before, we do not consider such repetitions. Our formalization
allows the usage of DL algorithms like “Subsumption” and “Least Common
Subsumer”:

Subsumption (also known as “Query Containment” in other areas and noted
“C CD”, if C is subsumed by D) shows whether one concept is more general
than another (i.e. one set contains the other for all interpretations). For
example, dtdy C dtds.

CCDevVI:cfcD?

Least Common Subsumer (“LCS” from here on) results in the subsumer of
a set of concepts that is subsumed by any other subsumer of the set of

documents. LCS uses to be applied to learning from examples, and bottom-
up construction of knowledge bases. For example, lcs(dtds, dtdy) = Ja.3d. T.

L=1cs(Ch,...,Cn) < Vi: C; CLABD: (Vi: C; TDADC L)

4 Characterization of the midpoint

Given a set of DTDs, we would like to find the DTD that has the maximum
number of common elements wrt the set, at the same time that minimizes the
elements being in the DTD not in the documents and those in the documents
not in the DTD. We will call such DTD the midpoint of the set. In order to
characterize the midpoint, we will use the resemblance family of functions used
in [BGMO04].
r: (DTD,setOfDTDs) — [0,1]
we(C, E)

we(C,E) 4+ a-wy(C, E) + 8- wn(C, E)

r(C,E) = for a,f e RT

By instantiating « and G we get the concrete function we would like to
use (notice that only if « = the resemblance will be symmetric). Positive
real values can be assigned to these parameters, weighting the importance of
finding plus (elements in some DTD that do not appear in the midpoint) and
minus (elements in the midpoint that do not appear in some DTD) elements
respectively. The function relies now on three simpler ones that obtain the size
of common, plus, and minus elements.

we(C, E) =3 jacr size(les(C, dtd))
wp(C, E) = 3 4yqc g (s1ze(dld) — size(les(C, dtd)))
Wi (C, E) = 3 4c 5 (size(C) — size(les(C, dtd)))

Any result in this paper does not depend on how we compute the size of
a DTD. We only impose that the size of a DTD is smaller than the size of
adding an element to that DTD. Therefore, from here on, in the examples we
will assume that every element contributes to the size of a DTD with one unit
independently of its position in the document. For example, size(dtd;) = 5 and
size(dtds) = size(dtds) = 3. A general, more complex and accurate algorithm
for obtaining the size of a DTD is given in [BGMO04].

242 4
r(3a.3d. T, {dtdz, dtds}) = (2“)+°"<1L§i§'<0+0> =1

(
r(3a.3d.3e.T, {dtds, dtds}) = R —

r(3a.(30.TN3d.T), {dtde, dtds}) = Grrmyratoiippor = 5773
r(3a.(3b.T NM3d.3e.T), {dtds, dtds}) = Groraiierar = 5%

Fig. 2. Example of multiple midpoints

At this point, it is also important to notice that there may exist more than one
DTD maximizing the resemblance (i.e. more than one midpoint). For example,

let be @« = 2 and B = 3. In this case, as we can see in figure 2, four different
DTDs result in the same resemblance to {dtds, dtds}. Since this is the maximum
resemblance, we can choose the midpoint of {dtds, dtds} among those four DTDs.
Theorem 1 states that one of the possible midpoints of the set can be obtained
by a conjunction of LCS of the documents. Due to lack of space, proofs have
been omited.

Theorem 1 Given a set of DTDs E = {dtd,,...,dtd,}, and being B; branches
of the form Er}gi.ﬂr%i...ﬂr%i."l' with [; > 1

381,00y Sp € P(E) : VB, .., By ([| B, B) <r([] les(S)), E)

i=1..q j=1l..p

Lemma 1. There exists a DTD of the form [,_; ,lcs(Sk) mazimizing the re-
semblance, so that V1 <i,j <p:(S; £ Sj).

Corollary 1. There exists a DTD of the form [],_, ,les(Sk) mazimizing the
resemblance, so that » < ('@‘)
2

5 Obtaining the midpoint of a set of DTD

First of all, it is important to notice that depending on the values of o and 3 there
are some trivial cases (as shown in table 1). If « = 0, we do not mind having extra
elements in the DTDs wrt the midpoint. Therefore, among the multiple solutions
to the problem, we find Jelement. T (where “element” is the most frequent root
element in the documents). If § = 0, we do not mind having extra elements
in the midpoint wrt every individual DTD. Therefore, [], ¢ i dtd is among the
solutions. Both equaling zero means that just by matching some elements in
some DTD we get maximum resemblance (i.e. Vw, # 0 : W“m =1).
Thus, from here on, we will only consider the non-trivial case a # 0 and 3 # 0.

This section shows the possibility of finding a midpoint just based on the
appearances of each element in the set of documents. The first question to answer
is how we could know whether the point in the search space we are treating is
better than another candidate or not. Surprisingly, it is not necessary to get all
plus and minus elements. By theorem 2, we know that all we need is the number
of common elements between each of both DTDs and the set of DTDs E.

Theorem 2 To decide whether the resemblance of a DTD C against a set of
DTDs is better than that of another DTD C', it is only necessary to consider
the common elements (neither plus, nor minus).

Midpoint| =0 B#0
a=0 any Jelement. T
a# 0 |[ygepdtd ?

Table 1. Trivial cases on finding a midpoint

Proof. Let be r(C,E) > r(C', E) (“s” stands for “size” if necessary).
we(C, E) o we(C!, E)
we(C, B) + o wp(CyB) + - wm(CyB) we(C/,B) + o wp(Cl, B) + 6+ win(C/, B)

Y deg s(les(C,d))
Ydep sles(C,d) + a-Ygep(s(d) — s(es(C,d)) + 8- X gep(s(C) — s(les(C, d)))
- Saecr s(les(C’, d))
T Yaepsles(Cd) +a - Y gep(s(d) — sles(C’,d) + 8- L gep(s(C’) — s(les(C’, d)))

(Y ses(C, (Y sles(C/d) +a- Y (s(d) —sles(C,d)) + 8- Y (s(C') — s(les(C’, d))))

deE deE deE dekE
> (Y ses(@, N ses(C,d) +a- Y (s(d) — sles(C,d)) + 8- 3 (s(C) — s(les(C, d))))
deE deE deE delE

(Y sUes(C,d)))(a- > s(d)+8- > s(c’) > (> size(les(C!, d)))(a - > size(d) + 8- Y. size(C))
dEE dEE dEE dEE dEE dEE

Y dep size(les(C,d)) S Y aep size(les(C’,d)) 0
oY gep size(D)FB[E[5ize(0) = o'y gep size(d)+B-|E[-size(C)

Once we know that it is only necessary to compare the common elements, the
next question is how we could improve the resemblance. By lemma 2, we know
that if adding a branch to the midpoint improves resemblance, all branches
appearing the same number of times also improve it independently of their sizes.
We may have thought that we have a set of possible improvements to check.
Nevertheless, the branches with the same number of appearances do not generate
alternative solutions, but all together belong to the same solution.

Lemma 2. If adding a branch b to a concept increases its resemblance to the
set, adding all branches appearing in the same number of DTDs than b will also
improve its resemblance.

Proof. Let be C C C" and r(C,E) > r(C', E).

Saeck size(les(C, d)) o Y aep size(les(C’, d))
a-Ygcp size(d) + B | E | -size(C) ~ a-YLg4eg size(d) + 8- | E | -size(C’)

Y ac g (size(les(C, d)) + (size(les(C, d)) — size(les(C’, d)))) N Y aecg size(les(C’, d))
a-Ygep size(d) + B | E | (size(C’) 4 (size(O) — size(C’))) ~ a-Lg4eg size(d) + 8- | E | -size(C’)

Yaecp size(les(C/,d)) + ¥ ge g ((size(les(C, d)) — size(les(C, d)))) o Yacp size(les(C, d))
a-Ygecp size(d) + B | E | -size(C/) + B- | E | -(size(C) — size(C’)) ~ a-Ygcp size(d) + B | E | -size(C’)

Which is true if and only if

Y aecp ((size(les(C, d)) — size(les(C’, d)))) N Sdcp size(les(C!, d))
B | E| -((size(C) — size(C’))) T a-Ygegsize(d) + B8 | B | -size(C!)

Since C' C C’ and it does not matter in which DTD the elements appear, but
> ((size(les(C,d))—size(les(C',d))))

S TET (si7e(C)=s32e(C)) can be seen
#appearance:size(newBlement) ‘) o1ofore, either adding an element or not does

B-|E|-size(newElement) ' ’ g

not depend on the size of the element, but on the number of times it appears in
the DTDs. Thus, if adding an element is worthwhile, so it is adding any other
element appearing the same number of times. O

whether they appear or not, then

as

Finally, in corollary 2, we show that elements appearing more times result
in higher improvement of resemblance. As a special case of this, if an element
improves resemblance, its parents improve resemblance even more. Thus, before
adding an element to the result, all its parents should have been added (which
otherwise could not have been avoided).

Corollary 2. Independently of its size, a branch by appearing ki times in E
improves the resemblance more than another by appearing ko times if k1 > ko.
Proof. Since, k; > ko, then ﬂkI}EI > B.klﬁffz(:(zbl). Therefore, if by improved the

. k > size(les(C,d)) .
resemblance (i.e. we know that Fra 2 a}jde;iiEze(dHﬂ-\E\-size(C))7 then b; im-

LTE S ek size(les(C,d))+ (kg -size(ba)) O
BIET 2 oY qep size(@+FB | El-si2e(C) +(B-1E[size(b3))

proves it even more:

WDTD := 0
foreach dtd € E do
foreach branch 1 dtd do if [branch, k] € WDTD
then WDTD := WDTD \ {[branch, k]} U {[branch, k + 1]};
else WDTD := WDTD U {[branch, 1]};
endif; endforeach;

endforeach;
M:=T;m:=|E|;

. m > dtde g size(les(M,dtd))
while (ﬁ-|E| T S size(dtd)+ﬁ-|E|-size(]\/I))

foreach branch € getSubset ByWeight(W DT D, m) do
M := M M branch;
endforeach,;

m:=m —1;

endwhile;

Fig. 3. Algorithm based on appearance

From these theorems, we infer that we can build the midpoint of a set of
DTDs from T, by iteratively adding the most frequent element in the set of
DTDs. Firstly, as we can see in figure 3, we build a weighted DTD (i.e. WDTD),
whose contents are [|;,,c ; dtd, where each piece of branch is weighted depending
on its number of appearances in the set of DTDs. Once we have the weight of
each branch, we take the maximum possible weight (i.e. | E |) and check if it
would improve resemblance from T (i.e. PCDATA) to the set of DTDs. If this
maximum weight improves the resemblance, we add all branches having such
weight to the result and get the next weight smaller than that. We loop adding
another subset of branches while their weight improves resemblance.

The first phase of the algorithm is really cheap in terms of complexity. Taking
into account that the number of possible children of an element should be small,
building the weighted tree is linear in the number of elements in the set of
documents, because we can find a piece of branch in “WDTD” just searching
the children of the previous piece of branch we modified/added to “WDTD”

(assuming a deep first search of the document we are treating). Regarding the
second phase of the algorithm, all calls to “getSubsetByWeight” can be done in
linear time in the number of different elements, if we kept the elements with the
same weight in a list. Therefore, the space we need is linear in the number of
different elements (not counting repetitions), while the time is also linear in the
number of elements in the set of documents (counting repetitions).

WDTD = {[3a.T,4],[3a.3b.T,2],[Fa.3b.3c. T, 1], [Fa.3d. T, 4], [Fa.3d.3e.T, 3] }
My=T
Mi =3a.3d. T
M> = Ja.3d.3e. T
Ms = 3a.(3b.T N3d.3e.T)

\Y
o

8
Tda+2-4
40
Tda+3-4
13 s
Tda+4-473

Bl-Eleoglet]e
AV IV

Fig. 4. Candidate DTDs generated during the execution

If we run this algorithm on the DTDs in figure 1, it would result in the
“WDTD” in figure 4 (each 2-upla consists of a branch and the number of doc-
uments that contain it). Thus, in the first loop, condition evaluates true (for
a = [=1, and every element contributing by one to the size), and we add
the branches appearing four times. Since it still evaluates true, we add those
appearing three times, and eventually twice. Since the condition evaluates false
for weight equal one, the corresponding branch does not belong to the solution.

WDTD = {[3a.T, {dtdy, dtds, dtds, dtds}], [3a.3b.T, {dtdy, dtds}], [3a.3b.3c. T, {dtd: }],
[3a.3d.T, {dtdy, dtds, dtds, dtds}], [3a.3d.3e. T, {dtdy, dtds, dtds}]}
M = les(dtdy, dtds) Mles(dtdy, dtds, dtds) = 3a.(3b.T M 3d.3e.T)

Fig. 5. Obtaining the sets of documents that generate the midpoint

Obtaining the sets of documents that generate the midpoint (see theorem 1)
a posteriori (once we know the midpoint) is easy with a small modification of
the algorithm. All we need is that “WDTD” keep the set of the documents that
contain every branch instead of just a counter of them. Thus, it is trivial to see
that the conjunction of the LCS of the documents containing the leafs of the
midpoint result in the midpoint. Figure 5 shows how it results in our example.

6 Conclusions and future work

Along this paper, we have studied the possibility of approximating the schema
(DTD) of a set of XML documents. Based on a given measure of resemblance, we
are able to find one midpoint of the set. This midpoint has been characterized in
terms of conjunction of Least Common Subsumers of the documents. Moreover

an efficient algorithm has also been presented to obtain it. The obtained resem-
blance may be improved by considering optional elements (eventually reaching
the perfect typing).

As future work, we plan to deal with the problem of matching tag names,
where ontologies can be used. The presence of optional elements in the schema
may lead to the identification of equivalent tags from different sources.

Acknowledgements

Our work has been partially supported by the Spanish Research Program PRON-
TIC and FEDER under project TIC2002-00744.

References

[ABS00] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web - From Relations
to Semistructured Data and XML. Morgan Kaufmann, 2000.

[AGWO01] J. Albert, D. Giammarresi, and D. Wood. Normal Form algorithms for
extended Context-Free Grammars. Theoretical Computer Science, 267(1-
2):35-47, 2001.

[BB95] V. Batagelj and M. Bren. Comparing resemblance measures. Journal of
Classification, 12(1):73-90, 1995.

[BCM™*03] F.Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider,
editors. The Description Logic Handbook. Cambridge University Press, 2003.

[BdR04] U. Boobna and M. de Rougemont. Correctors for XML Data. In Proc.
of 2nd Int. XML Database Symposium (XSYM’04), volume 3186 of LNCS,
pages 97—-111. Springer, 2004.

[BGMO04] E. Bertino, G. Guerrini, and M. Mesiti. A matching algorithm for measuring
the structural similarity between an XML document and a DTD and its
applications. Information Systems, 29(1):23-46, March 2004.

[JOKAO02] J-S. Jung, D-I. Oh, Y-H. Kong, and J-K. Ahn. Extracting Information from
XML Documents by Reverse Generating a DTD. In Proc. of the EurAsia-
ICT 2002, volume 2510 of LNCS, pages 314-321. Springer, 2002.

[NAMO98] S. Nestorov, S. Abiteboul, and R. Motwani. Extracting schema from
semistructured data. In Proc. ACM SIGMOD Int. Conf. on Management
of Data (SIGMOD 1998), pages 295-306. ACM, 1998.

[SPBAO03] I. Sanz, J. M. Pérez, R. Berlanga, and M. J. Aramburu. XML Schemata
Inference and Evolution. In Proc. of 14th Int. Conf. on Databases and Expert
Systems Applications (DEXA’08), volume 2736 of LNCS, pages 109-118.
Springer, 2003.

[W3C04] W3C. Euztensible Markup Language (XML) 1.0, 3rd edition, February 2004.

[Wid99] J. Widom. Data Management for XML: Research Directions. IEEE Data
Engineering Bulletin, 22(3):44-52, 1999.

[ZS89] Z. Zhang and D. Shasha. Simple Fast Algorithms for the Editing Dis-
tance Between Trees and Related Problems. SIAM Journal on Computing,
18(6):1245-1262, 1989.

