
Improving automatic SQL translation for ROLAP tools

Oscar Romero Alberto Abelló
Dept. de Llenguatges i Sistemes d’Informació, Universitat Politècnica de Catalunya

C/ Manuel Girona 1-3, E-08034 Barcelona. {oromero|aabello@lsi.upc.edu}

Abstract

In the last years, despite a vast amount of
work have been devoted to modeling mul-
tidimensionality, multidimensional algebra
translation to SQL have been overlooked.
ROLAP tools automatically generate a cube-
query according to the operations performed
by the user. The SQL translation does not
represent a problem when treating isolated
operations but when mixing up together
modifications brought about by a set of ope-
rations in the same cube-query, some conflicts
could emerge depending on the operations
involved. Therefore, if these problems are
not detected and treated appropriately, the
automatic translation can retrieve unexpected
results. In this paper, we define and classify
conflicts raised when automatically trans-
lating a multidimensional algebra to SQL,
and analyze how to solve or minimize their
impact.

Keywords: Multidimensional operations,
ROLAP, Data Warehouse

1 Introduction

On-Line Analytical Processing (OLAP) tools
are intended to ease information analysis and
navigation all through the “Data Warehouse”.
OLAP functionality is characterized by dyna-
mic multidimensional analysis of consolidated
enterprise data supporting end user analyti-
cal and navigational activities. “Navigation”
means to interactively explore a data cube by
drilling, rotating and screening, and as presen-
ted in [4] we consider “roll-up” (increase the

aggregation level), “drill-down” (decrease the
aggregation level), “screening and scoping” (se-
lect by means of a criterion evaluated against
the data of a dimension), “slicing” (specify a
single value for one or more members of a
dimension) and “pivot” (reorient the multidi-
mensional view), as the typical end user opera-
tions performed on data cubes. Some authors,
like [14] and [3], add “drill-across” (combine
data from cubes sharing one or more dimen-
sions) to these basic operations.

Figure 1: Example of multi-star schema

Multidimensional conceptual view of data
is distinguished by the fact/dimension dicho-
tomy. From here on, we will use YAM2

multidimensional terminology in [3], where
a Dimension contains Levels representing
different granularities (or levels of detail) to
study data, and a Level contains Descrip-
tors. Consonantly, a Fact contains Cells
which contain Measures. One Cell repre-
sents those individual cells of the same granu-
larity that show data regarding the same Fact
(i.e. a Cell is a “Class” and cells are its ins-
tances). One Fact and several Dimensions
to analyze it give rise to a Star. Moreover, as
discussed in [3], we consider quite important
to be able to relate different Stars not only
sharing dimensions but defining semantic re-
lationships between them like UML Generali-



zation, Association, Derivation or Flow ; some
already considered in other conceptual models
as [7] and [12]. In figure 1, we find two Facts
containing two Cells each one (Daily Profit
and Monthly Profit; and Daily Stock and
Weekly Stock), and sharing two Dimensions
of analysis (Time and Product).

[8] shows how a Star should be implemen-
ted on a “Relational Database Management
System” (RDBMS) through a star or a snow-
flake schema. The star schema consists of one
table for the Fact and one denormalized table
for every Dimension with the latter being
pointed by “foreign keys” (FK) from the “fact
table”, which compose its “primary key” (PK).
The normalized version of a star schema is a
snowflake schema, getting a table for each Le-
vel with a FK pointing to each of its parents in
the Dimension hierarchy. Both approaches
can be conceptually generalized into a more
generic one consisting in partially normalizing
theDimension tables according to our needs.
Completely normalizing each Dimension we
get a snowflake schema and not normalizing
them at all results in a star schema. We choose
this generic approach as we consider, like in
[11], a Fact can contain not just one but se-
veral materialized Cells (“Cell tables”). So
that, each Level related to a materializedCell
must be also materialized as a table since a FK
(each FK in the Cell pointing to Levels rela-
ted to it) must be related to a PK, or at least,
to a “unique” table field. If a certain Level
is only related to non materialized Cells we
can denormalize it. In figure 1, we have de-
cided to materialize the four Cells stated ex-
plicitly. Hence, those Levels directly related
to them will be materialized, but, for instance,
Year Level will not since no materialized Cell
points to it.

Now, we present the standard SQL’92 tem-
plate query (also known as cube-query) to re-
trieve a Cell of data, which conforms a Cube
(a set of cells placed in an n-dimensional
space), from the RDBMS.

SELECT l1.ID, ..., ln.ID, c.Measure1, ...
FROM Cell c, Level1 l1, ..., Leveln ln
WHERE c.key1=l1.ID AND ... AND c.keyn=ln.ID
GROUP BY l1.ID, ..., ln.ID
ORDER BY l1.ID, ..., ln.ID

“Cell” and “Level tables” in the FROM are

appropriately linked in the WHERE clause.
Finally, we talk about atomic cube-query when
it retrieves a Cube of data not yet manipula-
ted by multidimensional operations.

However, despite we already know how to
implement a multidimensional schema in a
RDBMS and how to retrieve data from it,
there is not yet a standard multidimensional
algebra accepted as reference point. As pre-
sented in section 2, some algebras have already
been proposed but some of them do not di-
rectly map to SQL and, in general, none of
them offers the translation of the operations
to SQL, ignoring some problems that can arise
due to SQL intrinsic restrictions. “ROLAP”
(OLAP over RDBMS) tools automatically ge-
nerate a cube-query according to the opera-
tions performed by the user. The SQL trans-
lation does not represent a problem when trea-
ting isolated operations but when mixing up
together modifications brought about by a set
of operations in the same cube-query, some
conflicts could emerge depending on the ope-
rations involve. Therefore, if these problems
are not detected and treated appropriately, the
automatic translation can retrieve unexpected
results. Our main contribution in this paper
is to define and classify those conflicts when
automatically translating a multidimensional
algebra to SQL and analyze how to solve or
minimize their impact.

To carry out our study we use YAM2 mul-
tidimensional algebra presented in section 3.
There, we also present how this algebraic set
of operations should be translated to SQL. In
section 4 we introduce in detail problems ari-
sen when translating these operations to SQL,
which can be mainly classified as the multiple
aggregation, the fan-shaped and the selection
granularity problems. Former will be discus-
sed in subsection 4.1, second one in 4.2 and
the last one in subsection 4.3. Finally, section
5 concludes the paper.

2 Related Work

A vast amount of work have been devoted to
modeling multidimensionality as have been ga-
thered in several surveys like [1], [10], [13] and



Clause ChangeBase Drill-across Selection Roll-up Projection Union
SELECT Replace Add Replace Remove

(LevelID) (Measure) (LevelID) (Measure)
FROM Add Add Union

(Levels) (Cell) (Cells and Levels)
WHERE Add Add AND Union OR

(links) (links) (conditions) (links) (conditions)
GROUP BY Replace Replace

(LevelID) (LevelID)
ORDER BY Replace Replace

(LevelID) (LevelID)

Table 1: SQL query sentence modifications according to each multidimensional operation

[15]. Additionally, other multidimensional mo-
dels have been presented later.

[16] presents an algebra over an XML and
OLAP federation. “Selection Cube” selects
data desired; the “Decoration” operator adds
new Dimensions to the Cube and the “Fede-
ration Generalized Projection” “rolls-up” the
Cube and removes unspecified Dimensions
and Measures (meaning it is not an atomic
operation). Finally, “drill-across” is not consi-
dered and the rest of its operations are in-
tended to manipulate data in the federation.
They also consider how these operations must
be translated to SQL but, unlike us, conflicts
when translating are not studied exhaustively.

An algebra with four operations is presented
in [5]. “Derived Measures” derives new mea-
sures from already existent; “Join” is similar
to “drill-across” but in a more restrictive way
since it forces both Cubes to have the same
Dimensions and Levels; “Slice” and “Multis-
lice” select a single or a range of values; and fi-
nally, “Union”, “Intersection” and “Difference”
allow us to manipulate Cubes. In our case,
we only consider Union since the same consi-
derations can be done for “Intersection” and
“Difference” just changing the OR operator by
AND or AND NOT. “Roll-up” is introduced in
the “Aggregated Cubes”, an algebraic part of
the schema. Anyhow, like models surveyed in
above references, it does not offer the trans-
lation of their algebraic set of operations to
SQL (rather they propose alternatives to SQL
and relational algebra). Those models propo-
sing alternatives to SQL argue that RDBMS
are not well suited for multidimensional pur-
poses. However, the importance of ROLAP
tools in the market contradicts that, outlining
relevance of research on improving the usage
of SQL to query multidimensional data.

In [2] we find how to translate each isolated

operation of YAM2 multidimensional algebra
to SQL, although it does not consider com-
bining a set of operations in the same cube-
query. In addition, it states YAM2 algebra as
complete, so that, any other multidimensional
operation can be expressed in terms of it.

3 YAM2 Multidimensional Algebra

In this section we present YAM2 operations
introduced in detail in [2], intended to mani-
pulate Cubes, and also how they should be
translated to SQL (summarized in table 1).
To better follow operations introduced below,
see the sequence of examples in table 2:
Selection: By means of a logic clause C

over a Descriptor, this operation allows to
choose the subset of points of interest out of
the whole n-dimensional space. In SQL, it
means to and the corresponding clause to the
WHERE clause. For instance, we can select
those Weekly Stocks referring to cookies in
the Product Dimension.
Roll-up: It groups cells in the Cube based

on an aggregation hierarchy. This operation
modifies the granularity of data by means of
a many-to-one relation which relates instances
of two Levels in the same Dimension, cor-
responding to a part-whole relationship. In
SQL, it changes the identifier in the GROUP
BY clause by that of the parent Level. Thus,
SELECT and ORDER BY clauses must be
modified accordingly, so that theDescriptors
coincide in all three. Measures in the SELECT
clause must also be summarized using an ag-
gregation function. To roll up to Level All,
all Descriptors of a Dimension are remo-
ved from the GROUP BY, and “All” is pla-
ced in the the corresponding place in SELECT
clause. Going on, we can Roll-up from City
to Level All along Place Dimension.



SELECT p.ID, w.ID, c.ID, s.Stock
FROM weeklyStock s, Product p, Week w, City c
WHERE s.key1 = p.ID AND s.key2 = w.ID
AND s.key3 = c.ID AND p.name = ’cookies’
GROUP BY p.ID, w.ID, c.ID
ORDER BY p.ID, w.ID, c.ID

a) Selection

SELECT p.ID, w.ID, “All”, SUM(s.Stock)
FROM weeklyStock s, Product p, Week w
WHERE s.key1 = p.ID AND s.key2 = w.ID
AND p.name = ’cookies’
GROUP BY p.ID, w.ID
ORDER BY p.ID, w.ID

b) Roll-up

SELECT p.ID, w.ID, SUM(s.Stock)
FROM weeklyStock s, Product p, Week w
WHERE s.key1 = p.ID AND s.key2 = w.ID
AND p.name = ’cookies’
GROUP BY p.ID, w.ID
ORDER BY p.ID, w.ID

c) ChangeBase
SELECT p.ID, d.ID, s.Stock, m.profit
FROM dailyStock s, dailyProfit m, Product p, Day d
WHERE s.key1 = p.ID AND s.key2 = d.ID
WHERE m.key1 = p.ID AND m.key2 = d.ID
AND p.name = ’cookies’
GROUP BY p.ID, d.ID
ORDER BY p.ID, d.ID

d) Drill-across

SELECT p.ID, d.ID, m.profit
FROM dailyProfit m, Product p, Day d
WHERE m.key1 = p.ID AND m.key2 = d.ID
AND p.name = ’cookies’
GROUP BY p.ID, d.ID
ORDER BY p.ID, d.ID

e) Projection

SELECT p.ID, d.ID, m.profit
FROM dailyProfit m, Product p, Day d
WHERE m.key1 = p.ID AND m.key2 = d.ID AND
(p.name = ’cookies’ OR p.name = ’chocolate’)
GROUP BY p.ID, d.ID
ORDER BY p.ID, d.ID

f) Union

Table 2: Example of YAM2 algebra translation to SQL

ChangeBase: This operation reallocates
exactly the same instances of a Cube in a new
n-dimensional space with exactly the same
number of points, by means of a one-to-one
relation. It really allows two different kinds
of changes in the “base of the space” (those
dimensions identifying each cell). Firstly, we
can just rearrange the multidimensional space
by reordering Level identifiers in ORDER BY
and SELECT clauses (this would be equiva-
lent to the “pivot” operation); and secondly,
if there exist more than one set of Dimen-
sions that identify the points in the space, we
can change between those Dimensions mo-
difying the analysis Dimensions used. It is,
adding the new Level tables to the FROM
and the corresponding links to the WHERE
clause. Moreover, identifiers in the SELECT,
ORDER BY and GROUP BY clauses must
be replaced. Finally, Notice semantic rela-
tions rise new possibilities allowing us to re-
place a Dimension by one semantically rela-
ted to it by a one-to-one relation. Following
with the same example, we can change from
(Time× Product× 1) to (Time× Product) wi-
thout losing cells.

Drill-across: This operation changes the
subject of analysis of the Cube by means of a
one-to-one relation. The n-dimensional space
remains exactly the same, only the cells pla-
ced in it change. Like in the ChangeBase
operation, semantic relations rise new possibi-
lities as presented in [2]. In SQL, it means to
add a new Cell table to the FROM, its Mea-
sures to the SELECT, and the corresponding
links to the WHERE clause. In general, if we
are not using any Relationship, a new Cell

table can always be added to the FROM clause
if the attributes composing the identifier of
the desired Cell point to the already used Le-
vel tables. For instance, in the same example,
we could Drill-down to Daily Stock and di-
rectly Drill-across to Daily Profit.
Projection: This just selects a subset of

Measures from those available in the Cube.
So that, it removes Measures from the SE-
LECT clause. If there is not any Mea-
sure left, COUNT is assumed. Following our
example, we can remove the Stock Measure.
Union: It unites two Cubes containing the

same Cells if both are defined over the same
n-dimensional space. In SQL, we unite both
FROM clauses, WHERE links, and finally or
conditions of WHERE clauses. Hence, we can
unite our example query to one identical but
querying for chocolate instead of cookies.

The algebra composed by these operations
is “closed” (applied to a cube-query, the re-
sult of all operations is another cube-query),
“complete” (any valid cube-query can be com-
puted as the combination of a finite set of ope-
rations applied to the appropriate Cell) and
“minimal” (none can be expressed in terms of
others, nor can any operation be dropped wi-
thout affecting its functionality). Moreover,
other operations can be derived by sequences
of these operations. This is the case of Slice
(which reduces the dimensionality of the ori-
ginal Cube by fixing a point in a Dimen-
sion) by means of Selection and Change-
Base operations. About Drill-down (i.e. the
inverse of Roll-up), as argued in [6], it can
only be applied if we previously performed
a Roll-up and did not lose the correspon-



Ops/Source ∅ Selection Roll-up Drill-across
Roll-up × × × ×
Drill-across × × ×

Table 3: Conflicts summary

dences between cells. Losing correspondences
can happen due to extra navigation between
Cubes (through Drill-across or Change-
Base) resulting that we do not have data in a
lower aggregation Level for the target Cube.

4 SQL Translation Problems

In section 3 we have presented how an atomic
cube-query should be modified when applying
an isolated operation over it, but many times
end users demand to navigate from Cube to
Cube not just applying isolated operations
but performing sequences of operations. Thus,
a user chooses a source Cube from where star-
ting to operate. Automatically, the ROLAP
tool will conform a cube-query to retrieve this
Cube. Notice this Cube is our start point so
that it has not been yet manipulated by any
operation. Consequently, it is placing a Cell
of data on the n-dimensional space conformed
by its analysis Dimensions. This Cell, as
stated in section 1, could have been materiali-
zed or not. If it was, ROLAP tool will retrieve
it from an atomic cube-query and if not, it will
look for an appropriate Cell, in a lower aggre-
gation Level, from where obtaining the nee-
ded Cell by means of Roll-ups. For instance,
we could start our analysis from a materiali-
zed Cell (i.e. Monthly Profit) or from a non
materialized one (i.e. Annual Profit). As
Annual Profit is not materialized, we need
to perform an implicit Roll-up over Monthly
Profit from Month to Year to get needed data.

As presented in table 3, certain operations
can pop up a conflict when combined with
a concrete source cube-query. We refer to a
source cube-query as an atomic cube-query
modified by a sequence of operations. If no
operation has been performed over the atomic
cube-query we consider the empty sequence
(∅). Hence, a cell is crossed (×) when the se-
quence of operations in the source cube-query
contains a concrete operation that can cause a
conflict with next one to be performed. For

instance, it can happen if our source cube-
query includes a Selection and next operation
to be carried out is a Roll-up. Anyhow, any
kind of conflict could be avoided using one sub-
query per multidimensional operation. But we
only use subqueries if strictly necessary, shun-
ning the materialization of partial results and
easing the RDBMS query optimizer job.

Following, notice all conflicts are related
to Roll-up and Drill-across, the rest of
operations, except for Selection, propagate
conflicts if already present in the cube-query
but do not introduce new ones. Projec-
tion, Union and ChangeBase never arises
a conflict. Intuitively, Projection removes
Measures from the SELECT clause and drop-
ping a Measure just means to omit a “Cell
table” column; Union ores conditions of two
Cubes with the same n-dimensional space, se-
lecting desired points prior to perform ope-
rations; and ChangeBase always asks for a
one-to-one relation in order to be performed,
avoiding conflicts due to its own nature.

Despite all conflicts are due to data ag-
gregation anomalies (then, at least, a one-to-
many relation is required), in our study we
have classified conflicts raised in three groups;
those caused by performing multiple aggrega-
tion functions in a query, those due to hidden
many-to-many relationships and finally, those
related to the selection granularity. Prior to
present them in detail, we need to formalize
some concepts that will help us to introduce
our results. [9] presents three necessary condi-
tions to warrant a correct data summarization:
Disjointness: Sets of cells at a Level to

be aggregated must be disjoint.
Completeness: cells at a certain Level

must be constituted by all the cells of its child
Levels.
Compatibility: Dimension, kind of mea-

sure aggregated and the aggregation function
must be compatible. Compatibility must be sa-
tisfied since certain functions are incompatible
with some Dimensions and kind of measures.
For instance, we can not aggregate Stock over
Time Dimension by means of sum, as some
repeated values would be counted.

When aggregating data we have to assure



Figure 2: Example of a hierarchy of Cells

these conditions to avoid summarizability ano-
malies. If not, we will face duplicated values
or find that some measurements at an aggre-
gation Level cannot be used to obtain data
at higher aggregation Levels, forcing us to go
to finer granularities, maybe to the “atomic
Level” (lower Level in a Dimension hierar-
chy that is always materialized), to obtain the
source data for the calculation.

4.1 The Multiple Aggregation Problem

First problem is about functions used to ag-
gregate data. This case typically arises when
combining more than one Roll-up in the
same cube-query. To analyze this problem,
we conceptually divide a combination of two
Roll-ups in two categories depending on whe-
ther both were performed over the same Di-
mension or over different ones.

In the first case, we can always solve the
problem disregarding first Roll-up and just
performing the second one, because in a cer-
tain moment of time, multidimensional data
can only be showed in a certain aggregation
Level for each Dimension. Notice it always
can be assumed since, in the worst case, we can
perform a Roll-up from the atomic Level.
Oppositely, when performed over different Di-
mensions we have to compulsory aggregate
data for eachDimension. Since SQL does not
allow us to aggregate data by means of two dif-
ferent functions in the same query this conflict
can not be solved in a single cube-query. For
instance, if we carry out a Roll-up from Week
to Year Level in the Weekly Stock Cell, and
later we Roll-up from Year to Level All, the
whole sequence of both Roll-ups can be di-
rectly expressed as:

SELECT p.ID, “All”, c.ID, SUM(s.Stock)
FROM weeklyStock s, Product p, City c
WHERE s.key1 = p.ID AND s.key3 = c.ID
GROUP BY p.ID, c.ID
ORDER BY p.ID, c.ID

On the contrary, if we just carry out first
Roll-up, and later another one from City to

Country along the Place Dimension, nested
queries are compulsory:

SELECT p.ID, co.ID, y.ID, SUM(s.Stock)
FROM (SELECT p.ID, c.ID, y.ID, AVG(s.Stock)

FROM weeklyStock s, Product p,
City c, Week w, Year y
WHERE s.key1 = p.ID AND s.key2 = c.ID
AND s.key3 = w.ID AND w.fkey = y.ID
GROUP BY p.ID, c.ID, y.ID
ORDER BY p.ID, c.ID, y.ID), Country co

WHERE s.key1 = p.ID AND s.key2 = c.ID
AND s.key3 = w.ID AND c.fkey = co.ID
GROUP BY p.ID, co.ID, y.ID
ORDER BY p.ID, co.ID, y.ID)

Even if SQL allowed us to perform more
than one aggregation function in the same
query, we would face another problem: the
order between aggregation functions. Consi-
der the Stock Cell hierarchy detailed in fi-
gure 2 extracted from the example presen-
ted in figure 1. In this case, Stock is
analyzed through two Dimensions (Place
and Time), and for each possible combina-
tion of its Levels we got a different Cell.
For instance, City Weekly Stock (containing
cells on a Week-City granularity Level),
Country Annual Stock (Country-Year), City
Daily Stock (City-Day), etc. Thus, it is im-
portant to realize that our own multidimen-
sional conceptual design fixes the order of
aggregation functions when navigating along
Cells hierarchy. If we want to Roll-up from
City Daily Stock to Country Annual Stock
we have to first aggregate by means of sum
(it means, Roll-up from City to Country Le-
vel) and later aggregate by means of average
(Roll-up from Day to Year). So that, order
does really matter since sum of averages is dif-
ferent from an average of sums (latter hap-
pens when navigating through City Weekly
Stock). Both orders are possible, but seman-
tics chosen when designing our schema forces
us to follow a certain order.

As said, above conflict could be avoided if
SQL allowed us to perform more than one ag-
gregation function per query and set up an
order between them. For instance, an SQL ex-
tension as showed below stating explicitly two
GROUP BY’s, very similar to SQL’99 GROU-
PING SETS modus operandi, would avoid
using nested queries when combining more
than one conflictive Roll-up. First GROUP
BY would be related to first aggregation func-
tion and analogously to second one:



SELECT p.ID, co.ID, y.ID, AVG(SUM(s.Stock))
FROM weeklyStock s, Product p, City c, Week w, Year y, Country co
WHERE s.key1 = p.ID AND s.key2 = c.ID
AND s.key3 = w.ID AND w.fkey = y.ID AND c.fkey = co.ID
GROUP BY p.ID, c.ID, y.ID
GROUP BY p.ID, co.ID, y.ID
ORDER BY p.ID, c.ID, y.ID

Nevertheless, although this problem has
been presented as a Roll-up plus Roll-up
problem, it goes far beyond as it is crucial
when obtaining non materialized Cells from
materialized ones. For instance, if we have
to work with City Weekly Stock Cell that
have not been materialized, ROLAP tools will
have to perform a Roll-up from Day to Week
over City Daily Stock to obtain needed data.
So that, we have already performed an impli-
cit Roll-up that could arise conflicts already
presented if we next perform just one explicit
Roll-up. Similarly, as presented in 4.2, impli-
cit Roll-ups can also appear when carrying
out a Drill-across (also in a ChangeBase,
but in this case it is raised over the same Di-
mension avoiding any kind of conflict) from
a non materialized Cell.

Meanwhile, best solution to minimize this
problem is to choose with care appropriate
Cells to be materialized. An extreme solu-
tion would be to materialize all of them, but
since it is an exponential space problem, it
is not feasible. Hence, in addition to tradi-
tional criteria like how frequently would be
a Cell queried, this problem defines another
criterion to decide the usefulness of a given
materialized view. According to semantics
related to our Cells hierarchy, those Cells
whose data can be used as pre-aggregated data
to calculate above Cells are good candidates
(for instance, in case presented, to materialize
Country Daily Stock instead of City Weekly
Stock, since Country Annual Stock can only
be calculated through the former).

4.2 The Fan-Shaped Problem

In this section we introduce a family of pro-
blems that are caused because disjointness is
not preserved when aggregating data in cer-
tain situations. It typically appears related
to Drill-across, either through semantic re-
lationships or shared Dimensions. Drill-
across asks for a one-to-one relationship, but

sometimes a one-to-many relation is enough.
For instance, after dropping the Place Di-
mension (by means of Roll-up and Chan-
geBase) we can Drill-across from Annual
Stock to Annual Profit. Conceptually, the
one-to-one relation is quite clear but in fact,
we really have a one-to-many relation since
both Cells are not materialized and Weekly
Stock and Monthly Profit are related to dif-
ferent Levels in the Time Dimension. We
can get the needed one-to-one relation by
means of internal Roll-ups (from Month to
Year over bothCells). Since Year is not mate-
rialized, its descriptors are included along with
its children Levels in the Time Dimension
hierarchy, given raise to the following query:

SELECT p.ID, y.ID, AVG(s.Stock), SUM(s.Profit)
FROM weeklyStock s, monthlyProfit m, Product p
Month mo, Week w, Year y
WHERE m.key1 = p.ID AND m.key2 = mo.ID
AND s.key1 = p.ID AND s.key2 = w.ID
AND mo.yearID = w.yearID
GROUP BY p.ID, y.ID
ORDER BY p.ID, y.ID

As stated in section 4, the aggregation of
data must be disjoint, and in this case, it is
not. In fact, what should be a one-to-one re-
lation turns into a many-to-many one calling
up a fan-shaped matching. Thus, we should
use a nested query performing first one Roll-
up and later, the other one, being the “join”
last performed. Hence, this problem could be
solved if SQL allowed us to state a priority
between “joins” and GROUP BY’s. However,
to minimize its impact is important, again, to
choose with care which Cells should be mate-
rialized. Therefore, this is another criterion to
bear in mind when deciding the usefulness of
a given materialized view.

Finally, also notice that when carrying out
a Drill-across to a non materialized Cell,
a ROLAP tool may need to perform inter-
nal Roll-ups to obtain data to where Drill-
across. Internal Roll-ups followed by an ex-
plicit Roll-up can cause the same conflict sta-
ted in subsection 4.1.

4.3 The Selection Granularity Problem

This problem is closely tied to Selection
and raises when completeness is not guaran-
teed. Selection allows us to reduce current
n-dimensional space by means of a logic clause



over a certain Descriptor. For instance, se-
lecting those cells of Daily Stock related to
Barcelona in the Place Dimension. Now,
if we Roll-up from Day to Week we cannot
change Daily Stock to Weekly Stock Cell
in the cube-query to take advantage of pre-
aggregated data, since aggregation in Weekly
Stock is complete and in our current Cell it
is not (we only have those points related to
Barcelona). We cannot take profit of any pre-
aggregated data in a materialized Cell when
translating to SQL if a Selection has been
carried out over a lower Level Descriptor in
any of its analysis Dimensions. Using ap-
propriate granularity Cell and performing in-
ternal Roll-ups is mandatory. Only way to
solve this problem is considering it in the mul-
tidimensional schema. For instance, using se-
mantic relationships and creating an speciali-
zation of Daily Stock (i.e. Barcelona Daily
Stock) and another on Weekly Stock (i.e.
Barcelona Weekly Stock). Between those
Cells, aggregation is complete and we can use
pre-aggregated data without problems.

5 Conclusions

This paper analyzes conflicts that could arise
when automatically translating to SQL a set of
operations in a single cube-query. Despite all
conflicts are due to data aggregation anoma-
lies, we have classified conflicts raised in three
groups; those caused by performing multiple
aggregation functions in a query, those due
to hidden many-to-many relationships and fi-
nally, those related to the selection granularity.

We have also presented how to solve these
problems avoiding subqueries. First two pro-
blems can be shunned, or at least smoothed,
choosing with care appropriate Cells to be
materialized. Both problems define two new
criteria to decide the usefulness of a given ma-
terialized view: according to semantics rela-
ted to our Cells hierarchy and avoiding hid-
den many-to-many relationships. The selec-
tion granularity problem is more specific, and
can only be solved considering it in the multi-
dimensional conceptual schema.

References
[1] A. Abelló, J. Samos, and F. Saltor. A Fra-

mework for the Classification and Description
of Multidimensional Data Models. In Proc. of
DEXA’2001. Springer, 2001.

[2] A. Abelló, J. Samos, and F. Saltor. Implemen-
ting Operations to Navigate Semantic Star Sche-
mas. In Proc. of DOLAP’2003. ACM, 2003.

[3] A. Abelló, J. Samos, and F. Saltor. YAM2

(Yet Another Multidimensional Model): An
extension of UML. Information Systems,
Elsevier, 2005. (In Press). Available at
http://www.sciencedirect.com.

[4] U. S. E. Franconi, F. Baader and P. Vassilia-
dis. Fundamentals of Data Warehousing, chap-
ter Multidimensional Data Models and Aggrega-
tion. Springer, 2000. M. Jarke, M. Lenzerini, Y.
Vassilious and P. Vassiliadis editors.

[5] E. Franconi and A. Kamble. The GMD Data
Model and Algebra for Multidimensional Infor-
mation. In Proc. of CAiSE’2004. Springer, 2004.

[6] M.-S. Hacid and U. Sattler. An Object-Centered
Multi-dimensional Data Model with Hierarchi-
cally Structured Dimensions. In Proc. of
KDEX’1997. IEEE, 1997.

[7] J. G. J. C. Trujillo, M. Palomar and I.-Y. Song.
Designing Data Warehouses with OO Concep-
tual Models. IEEE Computer, 34(12), IEEE,
2001.

[8] R. Kimball. The Data Warehouse toolkit. John
Wiley & Sons, 1996.

[9] H. J. Lenz and A. Shoshani. Summarizability
in olap and statistical data bases. In Proc. of
SSDBM’1997. IEEE, 1997.

[10] G. H. M. Blaschka, C. Sapia and B. Dinter. Fin-
ding Your Way Through Multidimensional Data
Models. In Proc. of DEXA Workshops’1998.
IEEE, 1998.

[11] D. L. Moody and M. A. Kortink. From En-
terprise Models to Dimensional Models: A Me-
thodology for Data Warehouse and Data Mart
Design. In Proc. of DMDW’2000. CEUR-WS,
2000.

[12] F. B. N. Tryfona and J. G. B. Christiansen. sta-
rER: A Conceptual Model for Data Warehouse
Design. In Proc. of DOLAP’1999. ACM, 1999.

[13] T. B. Pedersen. Aspects of Data Modeling and
Query Processing for Complex Multidimensio-
nal Data. PhD thesis, Faculty of Engineering
and Science, 2000.

[14] T. B. Pedersen and C. S. Jensen. Multidimen-
sional Database Technology. IEEE Computer,
34(12), IEEE, 2001.

[15] P. Vassiliadis and T. K. Sellis. A Survey of Logi-
cal Models for OLAP Databases. SIGMOD Re-
cord, 28(4), ACM, 1999.

[16] X. Yin and T. B. Pedersen. Evaluating XML-
extended OLAP queries based on a physical al-
gebra. In Proc. of DOLAP’2004. ACM, 2004.


