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Abstract. The aim of this paper is to bring together two research areas,
i.e. “Data Warehouses” and “Temporal Databases”, involving represen-
tation of time. In order to achieve this goal, data warehouse and temporal
database research results have been surveyed. Looking at temporal as-
pects within a data warehouse, more similarities than differences between
temporal databases and data warehouses have been found. Therefore,
this paper is focussed on how contributions of the temporal database
research could benefit data warehouses.

1 Introduction

Data Warehousing has been an active research area in the last years. Roughly,
it develops mechanisms to store and manage enterprise data to support the de-
cision making processes. We can see basic concepts, as well as quality issues in
[JLVVO00]. A recent study of research issues in the field is in [Vas00]. Analyz-
ing this study a clear practical business origins can be found. In contrast to
this, temporal database area begins and evolves in an academic environment.
Temporal database researchers, as it is shown in the bibliography of [WJW98],
have produced important and consolidated results in this field. In addition to
the common points we will explain further in detail, the different approaches of
these two areas are another interesting reason to relate them. Thus, the aim of
this paper is to present how contributions of the “Temporal Database” (TDB)
research could benefit “Data Warehouse” (DW) area.

The affinity between both concepts (i.e. DW and TDB) may not be obvious.
However, time references are essential in management business decisions, and the
dissection of both definitions shows their closeness. As defined in [IIS98], a DW is
an architectural structure that supports the management of “Subject-oriented”,
“Integrated”, “Time-variant”, and “Non-volatile” data. A TDB is introduced
in [SA86] as a database that supports “Valid time” (i.e. the time when the
fact becomes effective in reality), or “Transaction time” (i.e. the time when the
fact is stored in the database), or both times. Note that this definition excludes
“User-defined time”, which is an uninterpreted attribute domain of time directly
managed by the user and not by the database system. We consider the former
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accepted definition of DW could be rewritten in terms of well-established latter
temporal concepts. In [IIS98], we can see that “Time-variance” simply specifies
that every record in the DW is accurate relative to some moment in time. On
the other hand, the definition of “Valid Time” (VT) in [DGKT94] states that it
is the time when the fact is true in the modeled reality. Therefore, both outline
the importance of showing when data is correct and exactly corresponds to
reality. Moreover, “Non-volatility” refers to the fact that changes in the DW are
captured in the form of a “time-variant snapshot”. Instead of true updates, a
new “snapshot” is added to the DW in order to reflect changes. This concept can
be clearly identified with that of “Transaction Time” (TT), defined in [DGK*94]
as the time when the fact is current in the database.

Defining a “bitemporal database” as a database supporting VT and TT,
a DW is a bitemporal database containing integrated, subject-oriented data in
support of the decision making process, as it is sketched in figure 1. The first im-
plication of this definition is that TT is entirely maintained by the system, and
no user is allowed to change it. Moreover, the system should also provide specific
management mechanisms for VT. The importance of this temporal conception
is also outlined in [PJ98], which asks DW systems for support of advanced tem-
poral concepts. Besides, [YWO00] explains how to define temporal views over
non-temporal relations. We go further and show how TDB results could con-
tribute to specific data warehousing research subjects. We do not show how to
feed the DW, but outline the benefits of using a TDB for data warehousing.

Fig.1. A Data Warehouse as a Bitemporal Database

The bitemporal DW definition shows how the existence of the temporal di-
mension in a DW is inferred from its definition. Then, the next sections point
out how this temporal nature of the DW leads to the usage of different aspects
already studied in the field of TDBs. Next section elaborates on some general
temporal issues that should be adapted to data warehousing. Section 3 explains
how temporal languages could be used in the DW. Section 4 describes how
temporal storage management could be used in a DW environment. Section 5
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introduces “Object-Oriented” (O-0) temporal concepts in the data model of the
DW. Finally, section 6 concludes the paper.

2 Temporal Issues Relevant to Data Warehouses

In the literature, we find papers proposing the modeling of DWs as multidimen-
sional databases. However, as argued in [AOSS00], the structure of multidimen-
sional star shape schemas is too rigid and absolutely query oriented, while the
design of the central, corporate DW should be data driven. Since the DW should
not be multidimensional, “On-Line Analytical Processing” (OLAP) tools can-
not be directly used to extract information, and a flexible multi-purpose query
language is still needed. This query language should facilitate the storage and
retrieval of time-varying information.

Multidimensional modeling perfectly suits for small departamental DWs.
Thus, from the DW, some smaller, customized data structures, known as “Data
Marts” are built (as it is shown in figure 1). Since the DW is bearing them,
for the sake of performance, the “Data Marts” could only contain a partial his-
tory of data, or data current at a given time. Therefore, it is not only necessary
to extract temporal data, but also to convert bitemporal data (in the DW) to
data structures with only one temporal dimension (in the “Data Marts”). In this
sense, it can be very helpful to apply the VT and the TT snapshot operations of
TDBs, explained in [JSS92]. The VT snapshot operation is applied to extract,
from a bitemporal relation, the tuples valid at a given time and the TT snapshot
operation is applied to extract the tuples current at a given time.

First of all, as stated in the previous definition, the DW system should man-
age both temporal dimensions, i.e. VT and TT. However, not all objects will have
such bitemporal nature. It is important to notice that data in the DW comes
from independent heterogeneous sources (depicted in figure 1), whose data are
“integrated”. Thus, some of these sources will probably provide only TT for
their instances. Maybe, for some other instances, no temporal information needs
to be kept at all (for example, 1 Euro equals 166.386 Pesetas forever). The DW
must allow the possibility of defining different kinds of temporal objects and
attributes as in [BFG97].

Moreover, independently of the temporal dimension, different time structures
should also be allowed (i.e. instant -time point on an underlying time axis-,
interval -the time between two instants-, set of instants, and set of intervals) as in
any other TDBs, so that the different possibilities in reality can be represented. It
could also offer the possibility of defining calendars (i.e. human interpretations
of time), which would ascribe different meanings to temporal values. [Kim96)
considers such calendars (represented there in terms of attributes of a relational
table) an essential for analysis tasks, to be able to compare different periods of
time based on their characteristics.

A timestamp is a time value associated with some object or attribute value.
A non-decomposable time interval of some fixed, minimal duration is a chronon.
The size of each chronon in a timestamp interpretation is called granularity.
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Also due to the existence of different data sources, DW systems should allow the
usage of multiple granularities. In general, during the integration process, we
will not find that all sources are defined at the same temporal granularity (one
could collect data daily, another one monthly, and so on). If we chose the coarser
of the available granularities to integrate data, we would lose detail (which is
obviously not desirable from the point of view of the analysts, who will demand
information as detailed as possible).

In TDBs, a database which allows facts to be expressed in terms of differ-
ent granularities is called a TDB with multiple granularities. For example, an
employee is hired from a date to a date (year-month-day) but s/he will report
her/his activity from an hour to another hour every day. Moreover, s/he will
work only from Monday to Friday (a business-week), in spite of s/he has been
hired for a complete week. The notion of granularity system is an excellent TDB
tool to solve the DW problem of different granularities integration. Formally, in
TDBs, a granule is a set of time instants perceived as a nondecomposable tem-
poral entity when used to describe a phenomenon or when used to timestamp a
set of data. A granule can be composed of a single instant, a set of contiguous
instants (time intervals), or even a set of non-contiguous instants. In [BJW00],
an algebra for symbolic manipulation of granularities has been explained. For
example, the relationship: day “groups into” business-week, expresses that a day
or a set, of days are a subset of a business-week. The use of this algebra could be
a well DW integration solution.

3 Temporal Data Manipulation

Data manipulation is a really problematic question in the DW area due to the
huge volume of data to be managed. The updates are exclusively performed
inside the “update window” (during which queries are forbidden to avoid in-
terferences). This allows to consider the DW as a read-only database, as long
as users are not allowed to query during the update window. Temporal update
techniques, as it is shown in [JSS94], should be considered at this point, as well
as temporal constraints (business rules). Another important element of tempo-
ral languages, with associated specific research, are temporal constraints. An
integrity constraint is a property that incorporates extra real-world semantics in
a database schema. As it is explained in [Dat00], DWs are primarily considered
read-only, so data integrity is checked when the database is loaded (or refreshed).
Thus, in DWs, it is often assumed that there is no point in declaring integrity
constraints in the logical schema. Such is not the case, however. While it is true
(if the database is genuinely read-only) that the constraints can never be vi-
olated, declaring them provide a means of telling users what the data means,
thereby helping them in their task of formulating queries. Moreover, the DW
is not really read-only, but data are added to it. TDBs store and access time-
related information, thus temporal integrity constraints can place restrictions
on the evolution of data in time. Moreover, TDB integrity constraint checking
methods, as [Mar01], can be used.
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Employeel
Name|Salary [VTgapt | VT

end
Jordi| 1000 | 2002-7-1 [2002-7-20

Jordi| 3000 [2002-7-10[2002-7-30

Fig. 2. Erroneous state of Employeel

Dependencies are no more than a restricted class of integrity constraints.
[IIS98] explains that adding an element of time to the operational key is a com-
mon thing to do. However, the simple addition of the timestamp attributes does
not always convert a non-temporal key to a temporal key. “Temporal Functional
Dependencies” (TFDs), as explained in [Wij99], would allow us to formally rea-
son about whether it is necessary/effective or not to add that element. A “Func-
tional Dependency” (FD), that is valid in the current data, may no longer be
valid in the corresponding temporal data if the traditional definition of FDs is
used without change. Consider the previous personnel database example without
a TDB. In that case, we added a starting and ending valid time attributes. The
original primary key is not, by itself, a primary key of the temporal relation. In-
cluding either VTstqpt, VTepng, Or both in the primary key does not prevent Jordi
from having two salaries at a given point in time (as shown in figure 2).

Furthermore, the DW problem of the use of null values for unknown end time
has been widely studied in TDBs [CDIT97]. A temporal event -an instantaneous
fact, something occurring at an instant- happens in a starting VT and is true
until an ending VT. Sometimes, the ending VT is not a given value, is something
that indicates the event is currently valid. This is expressed with the special VT
value “Now”. For example, if we hire an employee for a permanent job, the
starting VT will be the initial date of the contract and the ending VT will be
the value “Now”. When an event is inserted or deleted, its VT, supplied by
the user, is transformed into a bitemporal element, adding TT, supplied by the
DBMS. Insertions initialize the starting TT to the current time and the ending
TT to the value “Until_changed”. As the current time inexorably advances, the
value of “Until_changed” always reflects the current time. Deletions change the
ending TT “Until_changed” to the current time when it is performed.

The volume of data is also a problem for the unlimited growing of the DW.
Some aging policy must be defined. For example, data is usually stored at coarser
granularities the older they are. This unearths another important temporal fea-
ture, known as coalescing, which means (in relational terms) obtaining one tuple
from two tuples with exactly the same values for each and every attribute, when
their timestamps are adjacent (or overlapping) in time. That is, coalescing is sim-
ilar to duplicate elimination, which would save lots of space in a snapshot DW.
Coalescing should not be confused with the multidimensional operation “Roll-
up”. The former eliminates redundant information, while the latter generates
less detailed data from the more detailed (aggregating or summarizing).

Employeel
Employee2
NamelSalary | Vstart { VTend | [Name|Department[VTsrar: | Vieng
Jordi| 1000 | 2002-7-1 [2002-7-10 : en
- Jordi LST 3002-7-1 [2002-7-15
Jordi | 2000 [2002-7-112002-7-20] 152 ~ 5505-7-16156057-30
Jordi| 3000 |2002-7-21|2002-7-30] -2 - -

Fig. 3. Employeel and Employee2 relations
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Consider, for example, a personnel TDB with two VT relations of employees,
as in figure 3. The definition of VT relation, automatically, includes a starting
and ending VT. The former (Employeel) has the attributes: name and salary.
The latter (Employee2) has the attributes: name and department. We want
to know what is the salary and the department history of our employees. In
this case, the simple fact of having VT relations saves the usage of additional
TSQL2 predicates for interval comparison (i.e. during, after, before, etc. defined
in [All83]) to formulate the query. Thus, in a TDB, using TSQL2, this query is
just a temporal join, like that in left hand side of figure 4. The simple formulation
of this query is due to Employeel and Employee2 are VT relations. The answer
to this query, automatically, shows the VT history (right hand side figure 4).

Name|Salary [Dept| VTstart | VTepg

SELECT Employeel.Name, Salary, Department Jordi| 1000 | LSI | 2002-7-1 |2002-7-10
FROM Employeel, Employee2 Jordi | 2000 | LSI |2002-7-11|2002-7-15
WHERE Employeel.Name = Employee2.Name Jordi | 2000 | AC |2002-7-16]2002-7-20

Jordi| 3000 | AC [2002-7-21[2002-7-30

Fig. 4. Temporal join of Employeel and Employee2

Consider the previous personnel database example and the same earlier query.
Without a TDB, we must add a starting and ending VT attributes. Using SQL,
the formulation of the query is the union of the four queries (one for each inter-
section pattern of two intervals) that generate the four tuples in figure 4.

4 Temporal Storage Management

Let be a bitemporal relational schema R have the attributes A4y, ..., A,, the most
common three alternatives used in TDB for its representation are:

Backlog-based Attributes Vi, V., T' and Op are atomic-valued timestamp at-
tributes containing a starting and ending VT chronons, the TT chronon when
the tuple was recorded, and the operation (insertion or deletion) performed.
R=(Ay,...,An, V., V., T, Op)

Tuple timestamped Attributes Ty, T,, Vs and V. are atomic-valued times-
tamp attributes containing a starting and ending TT chronons and a starting
and ending VT chronons. R = (Ay, ..., An, Ts, Te, Vs, Ve)

Attribute timestamped With this representation a tuple is composed of n
sets. R = ({[A1, [Ts, Te], [Vs, Vell, -1}, -, {[An, [Ts, Tel, [Vs, Ve]], - })- Each set el-
ement is a triple of an attribute value, a TT interval [Ts,T.], and a VT
interval [V, Ve].

These general storage structures can be improved by considering the specific
knowledge of temporal behaviour in DW. An specific bitemporal storage proposal
for DW is found in [AMO3]. The application of this storage structure for all
different types of data sources has been explained in [MAO03].

In [JS99], two basic storage management approaches for TDBs are explained.
The “integrated” approach consists in modifying or extending the internal mod-
ules of a DBMS to support time-varying data. The “stratum” approach converts
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temporal query language statements into conventional statements executed by
an underlying DBMS. While the latter approach is more realistic now, the former
approach ensures maximum efficiency and it should be the selected approach for
DWs. TDBs go further than DWs in this issue. There has been a vast amount of
work in storage structures and access methods for temporal data, as well as some
temporal DBMS prototypes [Boh95]. Specifically, in the “integrated” approach
for bitemporal databases many temporal indexing strategies are available, as it
is shown in [ST99], a survey of this field.

5 Object-Oriented Temporal Data Models

Time is an omnipresent element in analysis tasks, and a difficult element to
handle. We could find several temporal extensions of the E/R model that would
ease the modeling of the huge, central DW of the company, in [GJ99]. However,
going again to the definition in [IIS98], we observe that a DW is “Integrated” and
“Subject-oriented”. In [SCGI1], it is explained the importance of a semantically
rich data model to overcome semantic heterogeneities in the data sources. Thus,
it is argued that O-O models should be used for integration. The DW schema
would be equivalent to the “Federated Schema” (defined in [SL90]), where we
integrate the data sources, and from where we define the multidimensional query
oriented user views. Therefore, it should keep as much semantics as possible.

Semantic richness of O-O models, not only facilitates integration, but also
helps analysts to understand the real meaning of data. Moreover, it facilitates
the achievement of “Subject-oriented”, if we define each subject as a separate
object. Each of this objects will encapsulate all data regarding the corresponding
subject. In this sense, we propose the usage of a temporally enhanced O-O data
model for the DW.

First of all, in a database containing historical data, where any attribute
could change, the presence of system defined object identifiers (i.e. OID) seems
mandatory. Besides these identifiers, an O-O model has objects, attributes and
semantic relationships between the objects. To provide traceability (an essential
for analysis), all these elements must always be related to a TT. Thus, this
could be implicitly offered by the system. However, as pointed out before, some
objects, attributes and relationships could be related or not to VT depending
on analysis needs, modeling decisions, or just availability in data sources. For
objects, a special kind of VT (namely lifespan) should be distinguished here.
This should be directly associated to OIDs, as in [BFG97] or [SN97].

TT is generally not a single time instant, it has duration. However, just being
able to represent sets of instants as time intervals, in the sense of [BBJ98], should
be enough. Sets of intervals could be used for TT as well as VT of the attributes
and relationships. Nevertheless, lifespan should be considered a continuous set
of instants (only one interval). Once an object has been destroyed, it cannot be
recovered. [SN97] defines a “temporal object role model” timestamping instan-
tiation relationships, which can be easily translated to this framework allowing
dynamic classification. Thus, if an object is an instance of a given class for a
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given period of time, we timestamp the relationship between the class and the
object with the interval. We can keep the same object and OID, while being
able to change its classification. Given Student and Employee classes, we do not
destroy the instance of a person and create a new one just because s/he finished
her/his studies and found a job. The lifespan is continuous, while the VT of
classification may be a set of intervals (later on, the person who abandoned the
studies could return to her/his studies, generating two different VT intervals for
her/his classification in Student class). Finally, as already said, the data model
of the DW should support multiple granularities, as in [MBFG99], for VT and
lifespan.

An important characteristic of O-O models is the definition of methods for
objects and classes. In this case, it could be used to facilitate the implementation
of temporal associations and attributes. All we need is to define a method with
temporal parameters that returns the value of the relationship at the given time.
Thus, any attribute or relationship could be viewed as temporal methods some
returning constants, others returning one object or another depending on the
time parameters. This generalizes “mapping functions” in [EKO01]. For example,
we could implement the gross domestic product of Germany as follows:

class state {
attribute string name;
attribute Dictionary <int,real> GDP;
real GDP (in int year) {
if (year<1990 && name="Germany”)
return (SELECT s FROM state WHERE
name=" Western Germany”).GDP (year)
+(SELECT s FROM state WHERE

name="Eastern Germany”).GDP (year);
elseturn GDP.lookup(year);

6 Conclusions and Future Research

In this paper, we have brought together contributions from both research areas
(i.e. Data Warehousing and Temporal Databases), and have shown how close
they are. A TDB point of view of a DW has been presented. Since a DW re-
quires historic information, it must have a temporal dimension. Specifically, we
identify the two existing orthogonals temporal dimensions in a DW: the valid
time dimension and the transaction time dimension. In TDBs, temporal models,
temporal languages and access methods for time evolving data have been widely
studied. We conclude that this knowledge can and should be used in DWs in two
directions: firstly, offering tools to ease the design and query; secondly, provid-
ing special storage and access paths to improve the performance. Particularly,
we concentrate in the Object-Oriented temporal data models, which, besides
temporal dimensions, facilitate integration and subject-orientation to the DW.
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