
A Bitemporal Storage Structure for a Corporate Data Warehouse�

Alberto Abelló
Universitat Politècnica de Catalunya

C/ Jordi Girona 1-3 E-08034 Barcelona
E-mail: aabello@lsi.upc.es

Carme Mart´ın
Universitat Politècnica de Catalunya

C/ Jordi Girona 1-3 E-08034 Barcelona
E-mail: martin@lsi.upc.es

Key words: Data Warehouse, Temporal Databases, Temporal O-O Models

Abstract: This paper brings together two research areas, i.e. “Data Warehouses” and “Temporal Databases”, involving
representation of time. Looking at temporal aspects within a data warehouse, more similarities than differ-
ences between temporal databases and data warehouses have been found. The first closeness between these
areas consists in the possibility of a data warehouse redefinition in terms of a bitemporal database. A bitem-
poral storage mechanism is proposed along this paper. In order to meet this goal, a temporal study of data
sources is developed. Moreover, we will show how Object-Oriented temporal data models contribute to add
the integration and subject-orientation that is required by a data warehouse.

1 Introduction

Data Warehousing has been an active research area
in the last years. Roughly, it develops mechanisms to
store and manage enterprise data to support the deci-
sion making processes. We can see basic concepts,
as well as quality issues in (Jarke et al., 2000). A
recent study of research issues in the field is in (Vas-
siliadis, 2000). Analyzing this study a clear practical
business origin can be found. In contrast to this, tem-
poral database area begins and evolves in an academic
environment. Temporal database researchers, as it is
shown in the bibliography of (Wu et al., 1998), have
produced important results in this field. In addition
to the common points we will explain further, the dif-
ferent approaches of these two areas are another in-
teresting reason to relate them. Thus, the aim of this
paper is to analize the “Data Warehouse” (DW) from
the perspective of “Temporal Database” (TDB) com-
munity. Specifically, an storage mechanism and the
usage of temporal “Object-Oriented” (O-O) concepts
are proposed for the DW.

The affinity between both concepts (i.e. DW and
TDB) may not be obvious. However, time references
are essential in business decisions, and the dissec-
tion of both definitions shows their closeness. As de-

�Our work has been partially supported by the Spanish
Research Program PRONTIC under project TIC2000-1723-
C02-01.

fined in (Inmon et al., 1998), a DW is an architectural
structure that supports the management of “Subject-
oriented”, “Integrated”, “Time-variant”, and “Non-
volatile” data. A TDB is introduced in (Snodgrass
and Ahn, 1986) as a database that supports “Valid
time” (VT) (i.e. the time when the fact becomes ef-
fective in reality), or “Transaction time” (TT) (i.e.
the time when the fact is stored in the database), or
both times. Note that this definition excludes “User-
defined time”, which is an uninterpreted attribute do-
main of time directly managed by the user and not by
the database system.

In the literature, we find papers presenting the mod-
eling of DWs as multidimensional databases. How-
ever, as argued in (Abell´o et al., 2000), the structure
of multidimensional “Star Schemas” is too rigid and
absolutely query oriented, while the design of the cen-
tral, corporate DW should be data driven.

The main advantages of “Star Schemas” are their
simplicity and proximity to the business analysis con-
cepts. It makes them quite easy to be understood by
the final users. However, even more important than
this is the fact that they imply a given kind of queries.
This structure is quite concrete, and allows to pro-
pose specific optimizations, access paths, and storage
methods. They are probably the best way to study a
reduced set of facts with regard to the desired analy-
sis dimensions. Nevertheless, they are not as good at
keeping the data of the whole business, or just being

1



accessed by data mining algorithms.
In our architecture, the DW is what (Kimball et al.,

1998) calls the “Storage Structure”, and it is only ac-
cessed to solve a small number of specific queries.
As it is outlined in (Inmon et al., 1998), there is not
an homogeneous access pattern in the DW. Multi-
dimensional modeling and “Star Schemas” perfectly
suit for small departmental DWs. Therefore, from
the DW, some smaller, customized data structures,
known as “Data Marts” are built. Thus, the non-
multidimensional DW is mainly used to feed multi-
dimensional “Data Marts” or data sets to be mined.

First of all, section 2 defines the requirements for
the data model of the DW. Section 3 presents a bitem-
poral definition of the DW, and the different situa-
tions we can find for obtaining temporal information.
Section 4 describes how temporal storage structures
could be used in a DW environment, and an alterna-
tive technique is proposed, and compared with exist-
ing structures. Finally, section 5 concludes the paper.

2 Characteristics of the DW Model

It is well known that data models used in the op-
erational world are not appropriate for analysis tasks.
Lots of work have been devoted to model multidimen-
sional “Data Marts”. Let us analyze in this section
some characteristics that a suitable DW data model
should offer:

Time management Time is an omnipresent element
in analysis tasks, and a difficult element to handle.
As we will discuss in section 3, a DW is a bitem-
poral database with some specific characteristics.
Thus, the data model should support VT and TT.

Expressiveness Going to the definition in (Inmon
et al., 1998), we observe that a DW is “Inte-
grated”. In (Saltor et al., 1991), it is explained
the importance of a semantically rich data model
to overcome semantic heterogeneities in the data
sources. The data model should allow to repre-
sent, at least, as much semantics as any of the data
sources. Moreover, the importance of metadata is
well known. The more metadata we could repre-
sent in the database schema, the better.

Internal identifiers Due to the long term nature of
the DW, it is particularly difficult to find identi-
fiers among the attributes of the objects. The data
model should provide internal, real word indepen-
dent identifiers.

(Saltor et al., 1991) argues that O-O models should
be used for integration. In a DW, semantic richness of
O-O models, not only would facilitate integration, but
also would help analysts to understand the real mean-
ing of data. Moreover, it could facilitate the achieve-

ment of “Subject-oriented”, if we define each subject
as a separate object. Each of this objects will encap-
sulate all data regarding the corresponding subject. In
this sense, we propose the usage of a temporally en-
hanced O-O data model for the DW.

In a database containing historical data, where any
attribute could change, the presence of system defined
object identifiers (i.e. OID) seems mandatory. Be-
sides these identifiers, an O-O model has objects, at-
tributes and semantic relationships between the ob-
jects. To provide traceability (an essential for anal-
ysis), all these elements must always be timestamped
with TT. Thus, this should be implicitly offered by the
system. However, some objects, attributes and rela-
tionships could be related or not to VT depending on
analysis needs, modeling decisions, or just availabil-
ity in data sources. For objects, a special kind of VT
(namely lifespan) should be distinguished here. This
should be directly associated to OIDs, as in (Bertino
et al., 1997) or (Steiner and Norrie, 1997).

TT is generally not a single time instant, it has dura-
tion. However, just being able to represent sets of in-
stants as time intervals, in the sense of (B¨ohlen et al.,
1998), should be enough. Sets of intervals could be
used for TT as well as VT of the attributes and re-
lationships. Nevertheless, lifespan should be consid-
ered a continuous set of instants (only one interval).
Once an object has been destroyed, it cannot be re-
covered. (Steiner and Norrie, 1997) defines a “tem-
poral object role model” timestamping instantiation
relationships, which can be easily translated to this
framework allowing dynamic classification. Thus, if
an object is an instance of a given class for a given pe-
riod of time, we timestamp the relationship between
the class and the object with the interval. We can
keep the same object and OID, while being able to
change its classification. GivenStudent andEm-
ployee classes, we do not destroy the instance of
a person and create a new one just because s/he fin-
ished her/his studies and found a job. The lifespan is
continuous, while the VT of classification may be a
set of intervals (later on, the person who abandoned
the studies could return to her/his studies, generating
two different VT intervals for her/his classification in
Student class).

3 A Bitemporal Database

We consider the accepted definition of DW in (In-
mon et al., 1998) could be rewritten in terms of TDB
concepts. Firstly, “Time-variance” simply specifies
that every record in the DW is accurate relative to
some moment in time. On the other hand, the def-
inition of VT in (Dyreson et al., 1994) states that it
is the time when the fact is true in the modeled real-

2



ity. Therefore, both outline the importance of show-
ing when data is correct and exactly corresponds to
reality. Moreover, “Non-volatility” refers to the fact
that changes in the DW are captured in the form of
a “time-variant snapshot”. Instead of true updates, a
new “snapshot” is added to the DW in order to reflect
changes. This concept can be clearly identified with
that of TT, defined in (Dyreson et al., 1994) as the
time when the fact is current in the database.

Figure 1: A Data Warehouse as a Bitemporal Database

Defining a “bitemporal database” as a database
supporting VT and TT, a DW isa bitemporal
database containing integrated, subject-oriented data
in support of the decision making process, as it is
sketched in figure 1. The first implication of this def-
inition is that TT is entirely maintained by the sys-
tem, and no user is allowed to change it. Moreover,
the system should also provide specific management
mechanisms for VT. The importance of this temporal
conception is also outlined in (Pedersen and Jensen,
1998), which asks DW systems for support of ad-
vanced temporal concepts.

3.1 Temporal Study of Data Sources

The input data of the DW is provided by the data
sources, that are integrated. Depending on whether
the data sources manage TT and VT or not, we could
obtain the VT for the DW or not. TT in the DW can al-
ways be obtained, because it is internal to a given stor-
age system. When an event is loaded into the DW, its
VT, supplied by the “Extraction, Transformation and
Load” (ETL) module, is transformed into a bitempo-
ral element, adding TT, generated by the DW DBMS.
Let us classify the different kinds of data sources in
(Jarke et al., 2000) based on the temporal information
we could obtain from them (see figure 2):

1. From “snapshot” and “queriable” sources that do

TT

VT

TT

VT

TT

VT

TT

VT

TT

VT

TT

VT

TT

VT

TT

VT

1.

DWSources

2.

DWSources

3.

DWSources

4.

DWSources

Figure 2: Transformations of time attributes

not keep any kind of time, we can only store the
TT in the DW.

2. From “logged” and “specific” (those able to write
“delta files”) sources, if they timestamp the entries,
we can consider that the TT in the sources corre-
sponds to VT for the DW. If no other information
exists, the data is considered valid while it is cur-
rent in the operational database.

3. From “cooperative” (for instance, those that imple-
ment triggers) sources, the TT in the sources corre-
sponds again to the VT in the DW. Moreover, since
both repositories are updated at the same time, TT
in the DW also corresponds to TT in the sources.

4. From bitemporal data sources (not considered in
(Jarke et al., 2000)), we could obtain VT and TT.

Out of this four situations, the most common is the
second one. Therefore, from here on we will assume
the usage of delta files to load the DW, and TT/VT
will refer to those of the DW, if not said otherwise.

3.2 Description of Delta Operations

The delta files contain timestampedinserts, updates
anddeletes of values in the data sources. Let us ana-
lyze the effect that each of them has in the DW:

time
current

Insert(d,t1)

ETL DWelem(Data,Vs,Ve,Ts,Te)

Delete(d,t3)

ETL

t2

t4 d, t1, Now, t2, t4−1

d, t1, Now, t2, UC

d, t1, t3, t4, UC

DWelem(Data,Vs,Ve,Ts,Te)
Updated

New

New

Figure 3: Effect of delta operations

Insert When an insertion (timestamped with the op-
erational TT) is found in a delta file a new bitempo-
ral element is always generated in the DW (as de-
picted in figure 3). A bitemporal event occurs at a
“starting VT” (V�) and is true until an “ending VT”
(V�). The V� corresponds to the timestamp in the
delta file (i.e. t1). However, V� is not known at this
moment, since data is currently valid in the sources.
This is expressed with the special VT value “Now”,
whose semantics are explained in (Clifford et al.,
1997). For example, if we hire an employee, the V�

will be the time when her/his data are introduced in
the personnel database, and the V� will be the value

3



“Now”, until s/he is fired. Insertions initialize the
“starting TT” (T�) to the current time (i.e. t2) and
the “ending TT” (T�) to the value “Untilchanged”
(UC). As the current time inexorably advances, the
value of UC always reflects the current time.

Delete A deletion (also timestamped with the opera-
tional TT) generates the logical removal of the ex-
isting bitemporal element in the DW. The value of
T� is changed to the current time, when the DW
is loaded, minus one (i.e. t4-1). However, as it
is shown in figure 3, this is not enough. A new
bitemporal element is required, which expresses
that from now on we know the V�, i.e. the times-
tamp in the delta file (i.e. t3). Therefore, a deletion
in the data sources implies an update and an insert
in the DW.

Update Without loss of generality, the modification
is defined by the deletion of old data immediately
followed by the insertion of new values.

��
��
��
��

t3<t2

����
��
��
��
��
��

��
��
��
��
��

t4

t2<t3

TTt2
��
��
��
��
��

��
��
��
��
��

t1

t4

VT

TT

VT

t1

t2

t3
t3

Figure 4: Valid area for VT and TT values

Figure 4 graphically shows the four temporal points
of figure 3. Since we cannot delete data that was not
previously inserted, it is true that t1�t3. Moreover,
thedeletewill always be found strictly after theinsert
in the delta file. Therefore, t2�t4 and for every data
there exist two bitemporal rectangles. One of them
is open at top, because V� is “Now”. Notice that all
time values in the delta files are previous to the load
of the DW, which implies that t1�t2 and t3�t4. Since
t1�t2, both rectangles have the bottom line below the
diagonal of the graphic (which represents events that
occur at the same time that they are recorded in the
DW). The fact that t3�t4 implies that the closed rect-
angle also has the top line below the diagonal. How-
ever, nothing can be said about the relationship be-
tween t2 and t3, because the deletion could happen
between the insertion and its load (t3�t2) or after the
load of the insertion (t2�t3). Nevertheless, since t2
and t3 are never used in the same temporal element, it
only has effect on the position of the rectangles along
the TT axis.

4 Temporal Storage Structures

In (Devlin, 1997), the historical nature of the DW is
explained, distinguishing two kinds of temporal data:

“Transient Data” and “Periodic Data”. These DW
concepts of (Devlin, 1997) can be found in (Dyreson
et al., 1994) for TDBs. In fact, “Transient Data” is a
VT relation and “Periodic Data” is a bitemporal rela-
tion. Moreover, the representation structure for “Pe-
riodic Data” is the “backlog-based” representation of
(Jensen et al., 1994). Let be a bitemporal relational
schema R have the attributes��� ���� ��, its “backlog-
based” representation is as follows:

R = {A1,...,An,Vs,Ve,T,Op}

The attributes� and�� are respectively an atomic-
valued timestamp attribute containing the TT chronon
when the tuple was recorded, and the operation (in-
sert, updateor delete) performed.

In (Kimball et al., 1998) three different storage
structures for DWs are described for warehouse in-
ventory situations. The first inventory model is the
“Transaction model”, which can be also represented
in TDBs with the “backlog-based” representation.
The second inventory model is the “Delivery status
model”. In this case one record for each delivery of
product to the warehouse is built, and then in this sin-
gle record, the disposition of all the items in the de-
livery until they have left the warehouse are tracked.
The third inventory model is the “Inventory snapshot
model”. In (Jensen et al., 1994), an appropriate
representation structure for the “Inventory snapshot
model” has been explained. This structure is the “tu-
ple timestamped” representation. Let be a bitemporal
relational schema R have the attributes��� ���� ��, its
representation is as follows:

R = {A1,...,An,Vs,Ve,Ts,Te} 

The problem of the “tuple timestamped” represen-
tation is that the timestamp affects the whole tuple,
while changes could affect only one attribute. This is
a conceptual and a practical problem at the same time.
Firstly, temporal information does not reflect reality
(not all attributes change at a time). Moreover, space
is wasted (values that do not change are replicated).

To solve this, a temporal structure can be associ-
ated with every attribute value, grouping all informa-
tion about an object within a single tuple. As such,
“attribute timestamped” representation is in NF�. Let
a bitemporal relation schema R have the attributes
��� ���� ��, its representation is as follows:

R = {{[A1,[Vs,Ve],[Ts,Te]],...},...,{[An,[Vs,Ve],[Ts,Te],...},...} 

With this representation a tuple is composed of n sets.
Each set element is a triple of an attribute value, a VT
interval���� ���, and a TT interval���� ���.

If we try to physically store such structure, we must
reallocate the record every time it is modified, be-
cause its size increases and it will not fit in the same
place. In a DW, because of its special characteristics,
this could and should be avoided. The load of the DW

4



is massive, and should be as fast as possible to obtain
a small “update window”. Time should not be wasted
reallocating records.

4.1 A New Storage Proposal

As depicted in figure 5, we propose to store the values
of every triple���� ���� ���� ���� ���� (besides an OID
that, as discussed in section 2, implicitly contains a
lifespan) in a different table. Actually, it is not neces-
sary to define a table for every attribute, but for every
set of attributes that share exactly the same temporal
behaviour (i.e. a change in one of them always occurs
at the same time that the change of the others). If the
VT of all attributes changes at once, all changes are
due to the same event. Thus, TT will also change at
the same time for all them, because the values will be
available to be loaded in the DW at one stroke. How-
ever, to decide which attributes will be in the same
structure a case study is required, based on the events
that generate data in the sources.

Theoretical {{[A1,[Vs,Ve],[Ts,Te]],...},...,{[An,[Vs,Ve],[Ts,Te],...},...}

...

OID,An,Vs,Ve,Ts,TeOID,A1,Vs,Ve,Ts,TeImplementation

Figure 5: Temporal data representation

Actually, we are proposing a “tuple timestamped”
representation where all attributes change at a time,
which is a subject and time oriented representation,
since each structure contains only one semantic con-
cept, and all attributes change at a time. For example,
if we store employee information (only one subject),
we should use a different structure for home address
and telephone, and another one for work address and
telephone (two different temporal behaviours). If the
company reallocates somebody in a new room, only
her/his job data will change. If s/he moves to a big-
ger house, only home data will change. Even though
all data regards the same subject, it shows a different
time behaviour.

Without loss of generality, we will assume that ev-
ery table contains at most one attribute. The special
case of a table without attribute column will be used
to show dynamic classification of the objects. If there
exists a record in the table, it means that the instance
identified by the OID belongs to the corresponding
class. In this way, we can show that a given object is
an instance of a class during a VT and TT interval.

In the previous section we have seen that opera-
tions will generate three kinds of records in the ta-
bles. When a new value is assigned to an attribute
(i.e. insert), a new record is added with V� “Now”

and T� UC. This record shows the current value of
the attribute in the operational databases. If that value
is not valid any more (i.e.deleteis found in the delta
file), the record is updated (assigning a specific value
to T�) to reflect that the information is not current in
the DW, and another record is added to indicate the
current knowledge of historical information.

...
...

OID,A,Vs,Ts OID,A,Vs,Ve,Ti,Td

Current Historical

vo o vt1 t2 t1 t3 t2 t4

Figure 6: Two kinds of temporal data

As depicted in figure 6, we can use only two differ-
ent tables to store all three kinds of record. The first
kind of record, that reflects current data, only contain
two different temporal values (V� and T�). Therefore,
the other two columns are not necessary for these
records, because always contain values “Now” for V�

and UC for T�. Moreover, after the logical deletion
of the value, only four different temporal values are
necessary to show the whole historical evolution of
the value. We do not actually need to store the two
records in figure 3, but only one. Thus, we will have
another table to keep the history of the attribute which
has six columns: OID, attribute value, the time when
the value was introduced in the operational database
(the well known V�), the time when this value was re-
moved (the well known V�), the time when theinsert
was processed (we will call it T�), and the time when
the deletewas processed (we will call it T�). From
these four temporal values, we can easily reconstruct
the whole history of the value (both records obtained
by processing of the correspondingdelete).

On loading the DW, all we need to do to process
an insert is add a new record to theCurrent table of
the attribute. The processing of adeleteis not much
more difficult: the corresponding record is removed
from theCurrent table, and a new one is added to the
Historical table. Notice thatCurrent table does not
contain historical data, so that its size should not be a
problem for the search. Moreover, the hugeHistori-
cal table does not need to be scanned in any of both
operations. To process adelete, all we need to do in
theHistorical table is to append a record.

OID,A1,V1s,T1s,...,An,Vns,TnsCurrent

...

OID,An,Vs,Ve,Ti,TdOID,A1,Vs,Ve,Ti,TdHistorical

Figure 7: One table for current values, several for historical

5



Finally, it is important to notice that if an object be-
longs to a class, all its attributes will have one value in
the correspondingCurrent table, despite of the num-
ber of historical values of each of them. Therefore,
we can have only oneCurrent table for the whole set
of attributes of a class, independently of the temporal
behaviour of each attribute (as depicted in figure 7).

Regarding the requirements enumerated in section
2, time management is clearly improved and internal
identifiers empowered. Expressiveness does not actu-
ally depend on the storage structure, but on the ability
to accurately capture reality. An O-O temporal stor-
age structure should facilitate it. The representation of
semantic relationships can be smoothly implemented
with OID-OID pairs instead of OID-Attribute pairs.

4.2 Temporal Data Management

An “Integrity Constraint” (IC), also known as busi-
ness rule, is a property that incorporates extra real-
world semantics in a database schema. As it is ex-
plained in (Date, 2000), DWs are primarily consid-
ered read-only, so data integrity is guaranteed by the
ETL module when the database is loaded. Thus, in
DWs, it is often assumed that there is no point in
declaring ICs. Such is not the case, however. While it
is true that the ICs can never be violated, having them
in the metadata repository provides a means of telling
users what the data means, thereby helping them in
their task of formulating queries. It is not a good idea
to activate IC checking in the DW, but this should not
mean we have to forget them. The DW stores and
accesses time-related information, thus temporal ICs
should place restrictions on the evolution of data.

EmployeeSalary
OID Attribute V� V�

Jordi 1000 2002-7-1 2002-7-20
Jordi 3000 2002-7-10 2002-7-30

Figure 8: Erroneous state ofEmployeeSalary

For example, “Primary Key”(PK) are no more
than a restricted class of IC. Consider the personnel
database example in figure 8. In this case,�OID,V ��
is not the temporal PK of the relation. Including either
V�, V�, or both in the PK does not preventJordi
from having two different salaries at a given point in
time (as shown in figure 8).

However, there is not such a problem in our struc-
tures. (Inmon et al., 1998) explains that an element
of time should be added to the operational PK. In our
case,Currenttable contains only one tuple per object,
so that the only OID will be the PK. In theHistorical
tables, where more than one tuple per object could
exist, the OID is not enough. Nevertheless, due to
the special characteristics of VT in the DW, the man-
agement is not as complex as in the previous exam-

ple. Since VT is actually TT in the data sources, it
inexorably advances, so that we will never find over-
lapping VT intervals. Moreover, the existence of dif-
ferent VT intervals for the same attribute value of the
same object, does not exclude the usage of TT in the
PK, because each of this intervals will be registered in
the DW at a different TT. Thus, the temporal attribute
to be added to the PK can be chosen among the four
temporal attributes in theHistorical table.

Dynamic classification is another example of IC,
which expresses the pertainance of an object to a
class: the VT intervals of the attribute values of an
object must be contained in the VT interval of the
classification of the object in the corresponding class.
Again, this IC must not be checked because of the na-
ture of the data sources.

Since, as argued in section 1, the DW should not
be multidimensional, “On-Line Analytical Process-
ing” (OLAP) tools cannot be directly used to extract
information. “Data Marts” are defined from the DW.
The queries to feed “Data Marts” are massives, and
refer to specific subjects. “Data Marts” always regard
a set of measures of a kind of event. Every time one
of these events happens, data sources take all mea-
sures at one stroke. Therefore in our storage structure,
the measures will have the same temporal behaviour,
and will be stored in the same structure, if they re-
gard the same subject. Thus, to feed a “Data Mart”,
we will only need to access oneHistorical table. Fur-
thermore, it is not only necessary to extract temporal
data, but also to convert bitemporal data (in the DW)
to data structures with only one temporal dimension
(in the “Data Marts”).

4.3 Comparison of Structures

In this section we are going to compare our storage
structure with regard to those storage structures being
used nowadays in DWs and TDBs (table 1 summa-
rizes it). Query time, load time and storage space are
the criteria used in the comparison:

Criteria Back-log Tuple timestamped Attribute timestamped

Query time ? ? ?

Load time �
� �

Storage space
� �

�

Table 1: Summary table

Query time Our structure is always better to query
current values and historical queries regarding one
attribute, because it is only necessary to access one
table. For multi-attribute historical queries (which
would require to access more than one table), all
three structures could obtain better query response
times in some cases. Nevertheless, we argue that
our storage structure is better than the others, be-
cause queries involving a set of attributes that have

6



the same temporal behaviour are the most frequent
on feeding the “Data Marts”. Moreover, the sepa-
ration ofCurrent table, that facilitates the study of
current data, would correspond to the “Operational
Data Store”, which is a well-known, essential, fre-
quently accessed data repository in the information
factory (as reflected in (Inmon et al., 1998)). De-
pending on the number of attributes, their sizes and
update frequencies this storage structure will also
be better than the others on solving multi-attribute
historical queries. Finding the threshold for this
case is out of the scope of this paper and will be
tackled as future work.

Load time The “back-log” representation is better
than ours, because it only needs to append val-
ues. However, it behaves better than “tuple times-
tamped” (due to the reduced size of theCurrent ta-
ble, finding the record to update is much faster in
our approach) and “attribute timestamp” (our ap-
proach neither needs to search historical data, nor
reallocate the updated record in the table).

Storage space The “back-log” representation reiter-
ately replicates values, so that it will need much
more storage space, and the “tuple timestamp” rep-
resentation replicates values that do not change.
Therefore, they are wasting space. Neverthe-
less, “attribute timestamped” representation is bet-
ter than ours, because it does not replicates OIDs.

5 Conclusions

In this paper, a temporal point of view of a DW has
been presented. Since a DW requires historic infor-
mation, we identify the two existing orthogonals tem-
poral dimensions in a DW: the valid time dimension
and the transaction time dimension. In TDBs, tempo-
ral models and temporal management for time evolv-
ing data have been widely studied. Particularly, we
concentrate in O-O temporal data models, which, be-
sides temporal dimensions, facilitate integration and
subject-orientation characteristics to the DW.

The correspondences between temporal attributes
in the data sources and those in the DW have been
analized. Moreover, a new subject and time oriented
storage structure has been proposed and compared
with the existing ones.

REFERENCES

Abelló, A., Oliva, M., Samos, J., and Saltor, F. (2000). In-
formation System Architecture for Data Warehousing
from a Federation. InProc. of the 3rd Int. Work-
shop on Engineering Federated Information Systems
(EFIS’00), pages 33–40. IOS Press.

Bertino, E., Ferrari, E., and Guerrini, G. (1997).
T Chimera: A temporal object-oriented data model.
Theory and Practice of Object Sytems, 3(2):103–125.

Böhlen, M. H., Busatto, R., and Jensen, C. S. (1998).
Point-Versus Interval-Based Temporal Data Models.
In Proc. of the 14th Int. Conf. on Data Engineering
(ICDE’98), pages 192–200. IEEE Computer Society.

Clifford, J., Dyreson, C., Isakowitz, T., Jensen, C. S., and
Snodgrass, R. T. (1997). On the Semantics of “Now”
in Databases.ACM Transactions on Database Sys-
tems, 22(2):171–214.

Date, C. J. (2000).An Introduction to Database Systems.
Addison Wesley, seventh edition.

Devlin, B. (1997). Managing Time in the Data Warehouse.
InfoDB, 11(1):7–11.

Dyreson, C. E., Grandi, F., K¨afer, W., Kline, N., Lorent-
zos, N., Mitsopoulos, Y., Montanari, A., Nonen,
D., Peressi, E., Pernici, B., Roddick, J. F., Sarda,
N. L., Scalas, M. R., Segev, A., Snodgrass, R. T.,
Soo, M. D., Tansel, A., Tiberio, P., and Wieder-
hold, G. (1994). A Consensus Glossary of Tem-
poral Database Concepts.ACM SIGMOD Record,
23(1):52–64. http://www.cs.auc.dk/˜ csj/Glossary.

Inmon, W. H., Imhoff, C., and Sousa, R. (1998).Corporate
Information Factory. John Wiley & Sons.

Jarke, M., Lenzerini, M., Vassiliou, Y., and Vassiliadis, P.,
editors (2000).Fundamentals of Data Warehousing.
Springer-Verlag.

Jensen, C. S., Soo, M. D., and Snodgrass, R. T. (1994). Uni-
fying Temporal Data Models Via a Conceptual Model.
Information Systems, 19(7):513–547.

Kimball, R., Reeves, L., M.Ross, and Thornthwaite, W.
(1998). The Data Warehouse lifecycle toolkit. John
Willey & Sons.

Pedersen, T. B. and Jensen, C. S. (1998). Research Issues
in Clinical Data Warehousing. InProc. of the 10th
Int. Conf. on Statistical and Scientific Database Man-
agement (SSDBM’98), pages 43–52. IEEE Computer
Society.

Saltor, F., Castellanos, M., and Garc´ıa-Solaco, M. (1991).
Suitability of Data Models as Canonical Models for
Federated DBs.ACM SIGMOD Record, 20(4):44–48.

Snodgrass, R. T. and Ahn, I. (1986). Temporal Databases.
IEEE Computer, 19(9):35–42.

Steiner, A. and Norrie, M. C. (1997). A Temporal Extension
to a Generic Object Data Model. Technical Report
TR-15, Time Center.

Vassiliadis, P. (2000). Gulliver in the land of data warehous-
ing: practical experiences and observations of a re-
searcher. InProc. of the 2nd Int. Workshop on Design
and Management of Data Warehouses (DMDW’00).
CEUR-WS (http://www.ceur-ws.org).

Wu, Y., Jajodia, S., and Wang, X. S. (1998). Tem-
poral Database Bibliography Update. InTemporal
Databases: Research and Practice, pages 338–366.
Springer-Verlag.

7


