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Abstract: To build a Cooperative Information System from several pre-existing heterogeneous systems, the schemas 
of these systems must be integrated. Operations used for this purpose include conforming operations, which 
change the form of a schema. In this paper, a set of primitive conforming operations for Object-Oriented 
schemas are presented. These operations are organized in matrixes according to the Object-Oriented 
dimensions -Generalization/Specialization, Aggregation/Decomposition- on which they operate. 

1 INTRODUCTION 

A “Cooperative Information System” (CIS) is built 
upon a number of pre-existing heterogeneous 
information systems. We assume that each one of 
them will have a schema in some data model 
(relational, object-oriented, ...). Because of the 
autonomy of design of these systems, their models 
will, in general, be different: “syntactic 
heterogeneity”. One of the methods to overcome this 
heterogeneity is by adopting a data model as the 
“Canonical Data Model” (CDM) of the CIS, and 
translating schemas from their native models to the 
CDM, as explained in Sheth and Larson (1990). 
“Object-Oriented”(O-O) data models were found in 
Saltor et al. (1991) well suited as CDM of a CIS, 
and we will be assuming in this paper an O-O CDM.  

The architecture of a CIS may follow different 
frameworks, but most likely it will be a “multilevel-
schema architecture”, with schemas at different 
levels, and schema mappings between consecutive 
levels. The now classical example is Sheth & 
Larson's 5-level schema architecture for “Federated 

Database Systems” (Sheth and Larson, 1990); it 
continues to be a useful reference framework 
(Conrad et al., 1999). 

A system with a multilevel-schema architecture 
can be built by starting from one or more schemas, 
and applying operations to yield another schema at 
the next level (and their corresponding mappings), 
and so on. At each step, if all schemas follow the 
CDM, then the operations applied are precisely the 
schema operations of that model; this is the reason 
why it is important to use a CDM with adequate 
schema operations. 

This paper discusses schema operations needed to 
conform “Object-Oriented” (O-O) schemas, i.e. to 
change the form of a given schema into a desired 
form. Our emphasis here is in the process to build a 
CIS using an O-O model as its CDM, particularly 
when constructing Federated Schemas from Export 
Schemas in the sense of Sheth and Larson (1990). 
This schema integration process has two steps: first, 
each Export Schema is transformed into a common 
form (conformation) and then all these conformed 
schemas are integrated by some “Generalization” 
operation, as in García-Solaco et al. (1996). 

Here, a set of primitive operations to conform O-
O schemas are presented. In these operations the 



 

schema form is taken explicitly into account; thus, 
from a starting schema, according to its patterns, 
operations can be applied to obtain a conformed 
schema to be integrated lately. We assume that these 
conforming operations do not add new information 
(they do not augment the information capacity of the 
schema in the sense of Miller et al. (1993)) to the 
obtained schema (all elements added must be 
derived from the source schema). All “semantic 
enrichment” takes place when producing Component 
Schemas, as was presented in Castellanos et al. 
(1994). This is so because of the “separation of 
concerns” of the architectures. For the same reason 
conforming operations do not change the data 
model; translating operations do that. 

We use UML terminology (OMG, 2002). We add 
to this terminology some general integrity 
constraints to restrict the semantics of some 
operations. However our results are applicable to 
any O-O data model.  

Conforming operations are defined on the 
Generalization/Specialization (G/S from now on) 
and on the Aggregation/Decomposition (A/D) 
dimensions. Each operation produces a mapping 
between the input and output schemas, and all these 
mappings will be stored in a repository; but this 
topic is out of the scope of this work. 

This paper is organized as follows: the UML 
model elements are introduced in section 2; section 
3 the schema patterns and primitive conforming 
operations are presented; related work, conclusions 
and references close it. We use bold face for UML 
terms, italic for new terms, and  “quotes” for terms 
introduced by other authors. 

2 MODEL ELEMENTS 

Figure 1 shows the UML metaclasses meaningful for 
our purpose. We only consider three elements: 
Class, Generalization, and Association. 

 
 
 
 
 
 
 

 
 

Figure 1. Subset of UML metaclasses. 
 

• Classes describe sets of objects sharing 
structure and semantics, which can be given 
either extensionally, or intensionally. 

• Generalizations are Relationships between 
two Classes along the G/S dimension. 

• Associations are Relationships between two 
Classes along the A/D dimension. 

2.1 Generalization Metaclass  

A Generalization is a taxonomic relationship 
between a more general element (parent) and a 
more specific one (child). It uses a discriminator to 
show the criterion used in the specialization. 

A set of Generalizations sharing the same 
parent and discriminator form a Partition. In our 
context, a discriminator is a function used to 
restrict the presence of instances of the superclass in 
each subclass. The discriminator of a 
Generalization is the set of functions added to the 
predicate of the child w.r.t. that of the parent. 

Notice that Generalizations are absolutely 
independent of the information represented along the 
A/D dimension (which includes attributes, as 
explained below). We only know that an instance 
belongs to a subclass because it fulfils the intension 
predicate. Attributes corresponding to the 
discriminator do not necessarily exist, so that if the 
subclass is deleted, the information may be lost. 

We assume that the generalization digraph is a 
semi-lattice, having Class All_objects as root. It is 
not a tree, because more than one generalization path 
is allowed between two Classes. Nevertheless, we 
impose a really strong Integrity Constraint (IC) on 
this allowance: both paths must involve the same set 
of functions, however, it is not possible that given 
any two Classes (one in each path) both sets of 
functions used in the Generalizations till them 
coincide. Figure 2 shows a correct and an incorrect 
example. In (b), Classes Girl and YoungWoman 
should be the same, since functions used to 
specialize them (i.e. {sex(x), agePerson(x)}) 
coincide. In addition, they are superclasses of the 
same Class (GirlScout) by the same 
discriminator (hobby(x)), thus they should be 
the same Class. 

 
 
 
 
 
 
 
 
 
 

 

Figure 2. Generalization integrity constraint. 
 



 

2.2 Association Metaclass  

An Association defines a semantic relationship 
between Classes. An instance of an Association is a 
Link, which is a tuple of instances obtained from the 
related Classes. In general, UML allows n-ary 
Associations. However, we only consider binary 
unidirectional Associations. Having only binary 
Associations does not reduce the expressivity of an 
O-O schema, since n-ary Associations can always 
be represented by a Class and n binary 
Associations. UML refers to the Association ends 
as source and target; here, the target end is 
graphically expressed by the head of the arrow.  

Moreover, as we did for Classes, we also 
consider that the instances of an Association can be 
given extensionally, or intensionally. The intension 
of an Association is given by a predicate showing 
which pairs of instances (from source and target) 
are related (i.e. which Links exist). 

Although different kinds of Associations exist, 
we only emphasize the difference between  
Aggregations (i.e. a part-whole relationship) and 
those that are not Aggregations (i.e. those showing 
a class being either associated or used as attribute in 
another one). We consider that if DataType values 
would have identity, and could be freely associated 
to Classes, Attributes would just be a special case 
of Association. Thus, for the sake of simplicity, 
from here on, we will assume this. 

There exist two ICs in the usage of Associations, 
both only concerning Aggregations. As depicted in 
Figure 3.b, Aggregations forming a cycle are not 
allowed (i.e. Class A being part of B, means Class B 
cannot be part of A). Moreover, between a parent 
Class and any of its child Class cannot exist an 
Aggregation Relationship. 

 
  
 
 
 
 
 
Figure 3. Aggregation integrity constraint. 

3 OPERATIONS ON OBJECT-
ORIENTED SCHEMAS 

The main difference among operations defined in 
this work and those defined by other authors is that 
we only consider operations modifying the form of 
the schema. For example, since operations that 
change names do not change any form, they are not 

needed to conform schemas. Operations locate a 
particular pattern in the source schema, and change 
it to a different form in the target schema, leaving 
unaltered the rest. 

We define a pattern of interest as that which 
represents the minimal information needed to apply 
a given conforming operation. As candidate patterns, 
we took digraphs, where nodes represent Classes, 
and arcs represent Relationships (either Association 
or Generalization) between Classes. 

Many occurrences of patterns appear in each 
schema. Conformation operations are applied 
successively on each pattern until a conformed 
schema is obtained. The conformation is the 
composition of operations, which is associative, but 
not commutative. We call primitives the atomic 
operations needed to conform schemas; the derived 
operations are those that can be obtained by 
composition of primitives. We have established a set 
of fifteen primitive operations, in the sense that none 
of them can be left out without affecting the set of 
derived operations. 

Patterns of interest and primitives can be 
represented in a digraph G = (P,O), where P is the 
set of patterns, and O is the set of operations (Figure 
4). An arc oij from pi to pj represents the operation 
that converts pattern pi into pattern pj. We 
distinguish three subgraphs corresponding to 
operations on G/S, A/D and inter dimensions. The 
reflexive arc on pattern p6 reflects the existence of 
three operations acting on the same pattern, which 
give rise to three different forms (a, b, c), that can be 
seen as special cases of it. 

 

 

 

 
Figure 4. Patterns transition graph. 

 
G is a symmetric graph, in the sense that for 

every arc oij, there is an arc oji representing the 
opposite operation, which may or may not be its 
mathematical inverse. When oij reduces the capacity 
of information, oji is not able to recover it, giving 
rise to a target schema different to the source 
schema; however, the patterns have the same form. 

The matrixes depicted in Figures 5 and 10 show 
the primitive operations that work over the patterns 
of interest that we have identified for G/S and A/D 



 

respectively, while Figure 14 shows the matrix 
containing primitive operations that combine both 
dimensions. The cri are the criteria  of the 
discriminators and the ni the names of the 
Associations. Empty cells of the matrixes represent 
derived operations. 

3.1 Operations along 
Generalization/Specialization  

There are eight primitive conforming operations that 
work exclusively along the G/S dimension (Figure 
5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figura 5. Generalization/Specialization matrix 
 
AddingSubclass (cell c15) adds a new subclass to 

a Partition by union, intersection, difference, etc. of 
instances of existing Classes, without changing the 
discriminator of the Partition. EliminatingSubclass 
(cell c51) removes a subclass from a specialization, it 
can produce some loss of information capacity. 

Figure 6 shows how, by difference, we add a new 
subclass Others, and it also shows how 
EliminatingSubclass removes the same subclass 
without producing any loss of information capacity. 
There are some cases where it is impossible to 
recover an eliminated subclass without augmenting 

the information capacity (for example, we cannot 
recover Marine, if we only have Terrestrial 
and Animals). 

 
 
 
 
 
 
 
 
 
 
 

Figura 6. Adding/EliminatingSubclass example 
 
RisingPartition (cell c24) derives a new Partition 

of a superclass by applying the transitivity property. 
This operation converts an indirect subclass of a 
superclass in a direct one. DescendingPartition (cell 
c42) does the opposite  transformation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 7. Rising/DescendingPartition example 
 

Figure 7 shows an example of RisingPartition, 
where we obtain the subclasses Marine Mammal 
and Terrestrial Mammal as direct subclass of 
superclass Animals. To descend a Partition, its 
discriminator has to include the discriminator of 
the Partition of the subclass where we want to place 
it. So, whereas sometimes it is possible to directly 
apply DescendingPartition, in other cases it is 
necessary to previously use other operations to 
obtain an adequate discriminator. 

OpeningLattice (cell c34) changes a semi-lattice 
pattern into a tree pattern by removing part of one 
path between two Classes, eliminating multiple 
inheritance. This does not imply any loss of 
information capacity because, when there are two 
specialization paths between two Classes, both 
involve the same set of functions. The inverse 
transformation is carried out by ClosingLattice (cell 
c43). Figure 8 shows an example where the Partition 



 

with habitat discriminator disappears and 
appears. 

 
 
 
 
 
 
 
 
 
 
 

Figure 8. Opening/ClosingLattice example 
 
FusingPartition (cell c45) fuses all 

Generalizations in two different Partitions of a 
superclass into a unique Partition of it. The 
generated Partition has as discriminator the union 
of discriminators of the source Partitions. Its 
inverse, SplittingPartition (cell c54), splits subclasses 
of a Partition into two Partitions. Figure 9 shows 
an example. 

 
 
 
 
 
 
 

Figure 9. Fussing/SplittingPartition example 

3.2 Operations along 
Aggregation/Decomposition 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10. Aggregation/Decomposition matrix 

The matrix associated to this dimension (Figure 10) 
contains three patterns (p6, p7, p8). It shows 
conformation generic operations whose application 
depends on the kind of Association. Three 
operations can be applied over pattern p6; for each 
one of them the form of its target schema is shown. 
The forms produced by AddingAssociation and 
EliminatingAssociation are not patterns but special 
cases of pattern p6. 

ReversingAssociation (cell c11
a) changes the 

direction of an Association. Notice that it is not 
applicable to Aggregations, because it would 
change the meaning, not only the form of the 
schema. If it is applicable, the information capacity 
in the source schema is preserved, and itself is its 
inverse. For example, if there is an Association 
between Cars and People Classes showing the 
owner of each car (Figure 11a), the effect of this 
operation is to substitute this Association by its 
reversing one in the target schema, which shows the 
cars owned by each person (Figure 11b). 

 
 
 
 
 
 

Figure 11. ReversingAssociation example 
 
AddingAssociation (cell c11

b) adds a new 
Association to the target schema. A new 
Association between two Classes can be derived by 
union, difference, complementarity, etc. of 
Associations between them. This operation 
preserves the information capacity in the source 
schema. EliminatingAssociation (cell c11

c) carries 
out the opposite transformation, it eliminates an 
Association from the source schema; in this case, 
the information capacity of the target schema may 
be reduced. 

In Figure 12, given a source schema with 
People and Universities Classes, and the 
Associations between them represented by means of 
their attributes students, teaching_staff 
and adm_staff, AddingAssociation derives a new 
Association in the target schema (Figure 12b) by 
union of pre-existing ones showing all people that 
belong to each university. The name of this new 
Association is community. The target schema in 
Figure 12a is obtained after applying 
EliminatingAssociation over the source schema in 
Figure 12b. 

 
 
 
 



 

 
 
 
 
 
 
 
 

Figure 12. Adding/EliminatingAssociation example 
 
RisingAssociation (cell c23) derives a new 

Association between two Classes by applying the 
transitivity property. Whether the information 
capacity in the source schema is preserved in the 
target schema or not, depends on properties of 
Associations involved in the operation. The 
information capacity of the target schema may be 
reduced. DescendingAssociation (cell c32) is its 
opposite; although it could seem that this operation 
is derived from successive application of 
ReversingAssociation, RisingAssociation and 
ReversingAssociation, this is not true, because the 
ReversingAssociation is not applicable when there is 
an Aggregation. The target schema obtained by 
DescendingAssociation does not always preserve the 
information capacity of the source schema. 

Figure 13 depicts an example of these operations. 
The source schema (Figure 13a) includes Classes 
Languages, People, and Clubs; and the 
Associations among these Classes which show that 
people speak languages, and that clubs are 
conceived as compound objects from all their 
members. After performing RisingAssociation, a 
new target schema is obtained (Figure 13b). This 
schema incorporates a new Association connecting 
Classes Languages and Clubs. Therefore, in the 
target schema, we can obtain for a given club all its 
members and all the languages spoken in the club, 
but data about which languages were spoken for 
each person has been lost. The target schema in 
Figure 13a is obtained after applying 
DescendingAssociation over the source schema in 
Figure 13b; the new Association represents, for each 
person, the languages that are spoken in the clubs to 
which the person belongs instead of the languages 
spoken by the person. 

 
 
 
 
 
 
 
 

Figura 13. Rising/DescendingAssociation example 

3.3 Interdimension Operations 

Figure 14 shows the primitive conforming 
operations that work simultaneously along the G/S 
dimension as well as the A/D dimension.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 14. Interdimension matrix 

 
ChangingToPartition (cell c12) transforms an 

Association into a Partition, so one or more 
subclasses are added to the target schema. The 
contents and number of these subclasses depend, 
respectively, on the set of objects of the Class that is 
being specialized and the Association that is being 
transformed in a Partition. The Class to be 
specialized could be any of the two Classes related 
by the Association. Given that no new information 
can be added, the subclasses only incorporate those 
Associations that are inherited from their 
superclasses; the target schema preserves the 
information capacity of the source schema. 
ChangingToAssociation (cell c21) carries out the 
opposite transformation, it converts a Partition of 
the source schema into an Association (whose 
direction can be chosen at will) in the target schema. 
Moreover, the target schema disregards all the 
subclasses that participated in the Partition. In 
general, the target schema has less information 
capacity. 

Figure 15 shows an example of application of 
these operations. Given a source schema (Figure 
15a) with Classes Sex and People, the 
Association between them represents the sex of each 
person. Assuming that there are people having 
associated object ‘female’ and people having 
associated object ‘male’, the subclasses Women and 
Men will be added to the target schema (Figure 15b) 
using ChangingToPartition . The set of objects of 
these subclasses are, respectively, those people 
whose sex is ‘female’ and whose sex is ‘male’ in the 
source schema. Finally, it is important to note that 
Class Sex does not disappear from the schema 



 

because it could be Associated to other Classes. 
Figure 15a is obtained after applying 
ChangingToAssociation over the source schema in 
Figure 15b. 

 
 
 
 
 
 
 
 

Figure 15. ChanginToPartition/Association example 

4 RELATED WORK 

Schema conformation is related to other topics such 
as Schema Evolution and View Definition 
(definition of External Schemas and Derived 
Classes). The main difference between them is in 
their aims. The Schema Evolution objective is to 
modify a schema to adapt it to changes in the 
modelled Universe of Discourse; hence, these 
changes can augment the information capacity. In 
the case of View Definition, its general objective is 
to transform and to present information stored in 
DB, all or part of it, according to end-user 
requirements.  

4.1 Operations on Object-Oriented Data 
Models 

Directly related to the Schema Conformation 
problem is the proposal found in Motro (1987), 
where a set of operations to build and modify the 
generalization hierarchy is presented. In Mannino et 
al. (1988) generalization hierarchies can be merged 
using a set of operations.  

Several view mechanisms have been proposed for 
O-O models, as can be seen in Motsching-Pitrik 
(1996). In Rundensteiner (1992) proposal, Derived 
Classes are defined using Object Algebra, and then 
integrated in an O-O schema (the Global Schema) to 
define External Schemas as subschemas of it. In 
Bertino (1992), Derived Classes that include non-
derived attributes can be defined using a specific 
language. In Santos et al. (1994) an External 
Schema definition methodology is proposed; in it, 
Derived Classes can contain existing or new objects. 
In Rundensteiner et al. (1998) a Schema Evolution 
mechanism based on a View Definition system is 
proposed, and it has no limitation on the accepted 

changes. In proposals where External Schemas are 
built from the Conceptual or other External Schemas 
without augmenting their information capacity, the 
conformation operations presented in this paper can 
be directly used. As mentioned in Miller et al. 
(1993), one of the operational objectives of defining 
External Schemas is to restructure information to be 
integrated in others schemas, which is also the target 
of our work. 

In Banerjee et al. (1987), a taxonomy of primitive 
operations for Schema Evolution in the Orion 
system is defined; each operation has a semantic 
based on a set of rules that preserve Schema 
Invariants. For the GemStone system (Penney and 
Stein, 1987), a set of primitive operations, based on 
Schema Invariants as well, is defined; in this case, 
the object model is simpler than the Orion one (since 
multiple inheritance is not allowed), and this fact is 
reflected on operations. The corresponding proposal 
for the O2 system can be found in Zicari (1992). In 
Claypool et al. (1998) a framework is proposed 
based on the Object Data Management Group 
(ODMG) data model; in it, complex schema 
evolution operations can be defined as a sequence of 
primitive ones. In these models, subclass 
relationships are defined based exclusively on 
subtype relationships, without taking into account 
any specialization criteria; for this reason, the 
primitive operations defined along the G/S 
dimension perform only the addition or removal of 
subclass relationships. Related to the A/D 
dimension, the only association in these models 
corresponds to the definition of a class as an 
attribute domain; therefore, the only operation along 
this dimension is devoted to change attribute 
domains. In relation to the G/S and A/D dimensions, 
in this paper we have defined a set of operations 
wider than the above mentioned, the reason is that 
we consider specialization criteria and associations. 

4.2 Operations on other Data Models 

Operations to transform or restructure schemas have 
also been proposed in others data models. The 
complex object model put forward in Abiteboul and 
Hull (1988) allows the definition of typed 
hierarchical objects; in this environment, a set of 
operations over this kind of objects, based on 
rewriting rules, is defined. These operations work 
along the A/D dimension, since they restructure the 
type of a complex object by associating its 
components; most of them preserve the information 
capacity, only two augment it.  



 

In Kwan and Fong (1999), a schema integration 
methodology is put forward, it is based on the 
Extended Entity-Relationship model, but it could 
also be applied to the Relational model. This 
methodology offers a set of rules to solve semantics 
conflicts and to merge entities and relationships 
taken from different schemas in another schema. 
These rules operate along the G/S or A/D 
dimensions; the generated schema always preserves 
the information capacity. 

5 CONCLUSIONS 

Conforming operations change a pattern in a source 
schema into a different pattern in a target schema, 
thus changing the form of the schema, without 
augmenting the information capacity. We have 
presented a set of primitive conforming operations 
on Object-Oriented database schemas; these 
operations may be represented by arcs of a graph 
and by cells of a “pattern×pattern” matrix. Other 
conforming operations can be derived from these 
primitives.  

The use of different O-O dimensions allows us to 
classify the operations into three groups, each one 
with its matrix: operations along the 
Generalization/Specialization dimension, operations 
along the Aggregation/Decomposition dimension, 
and operations changing from one dimension to the 
other. Each operation produces a mapping between 
its source and its target schema. These mappings lie 
along the Derivability dimension, and is subject of 
our research in progress, that will give rise to the 
implementation of a case tool for schema 
integration. 
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