
ON OPERATIONS TO CONFORM OBJECT-ORIENTED
SCHEMAS

Alberto Abelló, Elena Rodríguez, Fèlix Saltor
Universitat Politècnica de Catalunya

Email: {aabello, malena, saltor}@lsi.upc.es

Marta Oliva
Universitat de Lleida

Email: oliva@eup.udl.es

Cecilia Delgado, Eladio Garví, José Samos
Universidad de Granada

Email: {cdelgado, egarvi, jsamos}@ugr.es

Keywords: Information Integration, Cooperative Information Systems, Federated Database Systems, Object-Oriented
Schemas.

Abstract: To build a Cooperative Information System from several pre-existing heterogeneous systems, the schemas
of these systems must be integrated. Operations used for this purpose include conforming operations, which
change the form of a schema. In this paper, a set of primitive conforming operations for Object-Oriented
schemas are presented. These operations are organized in matrixes according to the Object-Oriented
dimensions -Generalization/Specialization, Aggregation/Decomposition- on which they operate.

1 INTRODUCTION

A “Cooperative Information System” (CIS) is built
upon a number of pre-existing heterogeneous
information systems. We assume that each one of
them will have a schema in some data model
(relational, object-oriented, ...). Because of the
autonomy of design of these systems, their models
will, in general, be different: “syntactic
heterogeneity”. One of the methods to overcome this
heterogeneity is by adopting a data model as the
“Canonical Data Model” (CDM) of the CIS, and
translating schemas from their native models to the
CDM, as explained in Sheth and Larson (1990).
“Object-Oriented”(O-O) data models were found in
Saltor et al. (1991) well suited as CDM of a CIS,
and we will be assuming in this paper an O-O CDM.

The architecture of a CIS may follow different
frameworks, but most likely it will be a “multilevel-
schema architecture”, with schemas at different
levels, and schema mappings between consecutive
levels. The now classical example is Sheth &
Larson's 5-level schema architecture for “Federated

Database Systems” (Sheth and Larson, 1990); it
continues to be a useful reference framework
(Conrad et al., 1999).

A system with a multilevel-schema architecture
can be built by starting from one or more schemas,
and applying operations to yield another schema at
the next level (and their corresponding mappings),
and so on. At each step, if all schemas follow the
CDM, then the operations applied are precisely the
schema operations of that model; this is the reason
why it is important to use a CDM with adequate
schema operations.

This paper discusses schema operations needed to
conform “Object-Oriented” (O-O) schemas, i.e. to
change the form of a given schema into a desired
form. Our emphasis here is in the process to build a
CIS using an O-O model as its CDM, particularly
when constructing Federated Schemas from Export
Schemas in the sense of Sheth and Larson (1990).
This schema integration process has two steps: first,
each Export Schema is transformed into a common
form (conformation) and then all these conformed
schemas are integrated by some “Generalization”
operation, as in García-Solaco et al. (1996).

Here, a set of primitive operations to conform O-
O schemas are presented. In these operations the

schema form is taken explicitly into account; thus,
from a starting schema, according to its patterns,
operations can be applied to obtain a conformed
schema to be integrated lately. We assume that these
conforming operations do not add new information
(they do not augment the information capacity of the
schema in the sense of Miller et al. (1993)) to the
obtained schema (all elements added must be
derived from the source schema). All “semantic
enrichment” takes place when producing Component
Schemas, as was presented in Castellanos et al.
(1994). This is so because of the “separation of
concerns” of the architectures. For the same reason
conforming operations do not change the data
model; translating operations do that.

We use UML terminology (OMG, 2002). We add
to this terminology some general integrity
constraints to restrict the semantics of some
operations. However our results are applicable to
any O-O data model.

Conforming operations are defined on the
Generalization/Specialization (G/S from now on)
and on the Aggregation/Decomposition (A/D)
dimensions. Each operation produces a mapping
between the input and output schemas, and all these
mappings will be stored in a repository; but this
topic is out of the scope of this work.

This paper is organized as follows: the UML
model elements are introduced in section 2; section
3 the schema patterns and primitive conforming
operations are presented; related work, conclusions
and references close it. We use bold face for UML
terms, italic for new terms, and “quotes” for terms
introduced by other authors.

2 MODEL ELEMENTS

Figure 1 shows the UML metaclasses meaningful for
our purpose. We only consider three elements:
Class, Generalization, and Association.

Figure 1. Subset of UML metaclasses.

• Classes describe sets of objects sharing
structure and semantics, which can be given
either extensionally, or intensionally.

• Generalizations are Relationships between
two Classes along the G/S dimension.

• Associations are Relationships between two
Classes along the A/D dimension.

2.1 Generalization Metaclass

A Generalization is a taxonomic relationship
between a more general element (parent) and a
more specific one (child). It uses a discriminator to
show the criterion used in the specialization.

A set of Generalizations sharing the same
parent and discriminator form a Partition. In our
context, a discriminator is a function used to
restrict the presence of instances of the superclass in
each subclass. The discriminator of a
Generalization is the set of functions added to the
predicate of the child w.r.t. that of the parent.

Notice that Generalizations are absolutely
independent of the information represented along the
A/D dimension (which includes attributes, as
explained below). We only know that an instance
belongs to a subclass because it fulfils the intension
predicate. Attributes corresponding to the
discriminator do not necessarily exist, so that if the
subclass is deleted, the information may be lost.

We assume that the generalization digraph is a
semi-lattice, having Class All_objects as root. It is
not a tree, because more than one generalization path
is allowed between two Classes. Nevertheless, we
impose a really strong Integrity Constraint (IC) on
this allowance: both paths must involve the same set
of functions, however, it is not possible that given
any two Classes (one in each path) both sets of
functions used in the Generalizations till them
coincide. Figure 2 shows a correct and an incorrect
example. In (b), Classes Girl and YoungWoman
should be the same, since functions used to
specialize them (i.e. {sex(x), agePerson(x)})
coincide. In addition, they are superclasses of the
same Class (GirlScout) by the same
discriminator (hobby(x)), thus they should be
the same Class.

Figure 2. Generalization integrity constraint.

2.2 Association Metaclass

An Association defines a semantic relationship
between Classes. An instance of an Association is a
Link, which is a tuple of instances obtained from the
related Classes. In general, UML allows n-ary
Associations. However, we only consider binary
unidirectional Associations. Having only binary
Associations does not reduce the expressivity of an
O-O schema, since n-ary Associations can always
be represented by a Class and n binary
Associations. UML refers to the Association ends
as source and target; here, the target end is
graphically expressed by the head of the arrow.

Moreover, as we did for Classes, we also
consider that the instances of an Association can be
given extensionally, or intensionally. The intension
of an Association is given by a predicate showing
which pairs of instances (from source and target)
are related (i.e. which Links exist).

Although different kinds of Associations exist,
we only emphasize the difference between
Aggregations (i.e. a part-whole relationship) and
those that are not Aggregations (i.e. those showing
a class being either associated or used as attribute in
another one). We consider that if DataType values
would have identity, and could be freely associated
to Classes, Attributes would just be a special case
of Association. Thus, for the sake of simplicity,
from here on, we will assume this.

There exist two ICs in the usage of Associations,
both only concerning Aggregations. As depicted in
Figure 3.b, Aggregations forming a cycle are not
allowed (i.e. Class A being part of B, means Class B
cannot be part of A). Moreover, between a parent
Class and any of its child Class cannot exist an
Aggregation Relationship.

Figure 3. Aggregation integrity constraint.

3 OPERATIONS ON OBJECT-
ORIENTED SCHEMAS

The main difference among operations defined in
this work and those defined by other authors is that
we only consider operations modifying the form of
the schema. For example, since operations that
change names do not change any form, they are not

needed to conform schemas. Operations locate a
particular pattern in the source schema, and change
it to a different form in the target schema, leaving
unaltered the rest.

We define a pattern of interest as that which
represents the minimal information needed to apply
a given conforming operation. As candidate patterns,
we took digraphs, where nodes represent Classes,
and arcs represent Relationships (either Association
or Generalization) between Classes.

Many occurrences of patterns appear in each
schema. Conformation operations are applied
successively on each pattern until a conformed
schema is obtained. The conformation is the
composition of operations, which is associative, but
not commutative. We call primitives the atomic
operations needed to conform schemas; the derived
operations are those that can be obtained by
composition of primitives. We have established a set
of fifteen primitive operations, in the sense that none
of them can be left out without affecting the set of
derived operations.

Patterns of interest and primitives can be
represented in a digraph G = (P,O), where P is the
set of patterns, and O is the set of operations (Figure
4). An arc oij from pi to pj represents the operation
that converts pattern pi into pattern pj. We
distinguish three subgraphs corresponding to
operations on G/S, A/D and inter dimensions. The
reflexive arc on pattern p6 reflects the existence of
three operations acting on the same pattern, which
give rise to three different forms (a, b, c), that can be
seen as special cases of it.

Figure 4. Patterns transition graph.

G is a symmetric graph, in the sense that for

every arc oij, there is an arc oji representing the
opposite operation, which may or may not be its
mathematical inverse. When oij reduces the capacity
of information, oji is not able to recover it, giving
rise to a target schema different to the source
schema; however, the patterns have the same form.

The matrixes depicted in Figures 5 and 10 show
the primitive operations that work over the patterns
of interest that we have identified for G/S and A/D

respectively, while Figure 14 shows the matrix
containing primitive operations that combine both
dimensions. The cri are the criteria of the
discriminators and the ni the names of the
Associations. Empty cells of the matrixes represent
derived operations.

3.1 Operations along
Generalization/Specialization

There are eight primitive conforming operations that
work exclusively along the G/S dimension (Figure
5).

Figura 5. Generalization/Specialization matrix

AddingSubclass (cell c15) adds a new subclass to

a Partition by union, intersection, difference, etc. of
instances of existing Classes, without changing the
discriminator of the Partition. EliminatingSubclass
(cell c51) removes a subclass from a specialization, it
can produce some loss of information capacity.

Figure 6 shows how, by difference, we add a new
subclass Others, and it also shows how
EliminatingSubclass removes the same subclass
without producing any loss of information capacity.
There are some cases where it is impossible to
recover an eliminated subclass without augmenting

the information capacity (for example, we cannot
recover Marine, if we only have Terrestrial
and Animals).

Figura 6. Adding/EliminatingSubclass example

RisingPartition (cell c24) derives a new Partition

of a superclass by applying the transitivity property.
This operation converts an indirect subclass of a
superclass in a direct one. DescendingPartition (cell
c42) does the opposite transformation.

Figura 7. Rising/DescendingPartition example

Figure 7 shows an example of RisingPartition,
where we obtain the subclasses Marine Mammal
and Terrestrial Mammal as direct subclass of
superclass Animals. To descend a Partition, its
discriminator has to include the discriminator of
the Partition of the subclass where we want to place
it. So, whereas sometimes it is possible to directly
apply DescendingPartition, in other cases it is
necessary to previously use other operations to
obtain an adequate discriminator.

OpeningLattice (cell c34) changes a semi-lattice
pattern into a tree pattern by removing part of one
path between two Classes, eliminating multiple
inheritance. This does not imply any loss of
information capacity because, when there are two
specialization paths between two Classes, both
involve the same set of functions. The inverse
transformation is carried out by ClosingLattice (cell
c43). Figure 8 shows an example where the Partition

with habitat discriminator disappears and
appears.

Figure 8. Opening/ClosingLattice example

FusingPartition (cell c45) fuses all

Generalizations in two different Partitions of a
superclass into a unique Partition of it. The
generated Partition has as discriminator the union
of discriminators of the source Partitions. Its
inverse, SplittingPartition (cell c54), splits subclasses
of a Partition into two Partitions. Figure 9 shows
an example.

Figure 9. Fussing/SplittingPartition example

3.2 Operations along
Aggregation/Decomposition

Figure 10. Aggregation/Decomposition matrix

The matrix associated to this dimension (Figure 10)
contains three patterns (p6, p7, p8). It shows
conformation generic operations whose application
depends on the kind of Association. Three
operations can be applied over pattern p6; for each
one of them the form of its target schema is shown.
The forms produced by AddingAssociation and
EliminatingAssociation are not patterns but special
cases of pattern p6.

ReversingAssociation (cell c11
a) changes the

direction of an Association. Notice that it is not
applicable to Aggregations, because it would
change the meaning, not only the form of the
schema. If it is applicable, the information capacity
in the source schema is preserved, and itself is its
inverse. For example, if there is an Association
between Cars and People Classes showing the
owner of each car (Figure 11a), the effect of this
operation is to substitute this Association by its
reversing one in the target schema, which shows the
cars owned by each person (Figure 11b).

Figure 11. ReversingAssociation example

AddingAssociation (cell c11

b) adds a new
Association to the target schema. A new
Association between two Classes can be derived by
union, difference, complementarity, etc. of
Associations between them. This operation
preserves the information capacity in the source
schema. EliminatingAssociation (cell c11

c) carries
out the opposite transformation, it eliminates an
Association from the source schema; in this case,
the information capacity of the target schema may
be reduced.

In Figure 12, given a source schema with
People and Universities Classes, and the
Associations between them represented by means of
their attributes students, teaching_staff
and adm_staff, AddingAssociation derives a new
Association in the target schema (Figure 12b) by
union of pre-existing ones showing all people that
belong to each university. The name of this new
Association is community. The target schema in
Figure 12a is obtained after applying
EliminatingAssociation over the source schema in
Figure 12b.

Figure 12. Adding/EliminatingAssociation example

RisingAssociation (cell c23) derives a new

Association between two Classes by applying the
transitivity property. Whether the information
capacity in the source schema is preserved in the
target schema or not, depends on properties of
Associations involved in the operation. The
information capacity of the target schema may be
reduced. DescendingAssociation (cell c32) is its
opposite; although it could seem that this operation
is derived from successive application of
ReversingAssociation, RisingAssociation and
ReversingAssociation, this is not true, because the
ReversingAssociation is not applicable when there is
an Aggregation. The target schema obtained by
DescendingAssociation does not always preserve the
information capacity of the source schema.

Figure 13 depicts an example of these operations.
The source schema (Figure 13a) includes Classes
Languages, People, and Clubs; and the
Associations among these Classes which show that
people speak languages, and that clubs are
conceived as compound objects from all their
members. After performing RisingAssociation, a
new target schema is obtained (Figure 13b). This
schema incorporates a new Association connecting
Classes Languages and Clubs. Therefore, in the
target schema, we can obtain for a given club all its
members and all the languages spoken in the club,
but data about which languages were spoken for
each person has been lost. The target schema in
Figure 13a is obtained after applying
DescendingAssociation over the source schema in
Figure 13b; the new Association represents, for each
person, the languages that are spoken in the clubs to
which the person belongs instead of the languages
spoken by the person.

Figura 13. Rising/DescendingAssociation example

3.3 Interdimension Operations

Figure 14 shows the primitive conforming
operations that work simultaneously along the G/S
dimension as well as the A/D dimension.

Figure 14. Interdimension matrix

ChangingToPartition (cell c12) transforms an

Association into a Partition, so one or more
subclasses are added to the target schema. The
contents and number of these subclasses depend,
respectively, on the set of objects of the Class that is
being specialized and the Association that is being
transformed in a Partition. The Class to be
specialized could be any of the two Classes related
by the Association. Given that no new information
can be added, the subclasses only incorporate those
Associations that are inherited from their
superclasses; the target schema preserves the
information capacity of the source schema.
ChangingToAssociation (cell c21) carries out the
opposite transformation, it converts a Partition of
the source schema into an Association (whose
direction can be chosen at will) in the target schema.
Moreover, the target schema disregards all the
subclasses that participated in the Partition. In
general, the target schema has less information
capacity.

Figure 15 shows an example of application of
these operations. Given a source schema (Figure
15a) with Classes Sex and People, the
Association between them represents the sex of each
person. Assuming that there are people having
associated object ‘female’ and people having
associated object ‘male’, the subclasses Women and
Men will be added to the target schema (Figure 15b)
using ChangingToPartition . The set of objects of
these subclasses are, respectively, those people
whose sex is ‘female’ and whose sex is ‘male’ in the
source schema. Finally, it is important to note that
Class Sex does not disappear from the schema

because it could be Associated to other Classes.
Figure 15a is obtained after applying
ChangingToAssociation over the source schema in
Figure 15b.

Figure 15. ChanginToPartition/Association example

4 RELATED WORK

Schema conformation is related to other topics such
as Schema Evolution and View Definition
(definition of External Schemas and Derived
Classes). The main difference between them is in
their aims. The Schema Evolution objective is to
modify a schema to adapt it to changes in the
modelled Universe of Discourse; hence, these
changes can augment the information capacity. In
the case of View Definition, its general objective is
to transform and to present information stored in
DB, all or part of it, according to end-user
requirements.

4.1 Operations on Object-Oriented Data
Models

Directly related to the Schema Conformation
problem is the proposal found in Motro (1987),
where a set of operations to build and modify the
generalization hierarchy is presented. In Mannino et
al. (1988) generalization hierarchies can be merged
using a set of operations.

Several view mechanisms have been proposed for
O-O models, as can be seen in Motsching-Pitrik
(1996). In Rundensteiner (1992) proposal, Derived
Classes are defined using Object Algebra, and then
integrated in an O-O schema (the Global Schema) to
define External Schemas as subschemas of it. In
Bertino (1992), Derived Classes that include non-
derived attributes can be defined using a specific
language. In Santos et al. (1994) an External
Schema definition methodology is proposed; in it,
Derived Classes can contain existing or new objects.
In Rundensteiner et al. (1998) a Schema Evolution
mechanism based on a View Definition system is
proposed, and it has no limitation on the accepted

changes. In proposals where External Schemas are
built from the Conceptual or other External Schemas
without augmenting their information capacity, the
conformation operations presented in this paper can
be directly used. As mentioned in Miller et al.
(1993), one of the operational objectives of defining
External Schemas is to restructure information to be
integrated in others schemas, which is also the target
of our work.

In Banerjee et al. (1987), a taxonomy of primitive
operations for Schema Evolution in the Orion
system is defined; each operation has a semantic
based on a set of rules that preserve Schema
Invariants. For the GemStone system (Penney and
Stein, 1987), a set of primitive operations, based on
Schema Invariants as well, is defined; in this case,
the object model is simpler than the Orion one (since
multiple inheritance is not allowed), and this fact is
reflected on operations. The corresponding proposal
for the O2 system can be found in Zicari (1992). In
Claypool et al. (1998) a framework is proposed
based on the Object Data Management Group
(ODMG) data model; in it, complex schema
evolution operations can be defined as a sequence of
primitive ones. In these models, subclass
relationships are defined based exclusively on
subtype relationships, without taking into account
any specialization criteria; for this reason, the
primitive operations defined along the G/S
dimension perform only the addition or removal of
subclass relationships. Related to the A/D
dimension, the only association in these models
corresponds to the definition of a class as an
attribute domain; therefore, the only operation along
this dimension is devoted to change attribute
domains. In relation to the G/S and A/D dimensions,
in this paper we have defined a set of operations
wider than the above mentioned, the reason is that
we consider specialization criteria and associations.

4.2 Operations on other Data Models

Operations to transform or restructure schemas have
also been proposed in others data models. The
complex object model put forward in Abiteboul and
Hull (1988) allows the definition of typed
hierarchical objects; in this environment, a set of
operations over this kind of objects, based on
rewriting rules, is defined. These operations work
along the A/D dimension, since they restructure the
type of a complex object by associating its
components; most of them preserve the information
capacity, only two augment it.

In Kwan and Fong (1999), a schema integration
methodology is put forward, it is based on the
Extended Entity-Relationship model, but it could
also be applied to the Relational model. This
methodology offers a set of rules to solve semantics
conflicts and to merge entities and relationships
taken from different schemas in another schema.
These rules operate along the G/S or A/D
dimensions; the generated schema always preserves
the information capacity.

5 CONCLUSIONS

Conforming operations change a pattern in a source
schema into a different pattern in a target schema,
thus changing the form of the schema, without
augmenting the information capacity. We have
presented a set of primitive conforming operations
on Object-Oriented database schemas; these
operations may be represented by arcs of a graph
and by cells of a “pattern×pattern” matrix. Other
conforming operations can be derived from these
primitives.

The use of different O-O dimensions allows us to
classify the operations into three groups, each one
with its matrix: operations along the
Generalization/Specialization dimension, operations
along the Aggregation/Decomposition dimension,
and operations changing from one dimension to the
other. Each operation produces a mapping between
its source and its target schema. These mappings lie
along the Derivability dimension, and is subject of
our research in progress, that will give rise to the
implementation of a case tool for schema
integration.

Acknowledgments

This work has been partially supported by the
Spanish Research PRONTIC under projects
TIC2000-1723-C02-(01 and 02), as well as grant
1998FI-00228 from the Generalitat de Catalunya.

REFERENCES

Abiteboul, S., Hull, R., 1988. Restructuring Hierarchical
Database Objects. Theoretical Computer Science 62.
North-Holland.

Banerjee, J. et al., 1987. Semantics and Implementation of
Schema Evolution in Object-Oriented Databases. In
ACM SIGMOD’87.

Bertino, E., 1992. A View Mechanism for Object-Oriented
Databases. In EDBT'92, LNCS 580. Springer.

Castellanos, M. et al., 1994. Semantically Enriching
Relational Databases into an Object Oriented
Semantic Model. In DEXA'94, LNCS 856. Springer.

Claypool, K. et al., 1998. SERF: Schema Evolution
through an Extensible, Re-usable and Flexible
Framework. In CIKM’98. ACM Press.

Conrad, S. et al., 1999. Engineering Federated Information
Systems. ACM SIGMOD Record, 28.

García-Solaco, M. et al., 1996. Semantic Heterogeneity in
Multidatabase Systems. In Object Oriented
Multidatabase Systems. Bukhres, O., Elmagarmid, A.
(eds.), Prentice-Hall.

Kwan, I., Fong, J., 1999. Schema Integration Methodology
and its Verification by Use of Information Capacity.
Information Systems, 24. North-Holland.

Mannino, M. et al., 1988. A Rule-Based Approach for
Merging Generalization Hierarchies. Information
Systems, 13. North-Holland.

Miller, R. et al., 1993. The Use of Information Capacity in
Schema Integration and Translation. In VLDB’93.
Morgan Kaufmann.

Motro, A., 1987. Superviews: Virtual Integration of
Multiple Databases. IEEE TSE 13. IEEE Press.

Motsching-Pitrik, R., 1996. Requirements and
Comparison of View Mechanisms for Object-Oriented
Databases. Information Systems 21. North-Holland.

OMG, 2002. Unified Modelling Language Specification.
Version 2.0. http://www.omg.org/uml/

Penney, D., Stein, J., 1987. Class Modification in the
GemStone Object-Oriented DBMS. ACM SIGPLAN
Notices 22. ACM Press.

Rundensteiner, E., 1992. MultiView: A Methodology for
Supporting Multiple Views in Object-Oriented
Databases. In VLDB’92. Morgan Kaufmann.

Rundensteiner, E. et al., 1998. Capacity-Augmenting
Schema Changes on Object-Oriented Databases. In
OOIS'98. Springer.

Saltor, F. et al., 1991. Suitability of Data Models as
Canonical Models for Federated DBs. ACM SIGMOD
Record 20.

Santos, C. et al., 1994. Virtual Schemas and Bases. In
EDBT'94, LNCS 779. Springer.

Sheth, A., Larson, J., 1990. Federated Database Systems
for Managing Distributed, Heterogeneous, and
Autonomous Databases. ACM Computing Surveys 22.

Zicari, R., 1992. A Framework for Schema Updates in an
Object-Oriented Database System. In Building an
Object-Oriented Database System. Bancilhon, F.,
Delobel, C., Kanellakis, P. (eds.), Morgan Kaufmann.

