Implementing Operations to Navigate Semantic Star
Schemas

Alberto Abell6
U. Politecnica de Catalunya
C/ Manuel Girona 1-3
E-08034 Barcelona

aabello@lsi.upc.es

ABSTRACT

In the last years, lots of work have been devoted to multidi-
mensional modeling, star shape schemas and OLAP opera-
tions. However, “drill-across” has not captured as much at-
tention as other operations. This operation allows to change
the subject of analysis keeping the same analysis space we
were using to analyze another subject. It is assumed that
this can be done if both subjects share exactly the same
analysis dimensions. In this paper, besides the implemen-
tation of an algebraic set of operations on a RDBMS, we
are going to show when and how we can change the subject
of analysis in the presence of semantic relationships, even if
the analysis dimensions do not exactly coincide.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications

General Terms

Languages

Keywords

Star schema, OLAP operations, SQL, Drill-across, Semantic
Relationships

1. INTRODUCTION

OLAP tools facilitate the extraction of information from
the “Data Warehouse”. As defined in [19], OLAP function-
ality is characterized by dynamic multi-dimensional analysis
of consolidated enterprise data supporting end user analyti-
cal and navigational activities. In this context, “navigation”
means to interactively explore a data cube by drilling, rotat-
ing and screening. In [10], we can see that the typical end
user operations performed on the data cubes are “roll-up”
(increase the level of aggregation), “drill-down” (decrease
the level of aggregation), “screening and scoping” (select

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

DOLAP’ 03, November 7, 2003, New Orleans, Louisiana, USA.

Copyright 2003 ACM 1-58113-727-3/03/0011 ...$5.00.

José Samos
U. de Granada
C/ Daniel Saucedo Aranda s/n
E-18071 Granada

jsamos@ugr.es

Felix Saltor
U. Politecnica de Catalunya
C/ Manuel Girona 1-3
E-08034 Barcelona

saltor@Isi.upc.es

by means of a criterion evaluated against the data of a di-
mension), “slicing” (specify a single value for one or more
members of a dimension), and “pivot” (reorient the multidi-
mensional view). Other authors, like [22] add “drill-across”
(combine data cubes that share one or more dimensions) to
those operations.

1
P Eactory z FProductionMD Product ‘
.
1

D
1P g |

Figure 1: Example of multi-star schema

Multidimensional analysis is based on the separation of
factual and dimensional data. Along this paper, we will use
the terminology introduced in [2], where a Dimension (sub-
class of UML Classifier) contains Levels (subclass of UML
Class) representing different granularities (or levels of detail)
to study data, and a Level contains Descriptors (subclass
of UML Attribute). On the other hand, Fact (subclass of
UML Classifier) contains Cells (subclass of UML Class),
which contain Measures (subclass of UML Attribute). One
Cell represents those individual cells of the same granular-
ity that show data regarding the same Fact. One Fact and
several Dimensions to analyze it give raise to a Star. As
already discussed in [1], we consider that it is important
to be able to relate different Stars to facilitate the Drill-
across operation. Thus, as we can see in figure 1, we could
find two Facts (i.e. Production and Order) sharing Di-
mensions (i.e. Time and Product). However, this is not
the only way to relate Stars. Semantic relationships (like
Generalization, Association, Derivation, or Flow) could also
appear between both Stars, so that they can be used to
“drill-across”, as we will see.

[15] shows how a Star should be implemented on a “Rela-
tional Database Management System” (RDBMS), with one
table for the Fact and one table for every Dimension, the
latter being pointed by “foreign keys” (FK) from the “fact
table”, which compose its “primary key” (PK). [18] goes
further and shows how some kinds of multi-star schemas

should be implemented. Besides having FK from different
“fact tables” pointing to the same “dimension table”, they
also allow to have FK in a “fact table” pointing to another
“fact table”. If that is the case, the FK between “fact ta-
bles” provide the ability to “drill-down” between levels of
detail.

Once we have seen how to implement Stars, let’s see the
standard SQL’92 template query as presented in [15] (from
here on, we will refer to it as cube-query):

SELECT LevellDy, ..., LevellD,,, FUNCTION(f.Measurey), ...
FROM Fact f, Dimension; dj, ..., Dimension,, d,
WHERE f.key;=d;.ID AND ... AND f.key,=d,.ID
AND d;.attr=value AND ...
GROUP BY LevellDq, ..., LevellD,
ORDER BY LevellDq, ..., LevellDy,

The FROM clause contains the “fact table” and the “di-
mension tables”. These tables are linked in the WHERE
clause, which also contains selection conditions defined over
the columns of the “dimension tables”. The GROUP BY
clause shows the identifiers of the Levels at which we want
to aggregate data. Those columns in the grouping must also
be in the SELECT clause, besides the Measures aggregated
by some SQL function, in order to identify the values in the
result. Finally, the ORDER BY clause is explicited to sort
the output of the query by these same identifiers.

In spite of the fact that the basic structure of the cube-
query is well known, there is not yet a well established set
of end user operations to navigate multidimensional data.
Some sets of operations have been proposed, as we will see
in section 2. However, some of them do not directly map to
SQL and, in general, none of them treats “drill-across” and
“pivoting” as first class citizens. Section 3 presents an alge-
braic set of conceptual operations, that eases the navigation
of multidimensional data and specifically facilitates and ex-
tends the functionality of “drill-across” and “pivoting”. As
shown in section 4, these operations can be smoothly trans-
lated to modifications on the cube-query. Finally, section 5
shows the implementation of new semantic possibilities to
drill across, and section 6 concludes the paper.

2. RELATED WORK

In the last years, lots of work have been devoted to model-
ing multidimensionality (i.e. [17], [4], [11], [8], [12], [7], [27],
[16], and [21]). Each one of these models offers an algebraic
set of operations (some of them also offer a calculus). How-
ever, none of them offers the translation of the operations to
SQL (rather they propose alternatives to SQL and relational
algebra). Those models proposing alternatives to SQL ar-
gue that RDBMS are not well suited for multidimensional
purposes. However, the importance of “Relational OLAP”
(ROLAP) tools in the market contradicts that, and outlines
the importance of research on improving the usage of SQL
to query multidimensional data.

[24] presents an end user oriented algebra of multidimen-
sional operations. Nevertheless, it is neither translated to
SQL, nor considers drilling across, nor any kind of semantic
relationship. An approach limited to operations over Di-
mensions is in [14]. In this case SQL is extended to facili-
tate handling dimensional data. Obviously, since it focuses
on Dimensions, “drill-across” is not even mentioned.

Semantic relationships are often underestimated, as we

can see in [5], whose methodology for multidimensional de-
sign proposes the transformation of generalizations into ag-
gregations and classes. Some few conceptual models, [26]
and [25], allow the representation of semantic relationships.
However, these neither present a set of operations to manip-
ulate data, nor study their usage to drill across.

Some models offer a “join” operation that would allow
some kind of “drill across”. Nevertheless, this operation is
far away from end user multidimensional concepts, and the
benefits of semantic relationships are not explored in any
case.

3. AMULTIDIMENSIONAL ALGEBRA

In this section we are going to see the algebraic opera-
tions of YAM? (a multidimensional model presented in
[2]), which focus on identifying and uniformly manipulating
sets of data, namely Cubes.

DEFINITION 1. A Cube is an injective function from an
n-dimensional finite space (defined by the cartesian product
of n functionally independent Levels {L1, .., Ln}), to the set
of instances of a Cell (C.).

c: Ly X..X Ly — C¢, injective

We generally say that a query is from (or over) its input
schema to its output schema. Thus, there exists an input
m-dimensional Cube (¢;), and we want to obtain an output
n-dimensional Cube (c,). Since, we defined a Cube as a
function, operations must transform a function into another
function.

G

i i i i
le..kax..me%CC

Figure 2: Multidimensional operations as composi-
tion of functions

As shown in figure 2, we have three families of functions
(i.e. f, g, and h), that can be used to transform a Cube.
Obtaining ¢, from ¢; can be seen as mathematical compo-
sition of functions (co = ¥ o ¢; 0 ¢, with ¥ and ¢ belonging
to the families of functions g and f, respectively). Rela-
tionships in section 5 can be used for this purpose. Those
functions of the family h define aggregation hierarchies and
are used to roll data up.

ChangeBase: This operation reallocates exactly the same
instances of a Cell in a new n-dimensional space with
exactly the same number of points, by composing the
Cube with a function of the family of functions f.
Thus, it actually modifies the analysis dimensions used.
Functions relating different Dimensions belong to the
family f.

¢: LY x.. xLy — L} xX..xLy,, injective

co(x) = vp(ci) = ci(p())

Drill-across: This operation changes the image set of the
Cube by means of an injective function 1 of the family
g. The n-dimensional space remains exactly the same,
only the cells placed in it change. Functions relating
instances of different Facts belong to the family g.

W CL— C2, injective

Co() = 0y (ci) = W(ci(x))

Dice: By means of a predicate P over Descriptors, this
operation allows to choose the subset of points of in-
terest out of the whole n-dimensional space.

ci(x if P(x
co(®) = op(ci) = { u'rgd()af Z; _‘1(3()33)

Projection: This just selects a subset of Measures from
those available in the Cube.

CO(I) = Tmy,..,my (CZ) = Ci(x)[mlv "7mk]

Roll-up: It groups cells in the Cube based on an aggre-
gation hierarchy. This operation modifies the granu-
larity of data, by means of an exhaustive function ¢ of
the family h (i.e. @ relates instances of two Levels in
the same Dimension, corresponding to a part-whole
relationship).

co(x) = pplci) = U ci(y)

p(y)=z

Union: Similar to operations between functions (f op g =
f(z) op g(x)), we can also define operations between
Cubes, if both are defined over the same domain (n-
dimensional space). By means of this operation we can
recover the cells removed by means of Dice.

c1 P ea =ci(z) ®ca(x)

In the sense of [3], these operations are conceptually a
“procedural language”, because queries are specified by a
sequence of operations that construct the answer. For in-
stance, with this set of operations, we can derive Slice
(which reduces the dimensionality of the original Cube by
fixing a point in a Dimension) by means of Dice and
ChangeBase operations.

co(x) = slicer,;=k(¢i) = YLy x..xLi_1x Liy1%..x L (OL;=k(¢3))

Drill-down (i.e. the inverse of Roll-up) is not defined,
because as argued in [12], we can only apply it, if we previ-
ously performed a Roll-up and did not lose the correspon-
dences between cells. This can be expressed as an “undo”
of Roll-up, or if we do not want to keep track of results, by
means of views over the atomic data as in [27]. Therefore, it
cannot be part of a true sequence of operations. The same
could be said for Dice and Projection. If all we have to
answer a query is the current Cube, we can neither recover
cells (lost by dicing) nor Measures (lost by projecting).
Nevertheless, while the only solution to Drill-down is to
throw away the current Cube and go to the source, we can
keep our Cube and add diced cells by means of Union and
projected Measures by means of a sort of reflexive Drill-
across to the same Fact.

4. TRANSLATING OPERATIONSTO SQL

In this section we are going to show the translation of
those algebraic operations to modifications over the cube-
query introduced in section 1.

A= 0Time.year=2003(Order)

SELECT dj .product, dg.day, dg.retailer, d4.client, Sum(f.unitsSold)
FROM Order f, Product dy, Time do, Retailer dg , Client dg
WHERE f.product=dj.product AND f.day=dg.day

AND f.retailer=dg.retailer AND f.client=dy.client AND dg.year=2003
GROUP BY dj.product, dg.day, dg.retailer, dgq.client
ORDER BY dj .product, d3.day, d3.retailer, d4.client

B = pClient:: All(PRetailer:: ALl (A))

SELECT dj.product, dg.day, “All”, “All”, Sum(f.unitsSold)

FROM Order f, Product dq, Time dg

WHERE f.product=dj .product AND f.day=dy.day AND dg.year=2003
GROUP BY dj.product, dg.day

ORDER BY dj.product, dg.day

C = Yproductx Time (B)

SELECT dj.product, dg.day, Sum (f.unitsSold)
FROM Order f, Product dq, Time dg

WHERE f.product=dj .product AND f.day=dy.day AND dg.year=2003
GROUP BY dj.product, dg.day

ORDER BY dj.product, dg.day

D :=6production(C)

SELECT dj.product, dg.day, Sum(f.unitsSold), SUM(f .unitsProduced)
FROM Order f, Production f/, Product d1, Time dg
WHERE f.product=dj .product AND f.day=ds.day

AND f/.product=dj .product AND f/.day=dg.day AND do.year=2003
GROUP BY dj.product, dg.day
ORDER BY dj.product, dg.day

E = mynits Produced (D)

SELECT dj.product, dg.day, Sum(f.unitsProduced)

FROM Production f, Product dj, Time dg

WHERE f.product=dj .product AND f.day=dg.day AND dg.year=2003
GROUP BY dj.product, dg.day

ORDER BY dj.product, da.day

F = E® Yproductx Time (PFactory:: All (OTime.year=2002 (Production)))

SELECT dj.product, dg.day, Sum(f.unitsProduced)

FROM Production f, Product dy, Time dg

WHERE f.product=d; .product AND f.day=dy.day
AND (dg.year=2003 OR dg.year=2002)

GROUP BY dj.product, dg.day

ORDER BY dj.product, dg.day

Figure 3: Sequence of operations

Taking into account that end users desire to navigate from
Cube to Cube, the idea is to consider that last query (or its
partial results) has been materialized (or kept in memory),
so that we can use it to solve the next one. In figure 3 we
see a sequence of operations, and how they affect the cube-
query step by step. Notice that one Cube could always be
used in the obtaining of the next one.

e Dice selects the desired points by anding the corre-
sponding predicate over Descriptors to the WHERE
clause. The new predicate to be anded can only regard
grouping attributes or attributes that functionally de-
pend on them. In the example, d2.year=2003 is added
to the WHERE clause.

e Roll-up changes the identifiers in the GROUP BY
clause by those of the Levels above. The SELECT and
ORDER BY clauses must be modified appropriately,
so that the Descriptors coincide in all three. To roll

[Clause 1T ChangeBase [Drill-across | Dice [Roll-up [Projection [Union]
SELECT Replace (LevellD) Add (Measure) Replace (LevellD) Remove (Measure)
FROM Add (Dimensions) Add (Facts)
‘WHERE Add (links) Add (links) AND (conditions) OR (conditions)
GROUP BY Replace (LevellD) Replace (LevellD)
ORDER BY Replace (LevellD) Replace (LevellD)

Table 1: SQL query sentence and multidimensional operations

up to Level All, all Descriptors of a Dimension are
removed from the GROUP BY, and “All” is placed in
the corresponding position in SELECT clause. In the
example, two Roll-ups are performed up to Level All
along Retailer and Clients, so that no column of the
corresponding tables is present neither in the GROUP
BY nor in the ORDER BY nor SELECT clause, where
they are substituted by ¢¢A11°°.

ChangeBase allows two different kinds of changes in
the base of the space. Firstly, we can just rearrange
the multidimensional space (B X A instead of Ax B) by
modifying the order of Level identifiers in ORDER BY
and SELECT clauses (this would be equivalent to the
“pivot” operation). Moreover, this operation extends
“pivoting” functionality, because if there exist more
than one set of Dimensions that identify the points
in the space, we can change the Dimensions, by just
adding the new “dimension tables” to the FROM and
the corresponding links to the WHERE clause. Iden-
tifiers in the SELECT, ORDER BY and GROUP BY
clauses must be replaced. For instance, if we are ana-
lyzing inventory transactions, our space would be de-
fined by Product xTimex0rder, but we could also see
data in the space Product X Time xDay X Vendor X Ware-
house, because one vendor only places one order per
warehouse per day. In the example, since two Di-
mensions already contain only one point, we can just
remove the ‘A11’’ from the SELECT clause to con-
vert a four-dimensional space into a two-dimensional
one.

Drill-across changes the subject of analysis by adding
a new “fact table” to the FROM, its Measures to the
SELECT, and the corresponding links to the WHERE
clause. The links added will depend on the seman-
tic relationship used to Drill-across, as we will see
in section 5. In general, if we are not using any Re-
lationship, a new “fact table” can always be added
to the FROM clause if the attributes composing the
identifier of the desired Cell point to the already used
“dimension tables”. In the example, a new Measure
unitsProduced is added to the SELECT clause, the
“fact table” Production to the FROM, and the corre-
sponding links to the WHERE clause.

Projection removes Measures from the SELECT
clause. If there is not any Measure left, COUNT
is assumed. In the example, the Measure of Order
table is removed (since the table is then useless, it is
also removed).

Union unites two Cubes if their spaces exactly coin-
cide, which translated to the cube-query means that
Levels in SELECT, GROUP BY, and ORDER BY

clauses must coincide. Therefore, to unite two cube-
queries both WHERE clauses just need to be ored ap-
propriately. In the example, by means of Dice, Roll-
up, and ChangeBase, we obtain a Cube compatible
to the existing one. Afterwards, we can or both selec-
tion conditions in the same WHERE clause.

Let’s analize now the properties of this set of operations
regarding the cube-query:

PRrROPERTY 1. The algebra composed by these operations
is closed (i.e. they operate on cube-queries and, since none
of them modifies the structure of the query, the result of all
operations is always a cube-query).

PROPERTY 2. The algebra composed by these operations
s complete (i.e. since any clause can be modified, any valid
cube-query can be computed as the combination of a finite
set of operations applied to the appropriate Cube). Table 1
summarizes the effects of the different operations:

SELECT Measures can be added and removed. Descrip-
tors actually need to be replaced to keep the size of the
space. They can be replaced based on aggregation hier-
archies or Dimension relationships.

FROM Dimension and fact tables can be added depending
on the existing semantic relationships in the multidi-
mensional schema. We consider that any table is auto-
matically removed if after an operation it does not af-
fect the result of the query (see figure 3, where Order is
removed after Projection, and Client and Retailer
are removed after Roll-up).

WHERE Links as well as conditions can be added. Un-
necessary links are also removed when the correspond-
ing table is. By means of semantic optimization tech-
niques, unnecessary conditions over Descriptors can
also be removed. Just notice that the predicate can be
restricted by means of Dice and relaxed by means of
Union.

GROUP BY Columns can be replaced and eventually re-
moved (rolling up to All) from GROUP BY clause.
The groups can always be fused, but never split, because
as explained before we do not consider Drill-down. If
we would consider such operation, they could.

ORDER BY Their columns exactly correspond to those
Descriptors in the SELECT clause. Therefore, they
are modified as the former are, being able to sort them
by means of ChangeBase.

PROPERTY 3. The algebra composed by these operations
is minimal (i.e. none can be expressed in terms of oth-
ers, nor can any operation be dropped without affecting its
functionality). Roll-up and Drill-across affect the same

clauses, but the modifications are based on aggregation hier-
archies and Dimension relationships respectively. Regard-
ing the cube-query, since some operations affect more than
one clause, these are not atomic. However, they represent
the basic end user multidimensional concepts, and if more
than one clause is affected by the same operation, it is just
to keep the cube-query structure (remember, for instance,
that attributes in SELECT, GROUP BY and ORDER BY
clauses must coincide in a cube-query, and tables must be
linked).

5. NEW DRILL-ACROSSPOSSIBILITIES

In [15], we can see that we can use two “fact tables” to-
gether if the common dimensions are exactly the same. In
[1], we systematically showed how and which semantic rela-
tionships can be used to relate multidimensional constructs.
Semantic relationships in the multidimensional schema de-
fine functions between Classes. By composing those func-
tions appropriately, we can obtain the desired vision of data.
If we want to analyze instances of a given Class in the space
defined by the cartesian product of a set of Classes, all we
have to do is to find the appropriate composition of func-
tions. If that path of functions exists, we can analyze data
in the desired way.

X :=YProductx Retailerx Client (PTime:: AlL(?Time.year=2003 (Order)))

SELECT dj.product, dg.retailer, dg.client, Sum(f.unitsSold)
FROM Order f, Product dj, Time dg, Retailer dg , Client dgq
WHERE f.product=dj .product AND f.day=do.ID
AND f.retailer=d3.retailer AND f.client=d4.client AND dg.year=2003
GROUP BY dj.product, dg.retailer, dg.client
ORDER BY dj.product, dg.retailer, dg.client

Figure 4: Example of condition kept on otherwise
unused Dimensions

Our approach is more powerful than just sharing “dimen-
sion tables”, because it allows to drill-across even if those ta-
bles do not exactly coincide. Moreover, since ChangeBase
and Drill-across do not remove tables from the FROM
clause, but link new tables to the existing ones, we can, for
instance, keep conditions over Dimensions or Levels that
do not participate in the definition of the space. As exem-
plified in figure 4, the Dice puts a condition on Time.year
Level, and even after the data is rolled up above that Level
and the Dimension is removed from the space by means
of the ChangeBase, the condition is kept in the WHERE
clause.

UML, in [20], provides four different kinds of Relation-
ships: Generalization, Flow, Association, and Dependency.
As depicted in figure 5, Generalization relationships relate
two Generalizable Elements, one with a more specific mean-
ing than the other. Any kind of Classifier is a Generaliz-
ableElement. Flow relationships relate two elements in the
model, so that both represent different versions of the same
thing. Association, as specified in UML, defines a seman-
tic relationship between Classifiers. Finally, UML allows
to represent different kinds of Dependency relationships be-
tween ModelElements like Binding, Usage, Permission, or
Abstraction. We are not going to consider the three first,
because they are rather used on application modeling. More-
over, due to the same reason, out of the different stereotypes
of Abstraction we are only going to use Derivation. Deriv-
ability, also known as “Point of View”, helps to represent

Relationship 3 Generalization —>!
(from Core) 'Association T |
[[[|
<<stereotype>> Flow Association Generalization
Derivation (from Core) (from Core) (from Core)
(from Core)
source target 2.* parent child
suplier| podelElement | | Classifier || GeneralizableElement
= (from Core) (from Core) (from Core)
clien

Figure 5: UML Relationships between model ele-
ments

the relationships between model elements in different con-
ceptions of the UoD.

We are going to see now how these kinds of Relationships
would be implemented on a relational star schema, and how
they would be used to either change the base of the space
or drill across subjects (notice that we do not forbid to drill
across when “dimension tables” exactly coincide, but open
new possibilities to do it). On the one hand, if two sets
of Dimensions are semantically related, we may be able
to change the base. On the other hand, if two Facts are
semantically related, we may be able to drill across.

5.1 Derivation

Derivation would be implemented on a RDBMS by means
of views (in this section we only consider updatable views,
so that we can identify each tuple in the view with its coun-
terpart in the table). We can find that a “dimension table”
is a view over either another “dimension table” or “fact ta-
ble”, and a “fact table” could be a view over another “fact
table”. A “fact table” cannot be a view over a “dimension
table”, because Facts represent measured data.

Firstly, we could find that the “dimension table” (D;) in
the space of the input cube (c;) is a view over the “dimen-
sion table” (Do) in the space of the output cube (co). In
this case, we can change the base of the space adding D,
to the FROM clause and linking it to D; by appropriately
equaling the identifiers of the table and the view (the PK of
D; should have been derived from attributes in D,). How-
ever, if D, was derived from D; we would only be able to
change the base of the space if the WHERE clause of the
cube-query corresponding to c; is subsumed by the view
predicate. Otherwise, we will find points in the space of c;
without counterpart in the space of ¢, (we would lose points
in the analysis space).

As Dimensions, Facts can also be related by derivation.
If the “fact table” (F;) of ¢; is a view over the “fact table”
(Fo) of ¢co, we can add F, to the FROM clause and link the
identifiers of the table and the view (as before, the PK of
F; should have been derived from attributes in F,). In the
other way, if F, is derived from F;, we can still link them.
However, if some rows of F; do not belong to its view F,,
completely empty cells will appear in ¢,. We should perform
an outer join to keep, at least, the Measures of F; in the
output.

Finally, the “Pull” operation in [4] could be obtained by
ChangeBase, if D, is a view over F;. This would allow
to change to a new space based on the Measures in the

current, by directly linking D, to F; in the WHERE clause.
Notice that this Relationship can only be used if the new set
of Dimensions form a base for the same space (we should
probably change more than one Dimension at once). The
counterpart “Push” operation would be obtained by rolling
up to Level All along the pushed Dimension and drilling
across to the Fact that was used in the derivation of the Di-
mension. However, this is the classic Drill-across, where
“dimension tables” must be shared, and would not really
need the Derivation relationship to be performed.

5.2 Generalization

Even though an specific syntax has been defined in [13]
and new techniques experimented in [6], without loss of
generality, we assume that Generalizations would be imple-
mented on a RDBMS with one table for the superclass, and
another table for each of the subclasses. The PK of each
subclass would point to that of the superclass. We argued
in [1] that Generalizations can only be found between either
two Dimensions or two Facts. Dimensions and Facts are
so different, that they can only be related by Derivation or
Association.

If D, is a superclass of D;, we will always be able to change
the base of the space by adding the new table and linking it
to its subclass. On the other hand, if D; is superclass of D,
we can only change the base if the specialization criterion of
D, subsumes the condition of the WHERE clause of c;.

Regarding Generalization between Facts, we can always
Drill-across from F; to F,, if F, is superclass of F;. If F;
is superclass of F, and the specialization criterion does not
subsumes the WHERE condition in c¢;, then it will be neces-
sary to use an outer join to keep on obtaining the Measures
in F;. If the Generalization is part of a partition, an alter-
native to the outer join would be to unite ¢, to the result of
drilling across to the other subclasses of F; in the partition.

5.3 Association

The implementation of Associations on a RDBMS de-
pends on their multiplicities. If the multiplicity is one-to-one
or one-to-many, they can easily be implemented by means of
a FK. If the multiplicity is many-to-many, they can be imple-
mented using a “bridge table”. Associations exist between
two Dimensions, two Facts or a Fact and a Dimension.

If there is a one-to-one Association between D; and D, it
will always be possible to link D, to D;, and substitute the
corresponding attributes in the SELECT clause of the cube-
query, and the set of Dimensions will still be a base of the
space. If the multiplicity is one-to-many or many-to-many
and we replace D; by D,, the size of the space would not be
preserved. Nevertheless, these kinds of Associations could
still be used if we replace more than one Dimension at
once, and there exist such one-to-one relationship between
both sets of Dimensions. For example, there is a one-to-
many association between Day and Order, but a one-to-one
between DayxVendor XxWarehouse and Order, as explained
before.

Between two Facts, again, there is not any problem if the
multiplicity of the Association is one-to-one. If not, we do
not have an injective function as required to perform the
Drill-across. If we have more than one instance of F, per
instance of F;, we should Drill-across to an upper aggrega-
tion level of F, where the correspondence were one-to-one.
On the other hand, if we have more than one instance of F;

per instance of F,, we would get the same data more than
once, placed at different points in the analysis space, giving
raise to a double-counting problem. Moreover, if minimum
multiplicity of the association is zero, i.e. if we could find in-
stances of F; associated with zero instances of F,, we should
use the outer join in order to keep the Measures of F; in
Co-

The most common multiplicity between Dimension and
Fact is one-to-many. However, in some special cases, we
could find many-to-many Associations. [23] analyzes the
different existing possibilities to implement such Associa-
tions between Dimensions and Facts on a RDBMS. Nev-
ertheless, using them during navigation would mean that
the same cell should be placed at different points in the
space, giving rise again to a double-counting problem (our
Cube would not be injective). This problem is similar to
the Drill-down problem, where we should decide how cells
are decomposed into different parts. [23] proposes a weight-
ing factor to solve this case. Thus, we should place the
“bridge table” and “fact table” in the FROM clause, link
them appropriately, and weight the Measures in the SE-
LECT clause.

54 Flow

This kind of Relationship should be implemented again
by means of FK between old and new versions of tuples. As
it was said before, a Dimension cannot eventually evolve
into a Fact, nor vice-versa.

The simple evolution case is when every instance in the
old Dimension evolved into exactly one instance in the new
Dimension, and no new instances appeared. We just need
to add D, to the FROM clause and link both tables ap-
propriately. If there is not such one-to-one correspondence
between old and new instances, we should use “transforma-
tion matrices” (similar to the “weighting factor” of many-
to-many Associations) as explained in [9] (notice that in
this case we could be modifying the number of points in the
space, nevertheless we consider this an exception to the rule,
because the Dimension and Level do not actually change).
If D; is the old “dimension table” and some of its instances
disappeared in the new version D,, we need to assure that
they are not selected before performing ChangeBase. The
same happens if D, is the old version of D; and new in-
stances appeared in the evolution, these instances should be
removed from the space before the ChangeBase could be
performed.

Drilling across by means of a Flow between two Facts
means analyzing the old one from the new point of view,
or vice-versa. If instances appear or disappear in the evo-
lution, we should use the outer join appropriately to avoid
loosing the Measures of F; in ¢,. Moreover, Drill-across
using Flow between the Facts should only be used if there is
a one-to-one correspondence between instances of new and
old Facts. Notice that if there exists a one-to-many corre-
spondence (instances were either fused or split during the
evolution process), then it is due to the same happened to
the Dimensions, because it is necessary to have new PK
values to identify the new instances of the Fact. Thus, we
should firstly change the base to that of F, using Flow Re-
lationships between the Dimensions, so that we would not
need to use the Flow between the Facts to perform Drill-
across.

6. CONCLUSIONS

This paper presents a set of algebraic operations to nav-
igate multidimensional schemas. Each of these operations
can be smoothly translated to SQL. Two operations stand
out from the rest, i.e. Drill-across and ChangeBase,
whose functionality has no counterpart in other models.
They work on semantic relationships between different Stars
and were not treated as first class citizens in any other multi-
dimensional model before. ChangeBase operation extends
the well known “pivoting” functionality, so that it can be
used as a step towards Drill-across. Thus, it is shown
how we could drill across not only if “dimension tables” are
shared, but also if either Dimensions or Facts are related
by different kinds of UML Relationships (i.e. Derivation,
Generalization, Association, and Flow).

In our navigational approach for building cube-queries,
conditions in the WHERE clause are not explicitly removed.
This allows to keep conditions when rolling-up and drilling-
across, which offers the possibility of placing conditions on
Levels and Dimensions that do not form the space of the
analyzed cube. We assume that unnecessary conditions,
links and tables are removed by means of semantic opti-
mization mechanisms. As future work, we plan to study the
implementation of such mechanisms, as well as how SQL’99
could improve the implementation of the Relationships.

Acknowledgements

This work has been partially supported by the Spanish Re-
search Program PRONTIC under projects TIC2000-1723-
C02-01, and TIC2000-1723-C02-02.

7. REFERENCES

[1] A. Abells, J. Samos, and F. Saltor. On Relationships
Offering New Drill-across Possibilities. In Int.
Workshop on Data Warehousing and OLAP (DOLAP
2002). ACM, 2002.

[2] A. Abells, J. Samos, and F. Saltor. YAM? (Yet
Another Multidimensional Model): An extension of
UML. In Int. Database Engineering and Applications
Symposium. TEEE, 2002.

[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[4] R. Agrawal, A. Gupta, and S. Sarawagi. Modeling
Multidimensional Databases. In Int. Conf. on Data
Engineering (ICDE’97). IEEE, 1997.

[5] J. Akoka, I. Comyn-Wattiau, and N. Prat. Dimension
Hierarchies Design from UML Generalizations and
Aggregations. In Int. Conf. on Conceptual Modeling
(ER 2001), volume 2224 of LNCS. Springer, 2001.

[6] A. Bauer, W. Hiimmer, and W. Lehner. An
Alternative Relational OLAP Modeling Approach. In
Int. Conf. on Data Warehousing and Knowledge
Discovery (DaWaK 2000), volume 1944 of LNCS.
Springer, 2000.

[7] L. Cabibbo and R. Torlone. A Logical Approach to
Multidimensional Databases. In Advances in Database
Technology - EDBT’98, volume 1377 of LNCS.
Springer, 1998.

[8] A. Datta and H. Thomas. A Conceptual Model and an
algebra for On-Line Analytical Processing in Data
Warehouses. In Workshop on Information
Technologies and Systems (WITS’97), 1997.

(9]

(10]

(11]

(12]

(13]

(14]

(24]

J. Eder and C. Koncilia. Changes of Dimension Data
in Temporal Data Warehouses. In Int. Conf. on Data
Warehousing and Knowledge Discovery (DaWaK
2001), volume 2114 of LNCS. Springer, 2001.

E. Franconi, F. Baader, U. Sattler, and P. Vassiliadis.
Fundamentals of Data Warehousing, chapter
Multidimensional Data Models and Aggregation.
Springer, 2000. M. Jarke, M. Lenzerini, Y. Vassilious
and P. Vassiliadis editors.

M. Gyssens and L. V. S. Lakshmanan. A Foundation
for Multi-dimensional Databases. In Int. Conf. on
Very Large Data Bases (VLDB 1997). Morgan
Kaufmann, 1997.

M.-S. Hacid and U. Sattler. An Object-Centered
Multi-dimensional Data Model with Hierarchically
Structured Dimensions. In IFEE Knowledge and Data
Engineering Exchange Workshop (KDEX 1997).
IEEE, 1997.

ISO. ISO/IEC 9075:1999: Information technology —
Database languages — SQL. International
Organization for Standardization, 1999.

H. V. Jagadish, L. V. S. Lakshmanan, and

D. Srivastava. What can Hierarchies do for Data
Warehouses? In Int. Conf. on Very Large Data Bases
(VLDB 1999). Morgan Kaufmann, 1999.

R. Kimball. The Data Warehouse toolkit. John Wiley
& Sons, 1996.

W. Lehner. Modeling Large Scale OLAP Scenarios. In
Advances in Database Technology - EDBT’98, volume
1377 of LNCS. Springer, 1998.

C. Li and X. S. Wang. A data model for supporting
on-line analytical processing. In Int. Conf. on
Information and Knowledge Management (CIKM’96),
1996.

D. L. Moody and M. A. Kortink. From Enterprise
Models to Dimensional Models: A Methodology for
Data Warehouse and Data Mart Design. In Int.
Workshop on Design and Management of Data
Warehouses (DMDW’2000). CEUR-WS
(www.ceur-ws.org), 2000.

OLAP Council. OLAP and OLAP Server Definitions.
Available at the URL
www.olapcouncil.org/research/glossaryly.htm, 1997.
OMG. Unified Modeling Language Specification,
September 2001. Version 1.4. Available at
http://www.omg.org/cgi-bin/doc?formal /01-09-67.

T. B. Pedersen and C. S. Jensen. Multidimensional
Data Modeling for Complex Data. In Int. Conf. on
Data Engineering (ICDE’99). IEEE, 1999.

T. B. Pedersen and C. S. Jensen. Multidimensional
Database Technology. IEEE Computer, 34(12), 2001.
I.-Y. Song, W. Rowen, C. Medsker, and E. Ewen. An
Analysis of Many-to-Many Relationships Between
Fact and Dimension Tables in Dimensional Modeling.
In Int. Workshop on Design and Management of Data
Warehouses (DMDW’2001). CEUR-WS
(www.ceur-ws.org), 2001.

O. Teste. Towards Conceptual Multidimensional
Design in Decision Support Systems. In Fast- European
Conf. on Advances in Databases and Information
Systems (ADBIS 2001), 2001.

25]

[26]

27]

J. C. Trujillo, M. Palomar, J. Gémez, and I.-Y. Song.
Designing Data Warehouses with OO Conceptual
Models. IEEE Computer, 34(12), 2001.

N. Tryfona, F. Busborg, and J. G. B. Christiansen.
starER: A conceptual model for data warehouse
design. In Int. Workshop on Data Warehousing and
OLAP (DOLAP 99). ACM, 1999.

P. Vassiliadis. Modeling Multidimensional Databases,
Cubes and Cube operations. In Int. Conf. on
Scientific & Statistical Database Management
(SSDBM’98). IEEE, 1998.

