
IR: Information Retrieval
FIB, Master in Innovation and Research in Informatics

Slides by Marta Arias, José Luis Balcázar,
Ramon Ferrer-i-Cancho, Ricard Gavaldá

Department of Computer Science, UPC

Fall 2018
http://www.cs.upc.edu/~ir-miri

1 / 44

http://www.cs.upc.edu/~ir-miri

5. Web Search. Architecture of simple IR systems

Searching the Web, I
When documents are interconnected

The World Wide Web is huge
I 100,000 indexed pages in 1994
I 10,000,000,000’s indexed pages in 2013

I Most queries will return millions of pages with high
similarity.

I Content (text) alone cannot discriminate.
I Use the structure of the Web - a graph.
I Gives indications of the prestige - usefulness of each page.

3 / 44

How Google worked in 1998

S. Brin, L. Page: “The Anatomy of a Large-Scale Hypertextual
Web Search Engine”, 1998

Notation:

4 / 44

Some components

I URL store: URLs awaiting exploration
I Doc repository: full documents, zipped
I Indexer: Parses pages, separates text (to Forward Index),

links (to Anchors) and essential text info (to Doc Index)
I Text in an anchor very relevant for target page

anchor
I Font, placement in page makes some terms extra relevant

I Forward index: docid→ list of terms appearing in docid
I Inverted index: term→ list of docid’s containing term

6 / 44

The inverter (sorter), I

Transforms forward index to inverted index

First idea:

for every entry document d
for every term t in d

add docid(d) at end of list for t;

Lousy locality, many disk seeks, too slow

7 / 44

The inverter (sorter), II

Better idea for indexing:

create in disk an empty inverted file, ID;
create in RAM an empty index IR;
for every document d

for every term t in d
add docid(d) at end of list for t in IR;
if RAM full

for each t, merge the list for t in IR
into the list for t in ID;

Merging previously sorted lists is sequential access
Much better locality. Much fewer disk seeks.

8 / 44

The inverter (sorter), III
The above can be done concurrently on different sets of
documents:

9 / 44

The inverter (sorter), IV

I Indexer ships barrels, fragments of forward index

I Barrel size = what fits in main memory

I Separately, concurrently inverted in main memory

I Inverted barrels merged to inverted index

I 1 day instead of estimated months

10 / 44

Searching the Web, I
When documents are interconnected

The internet is huge
I 100,000 indexed pages in 1994
I 10,000,000,000 indexed pages at end of 2011

To find content, it is necessary to search for it
I We know how to deal with the content of the webpages
I But.. what can we do with the structure of the internet?

11 / 44

Searching the Web, II
Meaning of a hyperlink

When page A links to page B, this means

I A’s author thinks that B’s content is interesting or important
I So a link from A to B, adds to B’s reputation

But not all links are equal..

I If A is very important, then A→ B “counts more”
I If A is not important, then A→ B “counts less”

In today’s lecture we’ll see two algorithms based on this
idea

I Pagerank (Brin and Page, oct. 98)
I HITS (Kleinberg, apr. 98)

12 / 44

Pagerank, I
The idea that made Google great

Intuition:

A page is important if it is pointed to by other important pages

I Circular definition ...
I not a problem!

13 / 44

Pagerank, II
Definitions

The web is a graph G = (V,E)

I V = {1, .., n} are the nodes (that is, the pages)
I (i, j) ∈ E if page i points to page j
I we associate to each page i, a real value pi (i’s pagerank)
I we impose that

∑n
i=1 pi = 1

How are the pi’s related

I pi depends on the values pj of pages j pointing to i

pi =
∑
j→i

pj
out(j)

I where out(j) is j’s outdegree

14 / 44

Pagerank, III
Example

pi =
∑
j→i

pj
out(j)

A set of n+ 1 linear equations:

p1 =
p1
3

+
p2
2

p2 =
p3
2

+ p4

p3 =
p1
3

p4 =
p1
3

+
p2
2

+
p3
2

1 = p1 + p2 + p3 + p4

Whose solutions is:
p1 = 6/23, p2 = 8/23, p3 = 2/23, p4 = 7/23

15 / 44

Pagerank, IV
Formally

Equations

I pi =
∑

j:(j,i)∈E
pj

out(j) for each i ∈ V
I

∑n
i=1 pi = 1

where out(i) = |{j : (i, j) ∈ E}| is the outdegree of node i

If |V | = n

I n+ 1 equations
I n unknowns

Could be solved, for example, using Gaussian elimination in
time O(n3)

16 / 44

Pagerank, V
Example, revisited

A set of linear equations:


p1
p2
p3
p4

 =


1
3

1
2 0 0

0 0 1
2 1

1
3 0 0 0
1
3

1
2

1
2 0

 ·

p1
p2
p3
p4


namely: ~p =MT ~p and additionally∑

i pi = 1

Whose solutions is:
~p is the eigenvector of matrix MT associated to eigenvalue 1

17 / 44

Pagerank, VI
Example, revisited

What does MT look like?

MT =


1
3

1
2 0 0

0 0 1
2 1

1
3 0 0 0
1
3

1
2

1
2 0



MT is the transpose of the row-normalized adjacency matrix of
the graph !

18 / 44

Pagerank, VII
Example, revisited

Adjacency matrix

A =


1 0 1 1
1 0 0 1
0 1 0 1
0 1 0 0



M =


1/3 0 1/3 1/3
1/2 0 0 1/2
0 1/2 0 1/2
0 1 0 0


(rows add up to 1)

MT =


1/3 1/2 0 0
0 0 1/2 1

1/3 0 0 0
1/3 1/2 1/2 0


(columns add up to 1)

19 / 44

Pagerank, VIII
Example, revisited

A =


1 0 1 1
1 0 0 1
0 1 0 1
0 1 0 0

 M =


1
3 0 1

3
1
3

1
2 0 0 1

2
0 1

2 0 1
2

0 1 0 0

 MT =


1
3

1
2 0 0

0 0 1
2 1

1
3 0 0 0
1
3

1
2

1
2 0


Question:
Why do we need to row-normalize and transpose A?

Answer:
I Row normalization: because pi =

∑
j:(j,i)∈E

pj
out(j)

I Transpose: because pi =
∑

j:(j,i)∈E

pj
out(j)

, that is,

pi depends on i’s incoming edges

20 / 44

Pagerank, IX
It is just about solving a system of linear equations!

.. but
I How do we know a solution exists?
I How do we know it has a single solution?
I How can we compute it efficiently?

For example, the graph on the left has no solution.. (check it!)
but the one on the right does

21 / 44

Pagerank, X
How do we know a solution exists?

Luckily, we have some results from linear algebra

Definition
A matrix M is stochastic, if

I All entries are in the range [0, 1]

I Each row adds up to 1 (i.e., M is row normalized)

Theorem (Perron-Frobenius)
If M is stochastic, then it has at least one stationary vector, i.e.,
one non-zero vector p such that

MT p = p.

22 / 44

Pagerank, XI
Equivalently: the random surfer view

Now assume M is the transition probability matrix between
states in G

M =


1/3 0 1/3 1/3
1/2 0 0 1/2
0 1/2 0 1/2
0 1 0 0



Let ~p(t) be the probability over states at time t
I E.g., pj(0) is the probability of being at state j at time 0

Random surfer jumps from page i to page j with probability mij

I E.g., probability of transitioning from state 2 to state 4 is
m24 = 1/2

23 / 44

Pagerank, XII
The random surfer view

I Surfer starts at random page according to probability
distribution ~p(0)

I At time t > 0, random surfer follows one of current page’s
links uniformly at random

~p(t) :=MT ~p(t− 1)

I In the limit t→∞:
I ~p(t) = ~p(t+ 1) = ~p(t+ 2) = .. = ~p
I so ~p(t) =MT ~p(t− 1)
I ~p(t) converges to a solution p s.t. p =MT p (the pagerank

solution)!

24 / 44

Pagerank, XIII
Random surfer example

MT =


1
3

1
2 0 0

0 0 1
2 1

1
3 0 0 0
1
3

1
2

1
2 0



I ~p(0)T = (1, 0, 0, 0)

I ~p(1)T = (1/3, 0, 1/3, 1/3)

I ~p(2)T = (0.11, 0.50, 0.11, 0.28)

I ..
I ~p(10)T = (0.26, 0.35, 0.09, 0.30)

I ~p(11)T = (0.26, 0.35, 0.09, 0.30)

25 / 44

Pagerank, XIV
An algorithm to solve the eigenvector problem (find p s.t. p = MT p)

The Power Method
I Chose initial vector ~p(0) randomly
I Repeat ~p(t)←MT ~p(t− 1)

I Until convergence (i.e. ~p(t) ≈ ~p(t− 1))

We are hoping that

I The method converges
I The method converges fast
I The method converges fast to the pagerank solution
I The method converges fast to the pagerank solution

regardless of the initial vector

26 / 44

Pagerank, XV
Convergence of the Power method: aperiodicity required

Try out the power method with
~p(0):


1/4
1/4
1/4
1/4

 , or


1
0
0
0

 , or


1/2
0
1/2
0


Not being able to break the cycle looks problematic!

I .. so will require graphs to be aperiodic
I no integer k > 1 dividing the length of every cycle

27 / 44

Pagerank, XVI
Convergence of the Power method: strong connectedness required

What happens with the pagerank in this graph?

The sink hoards all the pagerank!

I need a way to leave sinks
I .. so we will force graphs to be strongly connected

28 / 44

Pagerank, XVII
A useful theorem from Markov chain theory

Theorem
If a matrix M is strongly connected and aperiodic, then:

I MT ~p = ~p has exactly one non-zero solution such that∑
i pi = 1

I 1 is the largest eigenvalue of MT

I the Power method converges to the ~p satisfying MT ~p = ~p,
from any initial non-zero ~p(0)

I Furthermore, we have exponential fast convergence

To guarantee a solution, we will make sure that the matrices
that we work with are strongly connected and aperiodic

29 / 44

Pagerank, XVIII
Guaranteeing aperiodicity and strong connectedness

Definition (The Google Matrix)
Given a damping factor λ such that: 0 < λ < 1:

G = λM + (1− λ) 1
n
J

where J is a n× n matrix containing 1 in each entry

Observe that:
I G is stochastic

I .. because G is a weighted average of M and 1
nJ , which

are also stochastic
I for each integer k > 0, there is a non-zero probablity path

of length k from every state to any other state of G
I .. implying that G is strongly connected and aperiodic

I and so the Power method will converge on G, and fast!

30 / 44

Pagerank, XIX
Teleportation in the random surfer view

The meaning of λ

I With probability λ, the random surfer follows a link in
current page

I With probability 1− λ, the random surfer jumps to a
random page in the graph (teleportation)

31 / 44

Pagerank, XX
Excercise, I

Compute the pagerank value of each node of the following
graph assuming a damping factor λ = 2/3:

Hint: solve the following system, using p2 = p3 = p4


p1
p2
p3
p4

 =

2

3


0 1 1 1
1
3 0 0 0
1
3 0 0 0
1
3 0 0 0

+
1

3
· 1
4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1




p1
p2
p3
p4


32 / 44

Pagerank, XXI
Exercise, II

Compute the pagerank vector ~p of graph with row-normalized
matrix M for damping factor λ in closed matrix form.

Answer:

~p = (I − λMT)−1


1−λ
n
...

1−λ
n



33 / 44

Topic-sensitive Pagerank, I

Observe that pageranks are independent of user’s query

I Advantages
I Computed off-line
I Collective reputation

I Disadvantages
I Insensitive to particular user’s needs

34 / 44

Topic-sensitive Pagerank, II

Assume there is a small set of K topics (sports, science,
politics, ...)

I Each topic k ∈ {1, ..,K} is defined by a subset of the web
pages Tk

I For each k, compute pagerank of node i for topic k:

pi,k = “pagerank of node i with teleportation reduced to Tk”

I Finally compute ranking score of a page i given query q

score(i, q) =
K∑
k=1

sim(Tk, q) · pi,k

35 / 44

HITS, I
Hypertext Induced Text Search

Interest of a web page due to two different reasons

I page content is insteresting (authority), or
I page points to interesting pages (hub)

HITS main rationale
I hubs are important if they point to important authorities
I authorities are impotant if pointed to by important hubs
I .. but .. circular definition again not a problem!

36 / 44

HITS, II
Definition of authority and hub value (ai and hi)

Associate to each page i an authority value ai and a hub
value hi

I vector of all authority values is ~a
I vector of all hub values is ~h

Keep these vectors normalized (notice L2 norm!)

I ‖~a‖ =
∑

i a
2
i = 1, and ‖~h‖ =

∑
i h

2
i = 1

For appropriate scaling constants c and d

I ai = c ·
∑
j→i

hj , and hi = d ·
∑
i→j

aj

Notice not a linear system anymore!

I ... but still ok with a variant of the power method
37 / 44

HITS, III
Example

Our old graph Adjacency matrix

A =


1 0 1 1
1 0 0 1
0 1 0 1
0 1 0 0



a1 = c · (h1 + h2) // here we use A’s first column

a1 ∝ (1, 1, 0, 0) ·


h1
h2
h3
h4

 = (1, 1, 0, 0) · ~h

38 / 44

HITS, IV
Example

Our old graph Adjacency matrix

A =


1 0 1 1
1 0 0 1
0 1 0 1
0 1 0 0



h2 = d · (a1 + a4) // here we use A’s second row

h2 ∝ (1, 0, 0, 1) ·


a1
a2
a3
a4

 = (1, 0, 0, 1) · ~a

39 / 44

HITS, V
Update rule for ~a and ~h

Written in compact matrix form

I To update authority values
I ~a := AT · ~h
I normalize afterwards ~a := ~a

‖a‖ so that ‖a‖ = 1

I To update hub values
I ~h := A · ~a
I normalize afterwards ~h :=

~h
‖h‖ so that ‖h‖ = 1

40 / 44

HITS, VI
The power method for finding ~a and ~h

Given adjancecy matrix A

I Initialize ~a = ~h = (1, 1, .., 1)T

I Normalize ~a and ~h so that ‖a‖ = ‖h‖ = 1

I Repeat until convergence
I ~a := AT · ~h
I normalize ~a so that ‖a‖ = 1
I ~h := A · ~a
I normalize ~h so that ‖h‖ = 1

41 / 44

HITS, VII
HITS algorithm

Query answering algorithm HITS

I Get query q and run content-based searcher on q
I Let RootSet be the top-k ranked pages
I Expand pages to BaseSet by adding all pages pointed to

and by pages in RootSet
I compute hub and authority values for the subgraph of web

induced by BaseSet
I Rank pages in BaseSet according to ~a, ~h, and content

42 / 44

HITS, VIII
HITS algorithm illustrated

43 / 44

HITS vs. Pagerank

Pros of HITS vs. Pagerank

I Sensitive to user queries

Cons of HITS vs. Pagerank

I Compute online, not offline!
I More vulnerable to webspamming

44 / 44

	5. Web Search. Architecture of simple IR systems
	Architecture of a web search system, 1998

	Web Search

