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Percolation: modeling random node or edge failures
From Chapter 16 of [Newman, 2010]

» Site percolation:
» With occupation probability ¢, keep nodes (black)
» With probability 1 — ¢, remove nodes (gray) and their incident
edges
» Site percolation studies size of largest connected remaining
component as ¢ changes (the giant cluster)

» Originally studied by physicists when networks are lattices
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Uniform node removal

In today's lecture

Uniform node removal
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Uniform node removal

Network resilience

Uniform removal of nodes

If we remove nodes uniformly at random with probability ¢, will
the remaining network still consist of a large connected cluster
(aka “the giant cluster”)?

If so, then we say that the network is resilient (or robust) to
random removal of nodes
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Uniform node removal

Quantifying network resilience |

Uniform removal of nodes in the configuration model

Consider a configuration model network with degree distribution py
and a percolation process in which vertices are present with
occupation probability ¢

We'll use the generating function for the degree distribution
o0
k
gl(2)=) piz
k=0
Consider a node that has survived the random removal

» if it is to belong to the giant cluster, then at least one of its
neighbors must belong to it as well

Argimiro Arratia & Ramon Ferrer-i-Cancho Percolation and network resilience



Uniform node removal

Quantifying network resilience |l

Uniform removal of nodes in the configuration model

Let u be the average probability that a vertex is not connected to
the giant cluster via a specific neighbor

Then, for a vertex of degree k, the total probability of not being in
the giant cluster is u¥

The average probability of not belonging to the giant cluster is
>k Pru* = go(u)

And so the average probability that a surviving node belongs to the
giant cluster is 1 — go(u)

Finally, the fraction of vertices (out of the original ones) that
belong to the giant clusteris S = ¢ (1 — go(u))
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Uniform node removal

Quantifying network resilience Il

Uniform removal of nodes in the configuration model

Now we compute u, the probability that a given neighbor is not in
the giant cluster

For a neighbor (let's call it A) not to be part of the giant cluster,
two things can happen

» either A has been removed (w.p. 1 — ¢), or

» Ais present (w.p. ¢), but none of A’s other neighbors are
part of it (w.p. u’ assuming A has | other neighbors)
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Uniform node removal

Quantifying network resilience IV

Uniform removal of nodes in the configuration model

So, total probability of A not being in the giant cluster is

1—p+d o

The number of A’s other neighbors is distributed according to the
excess degree distribution

_(+1)piy1
q = 7{@

where (k) is the average degree of the original network
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Uniform node removal

[An aside: excess degree distribution]

We want to compute the probability that by following an edge we
reach a node of degree /.

Notice this is different from the degree distribution p,

The probability of reaching a node of degree | by following any
edge is

stubs adjacent to nodes of deg/  np/ I np | |p

stubs remaining “2m—1" 2m (k)

where (k) =Y,/ py is the average degree
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Uniform node removal

Quantifying network resilience V

Averaging over q;, we arrive at:

u =Y q1—¢+du)

i

= 1) g—¢) a+d) qu
I I I

= 1-¢+¢ gi(u)

since ) ;g =1 and where

gilz) =Y qzt
k
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Uniform node removal

Quantifying network resilience VI

Not always possible to derive closed form solution for

S=¢ (1—golu) u=1-¢o+d g(u)
Observations:

» g1(u) =, qxu” is a polynomial with non-negative
coefficients
» gi(u) =20forallu>0
» all derivatives are non-negative as well
> so in general it is an increasing function of u curving upwards
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Uniform node removal

Quantifying network resilience VII

Solution of equation is u such that

u=1-¢+¢ g(v)

(homework: check that u =1 is always a solution for which S =0)
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Uniform node removal

Quantifying network resilience VIII

Depending on the value of ¢, two possibilities:
» u =1 is the only solution (so no giant cluster), or
» there is another solution at u < 1 (and there is a giant cluster)
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Uniform node removal

Quantifying network resilience IX

Uniform removal of nodes in the configuration model

Another threshold phenomenon!

The percolation threshold occurs at the critical value of ¢ s.t.

d
Sl—d+ba)| =1
u u=1
and so
1 k
¢)C - / - < >

— k(k+1 _
> gll(u) = % Zk Qkuk = Zk quuk = Zk %Plﬁluk !

2y
> gi(1 Zk (k+1)pkr1 = <k Zk (k—1) k px = S 2k><k>
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Uniform node removal

Quantifying network resilience X

Uniform removal of nodes in the configuration model

The threshold ¢, = <k2§ ><k> tells us the fraction of nodes that we
must keep in order for a giant cluster to exist

So, if we want to make a network robust against random failures
we'd want that ¢, is low, namely (k) > (k)
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Uniform node removal

Uniform node removal

Specific network types

Erdos-Rényi networks
For large ER networks (with Poisson degree distribution) we have
that px = e~ “<; where c is the mean degree, thus (k) = c and

(k?) = c(c+ 1§!and so g =1

C

So for large ¢ we will have networks that can withstand the loss of
many of its vertices while keeping main connectivity

Scale-free networks

For networks following a power-law degree distribution s.t.

2 < o0 < 3 we have that (k) is finite but (k?) diverges (in the
limit). So, ¢ = 0 in this case and it is very hard to break a
scale-free network
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Non-uniform node removal

In today's lecture

Non-uniform node removal
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Non-uniform node removal

Random vs. targeted attacks
From [Albert et al., 2000]
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(By the way, giant cluster is not always good: think vaccination in
the spread of an epidemic!)
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Non-uniform node removal

What if removal of nodes is not uniform?
Targeted attack!

Now we generalize: let ¢, be the probability of occupation for
nodes of degree k. Many possible scenarios:

» if ), = ¢ for all k, then we recover the previous model

> if ¢ =1 for k <3 and ¢, =0 for k > 3, then we remove all
nodes of degree 3 and above
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Non-uniform node removal

Quantifying the size of the giant cluster |

Targeted attack!

As before, the probability of a node of degree k belonging to the
giant cluster is ¢ (1 — u¥), where u is the average probability of
not being connected to the giant cluster via a specific edge.

Now, we average over the degree probability distribution to find
the average probability of being in the giant cluster

S = ) pdul—u) =) pebi— D prdru”
P P k
= fo(1) —folv)

where

fo(z) =) pcdrz*
k=0
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Non-uniform node removal

Quantifying the size of the giant cluster |l

Targeted attack!

Notice that f3(z) is not normalized in the usual sense:

H1)=) pbi=0
P

where ¢ is the average probability that a node is occupied.

Now, the probability u of not being part of the giant cluster via a

particular neighbor can be computed as follows. Assume neighbor
has excess degree /

> either the neighbor is not occupied (w.p. 1 — ¢;41), or

> it is occupied (w.p. &/11) but it is not connected to the giant
cluster (w.p. u')
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Non-uniform node removal

Quantifying the size of the giant cluster Il

Targeted attack!

So, adding these up: 1 — 1 + g o

Now we average over the excess degree distribution g; to obtain
value of u:

u=Y q{l—dr1+d1d}=1-A(1)—A(v)
/
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Non-uniform node removal

Quantifying the size of the giant cluster IV

Targeted attack!

where

filz) = D akdriaz”
k>0

1
= m Z(k + 1)Pk+1¢k+12k
k>0

= </1(> Z kpdiz* 1

k>1

So, given py, gk, and dk, our solution is:

S=1f(1)—fh(u) forust. u=1—"7F(1)+ fi(u)
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Non-uniform node removal

Size of the giant cluster in a targeted attack |

Special case: exponential networks

In an exponential network, px = (1 —e e for A > 0
Suppose we remove vertices of degree greater than kg, that is

o[ 1 ifk<k
K= 0 otherwise

Then
ko—1
fo(z) = Zpkd)kz (1—e?) Z e Mk
k>0 k=0
—1
= (1 — e Mo ko) E
( e z )e}‘—z
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Non-uniform node removal

Size of the giant cluster in a targeted attack Il

Special case: exponential networks

k lizn+1

where we have used: ) |_,z¥ =135~
Moreover,
fy (2)
Alz) = 2
8o(1)
A 2
= [(1 — e Mogho) _ pgeMko—1) Jho—1(q e*?‘z)} e —1
er —z

fi(z) is a polynomial on z and deg. kg, therefore
» tosolve u=1—A(1)+ f(u)
» we need to find u* s.t. 0 =1—u*— (1) + A (v*),
> ie u* is a root of the polynomial 1 — u— f1(1) + fi(u)
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Non-uniform node removal

Size of the giant cluster in a targeted attack Ill

Special case: exponential networks

Knowing 0 < u* < 1 we can find the root numerically
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Non-uniform node removal
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