Sampling in networks

Argimiro Arratia & R. Ferrer-i-Cancho

Universitat Politècnica de Catalunya

Version 0.4

Complex and Social Networks (2017-2018)
Master in Innovation and Research in Informatics (MIRI)
Official website: www.cs.upc.edu/~csn/
Contact:

- Ramon Ferrer-i-Cancho, rferrericancho@cs.upc.edu, http://www.cs.upc.edu/~rferrericancho/
- Argimiro Arratia, argimiro@cs.upc.edu, http://www.cs.upc.edu/~argimiro/
The “problem” of analyzing networks

Sampling comes to our rescue

A few possible scenarios:

1. We have collected a large graph that fits into memory, but want to run an expensive algorithm that may take too long. How can we speed up the computation?

2. We have collected a huge graph that fits into disk but not main memory. How can we analyze it in reasonable time?

3. It is extremely costly or impossible to collect the entire graph (think Facebook, WWW, Twitter, etc.), we only have access to subgraphs via crawling, and yet we want to infer properties of the underlying graph.
The “problem” of analyzing networks
Sampling comes to our rescue

A few possible scenarios:

1. We have collected a large graph that fits into memory, but want to run an expensive algorithm that may take too long. How can we speed up the computation?

2. We have collected a huge graph that fits into disk but not main memory. How can we analyze it in reasonable time?

3. It is extremely costly or impossible to collect the entire graph (think Facebook, WWW, Twitter, etc.), we only have access to subgraphs via crawling, and yet we want to infer properties of the underlying graph.

In all of these scenarios, sampling (implicitly or explicitly) is used!
Understanding sampling is important!
A little story of not so long ago..

- 1999-2000: several acclaimed reports on power-law degree distribution of various networks
 - Internet: [Faloutsos et al., 1999]
 - WWW: [Albert et al., 1999]
 - Metabolic networks: [Jeong et al., 2000]

- 2003: it is shown empirically that the sampling procedure may induce a power-law, even if the underlying graph is not scale-free! [Lakhina et al., 2003]

- 2005: further empirical and theoretical studies support this [Achlioptas et al., 2005, Clauset and Moore, 2005]
Understanding sampling is important!
A little story of not so long ago..

- 1999-2000: several acclaimed reports on power-law degree distribution of various networks
 - Internet: [Faloutsos et al., 1999]
 - WWW: [Albert et al., 1999]
 - Metabolic networks: [Jeong et al., 2000]

- 2003: it is shown empirically that the sampling procedure may induce a power-law, even if the underlying graph is not scale-free! [Lakhina et al., 2003]

- 2005: further empirical and theoretical studies support this [Achlioptas et al., 2005, Clauset and Moore, 2005]

Conclusion: it is very important to understand how biases in sampling affect results
Sampling strategies

Biases of sampling strategies
Overview of sampling strategies

- Random node selection
 - Only possible when access to entire graph is given
- Random edge selection
 - Only possible when access to entire graph is given
- Crawling-based
 - Snowball sampling: BFS, DFS, Forest Fire, ...
 - Random walks
Goals

1. Sample a representative subgraph (scale-down goal)
 ▶ that is, obtain a subgraph that has similar properties, for a set of representative properties *simultaneously* (e.g.: degree distribution, clustering coefficient, community structure, etc.)

2. Estimation of a network parameter (back-in-time goal)
 ▶ E.g.: average degree of nodes, diameter, ...

3. Estimate node attributes (back-in-time goal)
 ▶ E.g.: age of users in a social network

4. Estimate edge attributes (back-in-time goal)
 ▶ E.g.: relationship type of friends in a social network
Goals

1. Sample a representative subgraph (scale-down goal)
 ▶ that is, obtain a subgraph that has similar properties, for a set of representative properties *simultaneously* (e.g.: degree distribution, clustering coefficient, community structure, etc.)

2. Estimation of a network parameter (back-in-time goal)
 ▶ E.g.: average degree of nodes, diameter, ...

3. Estimate node attributes (back-in-time goal)
 ▶ E.g.: age of users in a social network

4. Estimate edge attributes (back-in-time goal)
 ▶ E.g.: relationship type of friends in a social network

Different sampling strategies will work for certain goals better than others
Random node selection

Several possibilities

- Uniform node sampling
- Degree-based sampling [Adamic et al., 2001]
 - Probability of visiting node proportional to its degree (assumed known)
 - Originally used for searching [Adamic et al., 2001]
- Pagerank-based sampling [Leskovec and Faloutsos, 2006]
 - Probability of visiting node proportional to its pagerank (assumed known)
Random edge selection

Several possibilities

▶ Uniform edge sampling
 ▶ sample edges and then include incident nodes

▶ Random node-edge sampling
 ▶ select node uniformly at random, then select incident edge uniformly at random

▶ Hybrid sampling [Krishnamurthy et al., 2005]
 ▶ With probability 0.8, perform random node-edge sampling
 ▶ With probability 0.2, perform uniform edge sampling

▶ Induced edge sampling [Ahmed et al., 2014]
 ▶ Uniformly sample edges
 ▶ Complete graph sample with edges between nodes incident on sampled edges
Sampling strategies
Biases of sampling strategies

Crawling I
a.k.a. “sampling by exploration”

- Breadth-First search (BFS)
 - explore neighbors of least recently visited nodes

- Depth-First search (DFS)
 - explore neighbors of most recently visited nodes

- Random walk (RW) [Gjoka et al., 2010]
 - explore neighbors of most recently visited nodes uniformly at random (no queue)

- Forest Fire sampling (FFS) [Leskovec et al., 2005]
 - probabilistic version of BFS
 - with probability p (typically 0.7), visit neighbor
Expansion sampling (XS) [Maiya and Berger-Wolf, 2010, Maiya and Berger-Wolf, 2011]
 - greedily add node maximizing \(\frac{|N(S)|}{|S|} \)

Random walk with jump (RJ) [Ribeiro and Towsley, 2010]
 - same as random walk, but jump to random node with probability \(p \)
In today’s lecture

Sampling strategies

Biases of sampling strategies
Uniform node sampling

- Induced subgraphs of scale-free networks are not scale-free [Stumpf et al., 2005]
- Induced subgraphs of connected scale-free networks are sparse
Crawled subsets of ER graphs are scale-free
[Clauset and Moore, 2005]
More crawling biases

In general, random walks, DFS, and BFS lead to over-sampling of high-degree nodes.
Compensating for RW bias

- **Random Walk (RW)**
 - Nodes with high degree are over-represented since probability of visiting a node $v \propto k_v$

- **Re-Weighted random walk (RWRW)**
 - Hansen-Hurwitz estimator for non-uniform selection probabilities
 - After the walk, re-weight $\hat{p}(k) = \frac{\sum_{v:k_v=k} 1/k_v}{\sum_v 1/k_v}$

- **Metropolis-Hastings random walk (MHRW)**
 - Walk with new transition probabilities $P_{v \rightarrow w} = \frac{1}{k_v} \min(1, \frac{k_v}{k_w})$
 - i.e. select random neighbor, and move with probability $\min(1, \frac{k_v}{k_w})$
 - i.e. always accept moves to nodes of lower degree, reject some moves to nodes of higher degree
 - results in uniform probabilities of visiting nodes
Uniform sampling of Facebook users using random walks
[Gjoka et al., 2010]
Results from [Maiya and Berger-Wolf, 2011]

Degree distribution
Results from [Maiya and Berger-Wolf, 2011]

Clustering coefficient

(a) WikiVote (CC_LOC)
(b) HEPTh (CC_LOC)
(c) WikiVote (CC_GLB)
(d) HEPTh (CC_GLB)
Results from [Maiya and Berger-Wolf, 2011]

Network reach

(a) HEPTh (RAK) (b) Amazon (RAK)

(c) HEPTh (CNM) (d) Amazon (CNM)

(e) HEPTh (DQ) (f) Amazon (DQ)
References I

On the bias of traceroute sampling: or, power-law degree distributions in regular graphs.
In *Proceedings of the thirty-seventh annual ACM symposium on Theory of computing*, pages 694–703. ACM.

Search in power-law networks.

Network sampling: From static to streaming graphs.
References II

References VI

