Intro to Complex and Social Networks

Argimiro Arratia & Ramón Ferrer-i-Cancho

Universitat Politècnica de Catalunya

Complex and Social Networks (2024-2025)

Master in Innovation and Research in Informatics (MIRI)

Instructors

- Ramon Ferrer i Cancho
 - ▶ rferrericancho@cs.upc.edu
 - Omega 220,
- Argimiro Arratia
 - argimiro@cs.upc.edu
 - Omega 323,

Website

Please go to http://www.cs.upc.edu/~CSN for all course's material, schedule, lab work, etc.

Class Logistics

- ► Monday, 10:00 12:00, A6 106
 - Theory lectures.
- ► Thursday, 10:00 12:00, every two weeks, A5 S111.
 - Guided lab activities; expected to be complemented with an average estimate of 4-6 additional hours per session of autonomous lab activities.
 - Lab sessions will require handing in a short written report;
 these count towards the evaluation of the course.
 - ► Theory start on the 9th of September Labs: 12/9, 26/9, 10/10, 24/10, 14/11, 28/11, 12/12

Lab work - important rules

- ▶ Lab reports in teams of 2, submission by one member.
- Work with a different partner each lab.
- Do not exchange information other than general ideas with others: that will be considered plagiarism

Evaluation

There will be no exam in this course. Grading is done entirely through reports on various tasks throughout the course.

- You are expected to hand in 7 lab work reports
 - ▶ The best 5 count for 50% of the final grade
 - Lab reports not handed in penalize, so please complete all of them
- You have to do a final course project
 - Project ideas given by instructors towards the end of the course
 - Students pick a project or can suggest their own
 - ▶ 50% of the final grade

Contents

As planned today - may go through unpredictable changes

- 1. Characterization of networks (how can we describe them)
 - ▶ Lectures 1–7
 - Includes: small-world, degree distribution, finding communities, and other advanced metrics
- 2. Dynamics of growing networks (how do networks grow)
 - Lectures 8–9
 - Includes: random growth, preferential attachment, and other growth models
- 3. Processing networks and processes on networks (how can we process large networks and how are processes over networks affected by their topology)
 - ► Lectures 10–13
 - Includes: sampling, epidemic models of diffusion, rumor spreading, search, percolation, etc.

So, let's start! Today, we'll see:

- 1. Examples of real networks
- 2. What do real networks look like?
 - real networks exhibit small diameter
 - .. and so does the Erdös-Rényi or random model
 - real networks have high clustering coefficient
 - ... and so does the Watts-Strogatz model
 - real networks' degree distribution follows a power-law
 - .. and so does the Barabasi-Albert or preferential attachment model

Examples of real networks

- Social networks
- ► Information networks
- ► Technological networks
- Biological networks
- Financial networks

Social networks

Links denote social "interactions"

▶ friendship, collaborations, e-mail, etc.

Information networks

Nodes store information, links associate information

citation networks, the web, p2p networks, etc.

Technological networks

Man-built for the distribution of a commodity

▶ telephone networks, power grids, transportation networks, etc.

Biological networks

Represent biological systems

protein-protein interaction networks, gene regulation networks, metabolic pathways, etc.

Financial networks

Nodes = financial assets, links = associated value or information

► Forex network I: Nodes = currencies, links = exchange value

► Forex network II: Nodes = currencies, links = nominal dollar value of all transactions between those two currencies (volume of trading)

see: http://ipeatunc.blogspot.com.es/2011/06/international-forex-network-1998-2010.html

Financial networks

The Forex network (2015): Nodes = currencies, links = exchange value

Representing networks

- Network ≡ Graph
- Networks are just collections of "points" joined by "lines"

points	lines	
vertices	edges, arcs	math
nodes	links	computer science
sites	bonds	physics
actors	ties, relations	sociology

Types of networks

From [Newman, 2003]

- (a) unweighted, undirected
- (b) discrete vertex and edge types, undirected
- (c) varying vertex and edge weights, undirected
- (d) directed

Descriptive measures of networks

- real networks exhibit small diameter
- real networks have high clustering coefficient (or transitivity)
- real networks' degree distribution follows a power-law (i.e. are scale free)

From [Newman, 2003]

	network	type	n		z	l £	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
_	film actors	undirected	449 913	25 516 482	113.43	3.48	2.3	0.20	0.78	0,208	20, 416
social	company directors	undirected	7 673	55 392	14.44	4.60	2.0	0.59	0.78	0.208	105, 323
	math coauthorship	undirected	253 339	496 489	3.92	7.57	_	0.39	0.34	0.120	105, 323
	physics coauthorship	undirected	52 909	245 300	9.27	6.19	_	0.15	0.56	0.120	
											311, 313
	biology coauthorship	undirected	1 520 251	11 803 064	15.53	4.92		0.088	0.60	0.127	311, 313
	telephone call graph	undirected	47 000 000	80 000 000	3.16		2.1				8, 9
	email messages	directed	59912	86 300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16 881	57 029	3.38	5.22	-	0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	-	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810				3.2				265, 266
information	WWW nd.edu	directed	269 504	1 497 135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
	WWW Altavista	directed	203 549 046	2 130 000 000	10.46	16.18	2.1/2.7				74
Ĕ	citation network	directed	783 339	6716198	8.57		3.0/-				351
Joju	Roget's Thesaurus	directed	1 022	5 103	4.99	4.87	_	0.13	0.15	0.157	244
.5	word co-occurrence	undirected	460 902	17 000 000	70.13		2.7		0.44		119, 157
æ	Internet	undirected	10697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
	power grid	undirected	4941	6 594	2.67	18.99	-	0.10	0.080	-0.003	416
gic	train routes	undirected	587	19 603	66.79	2.16	-		0.69	-0.033	366
technological	software packages	directed	1 439	1 723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
GP.	software classes	directed	1 377	2 213	1.61	1.51	-	0.033	0.012	-0.119	395
Ť,	electronic circuits	undirected	24 097	53 248	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1 296	1.47	4.28	2.1	0.012	0.011	-0.366	6, 354
biological	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	214
	protein interactions	undirected	2 115	2 240	2.12	6.80	2.4	0.072	0.071	-0.156	212
	marine food web	directed	135	598	4.43	2.05	_	0.16	0.23	-0.263	204
	freshwater food web	directed	92	997	10.84	1.90	_	0.20	0.087	-0.326	272
	neural network	directed	307	2 359	7.68	3.97	_	0.18	0.28	-0.226	416, 421

Small-world phenomenon

Low diameter and high transitivity

- Only 6 hops separate any two people in the world
- A friend of a friend is also frequently a friend

Measuring the small-world phenomenon, I

- Let d_{ij} be the shortest-path distance between nodes i and j
- ▶ To check whether "any two nodes are within 6 hops", we use:
 - ▶ The diameter (longest shortest-path distance) as

$$d = \max_{i,j} d_{ij}$$

▶ The average shortest-path length as

$$I = \frac{2}{n(n-1)} \sum_{i>j} d_{ij}$$

▶ The harmonic mean shortest-path length as

$$I^{-1} = \frac{2}{n(n-1)} \sum_{i>i} d_{ij}^{-1}$$

But...

- Can we mimic this phenomenon in simulated networks ("models")?
- ► The answer is YES!

The (basic) random graph model

Basic $G_{n,p}$ Erdös-Rényi random graph model:

- parameter n is the number of vertices
- parameter p is s.t. $0 \le p \le 1$
- Generate and edge (i, j) independently at random with probability p

Measuring the diameter in ER networks

Want to show that the diameter in ER networks is small

- Let the average degree be z
- At distance I, can reach z^I nodes
- At distance $\frac{\log n}{\log z}$, reach all *n* nodes
- So, diameter is (roughly) O(1)(Show that z = (n-1)p)

ER networks have small diameter

As shown by the following simulation

Measuring the small-world phenomenon, II

- ➤ To check whether "the friend of a friend is also frequently a friend", we use:
 - ► The transitivity or clustering coefficient, which basically measures the probability that two of my friends are also friends

Global clustering coefficient

$$C^{(1)} = \frac{3 \times \text{number of triangles}}{\text{number of connected triples}}$$

$$C^{(1)} = \frac{3 \times 1}{8} = 0.375$$

Local clustering coefficient

- For each vertex i, let n_i be the number of neighbors of i
- ▶ Let C_i be the fraction of pairs of neighbors that are connected within each other

$$C_i = rac{ ext{nr. of connections between } i$$
's neighbors $rac{1}{2}n_i \; (n_i - 1)$

▶ Finally, average C_i over all nodes i in the network

$$C^{(2)} = \frac{1}{n} \sum_{i} C_{i}$$

 $C^{(1)}$ and $C^{(2)}$ give slightly different results (always specify which one you use)

Local clustering coefficient example

$$C_1 = C_2 = 1/1$$

$$C_3 = 1/6$$

$$C_4 = C_5 = 0$$

$$C^{(2)} = \frac{1}{5}(1+1+1/6) = 13/30 = 0.433$$

ER networks do not show transitivity

- ightharpoonup C = p, since edges are added independently
- Given a graph with n nodes and m edges, we can "estimate" p as

$$\hat{p} = \frac{m}{1/2 \ n \ (n-1)}$$

- ▶ We say that clustering is high if $C \gg \hat{p}$
 - ▶ Hence, ER networks do not have high clustering coefficient since for them $C \approx \hat{p}$

ER networks do not show transitivity

Table 1: Clustering coefficients, C, for a number of different networks; n is the number of node z is the mean degree. Taken from [146]

the number of node, z is the mean degree. Taken from			[140].			
Network	n	z	C	C for		
			measured	random graph		
Internet [153]	6,374	3.8	0.24	0.00060		
World Wide Web (sites) [2]	153,127	35.2	0.11	0.00023		
power grid [192]	4,941	2.7	0.080	0.00054		
biology collaborations [140]	1,520,251	15.5	0.081	0.000010		
mathematics collaborations [141]	253,339	3.9	0.15	0.000015		
film actor collaborations [149]	449,913	113.4	0.20	0.00025		
company directors [149]	7,673	14.4	0.59	0.0019		
word co-occurrence [90]	460,902	70.1	0.44	0.00015		
neural network [192]	282	14.0	0.28	0.049		
metabolic network [69]	315	28.3	0.59	0.090		
food web [138]	134	8.7	0.22	0.065		

So ER networks do not have high clustering, but...

- Can we mimic this phenomenon in simulated networks ("models"), while keeping the diameter small?
- The answer is YES!

The Watts-Strogatz model, I

From [Watts and Strogatz, 1998]

Reconciling two observations from real networks:

- ► High clustering: my friend's friends are also my friends
- small diameter

The Watts-Strogatz model, II

- Start with all n vertices arranged on a ring
- ► Each vertex has intially 4 connections to their closest nodes
 - mimics local or geographical connectivity
- ▶ With probability p, rewire each local connection to a random vertex
 - p = 0 high clustering, high diameter
 - p = 1 low clustering, low diameter (ER model)
- What happens in between?
 - As we increase p from 0 to 1
 - Fast decrease of mean distance
 - Slow decrease in clustering

The Watts-Strogatz model, III

For an appropriate value of $p \approx 0.01$ (1%), we observe that the model achieves high clustering and small diameter

Degree distribution

Histogram of nr of nodes having a particular degree

 f_k = fraction of nodes of degree k

Scale-free networks

The degree distribution of most real-world networks follows a power-law distribution

$$f_k = ck^{-\alpha}$$

- "heavy-tail" distribution, implies existence of hubs
- hubs are nodes with very high degree

Random networks are not scale-free!

For random networks, the degree distribution follows the binomial distribution (or Poisson if *n* is large)

$$f_k = \binom{n}{k} p^k (1-p)^{(n-k)} \approx \frac{z^k e^{-z}}{k!}$$

- ▶ Where z = p(n-1) is the mean degree
- Probability of nodes with very large degree becomes exponentially small
 - so no hubs

So ER networks are not scale-free, but...

- Can we obtained scale-free simulated networks?
- ► The answer is YES!

Preferential attachment

- "Rich get richer" dynamics
 - ▶ The more someone has, the more she is likely to have
- Examples
 - the more friends you have, the easier it is to make new ones
 - the more business a firm has, the easier it is to win more
 - the more people there are at a restaurant, the more who want to go

Barabási-Albert model

From [Barabási and Albert, 1999]

- "Growth" model
 - The model controls how a network grows over time
- Uses preferential attachment as a guide to grow the network
 - new nodes prefer to attach to well-connected nodes
- (Simplified) process:
 - the process starts with some initial subgraph
 - each new node comes in with m_0 edges
 - probability of connecting to existing node i is proportional to i's degree
 - results in a power-law degree distribution with exponent $\alpha=3$

ER vs. BA

Experiment with 1000 nodes, 999 edges ($m_0 = 1$ in BA model).

random

preferential attachment

In summary..

phenomenon	real networks	ER	WS	BA
small diameter	yes	yes	yes	yes
high clustering	yes	no	yes	yes ¹
scale-free	yes	no	no	yes

References I

- Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. science, 286(5439):509–512.
- Baronchelli, A., i Cancho, R. F., Pastor-Satorras, R., Chater, N., and Christiansen, M. H. (2013).

 Networks in cognitive science.

 Trends in cognitive sciences, 17(7):348–360.
- Barrat, A., Barthelemy, M., and Vespignani, A. (2008). Dynamical processes on complex networks, volume 1. Cambridge University Press Cambridge.

References II

Statistical analysis of network data.

Springer.

Newman, M. (2009).

Networks: an introduction.

Oxford University Press.

Newman, M. E. (2003).

The structure and function of complex networks.

SIAM review, 45(2):167-256.

Watts, D. J. and Strogatz, S. H. (1998).

Collective dynamics of small-worldnetworks.

nature, 393(6684):440-442.