
Non-linear regression on dependency trees

Ramon Ferrer-i-Cancho, Marta Arias, Argimiro Arratia

Complex and Social Networks (2025-2026)
Master in Innovation and Research in Informatics (MIRI)

1 Introduction

In this session, we are going to practice on the fit of a non-linear function to data
using collections of syntactic dependency trees from different languages. In a
syntactic dependency trees, the vertices are the words (tokens) of a sentence and
links indicate syntactic dependencies between words [Ferrer-i-Cancho, 2013].

n is defined as the number of vertices of a tree, ki as the degree of the i-th vertex
and di as the length of the i-th edge. Notice that, given n, the average degree is
constant (it depends only on n.

〈
k2

〉
is defined as its degree 2nd moment about

zero, i.e. 〈
k2

〉
=

1

n

n∑
i=1

k2i

⟨d⟩ is defined as the mean length of its edges, i.e.

⟨d⟩ = 1

n− 1

n−1∑
i=1

di.

Through some procedure, two groups of students will be formed:

� The degree 2nd moment group. Its teams will have to investigate the
scaling of

〈
k2

〉
as a function of n.

� The mean length group. Its teams will have to investigate the scaling of
⟨d⟩ as a function of n.

Each team within a group works independently from other members but is
allowed to compare results with other teams within the group.

1

2 Data preparation

Proceed as follows to generate the data on information of real syntactic depen-
dency trees from different languages:

1. Download the latest version of the Universal Dependencies (UD) treebank
collection from https://universaldependencies.org/download.html.
Select the treebanks from the Parallel Universal Dependencies (PUD) col-
lection. These treebanks can be easily identified because they are in folders
with a name that contains “PUD”.

2. Create a file with name language_dependency_tree_metrics.txt for
each language, e.g. English_dependency_tree_metrics.txt. Within
the file, each row corresponds to the syntactic dependency tree of a real
sentence. Within each row, the 1st, the 2nd and the 3rd cell contain,
respectively, n,

〈
k2

〉
and ⟨d⟩ for a given sentence.

3. Store these files in a directory data that you will have to include in your
delivery.

Produce an Rscript to check the validity of
〈
k2

〉
and ⟨d⟩. In order to be valid,

these metrics must satisfy (at least)[Ferrer-i-Cancho, 2013]

4− 6/n ≤
〈
k2

〉
≤ n− 1 (1)

and also [Ferrer-i-Cancho et al., 2021]

1

4

(
n
〈
k2

〉
+ q

)
≤ (n− 1) ⟨d⟩ ≤ 1

4

(
3(n− 1)2 + 1− n mod 2

)
(2)

where q is the number of vertices of odd degree, i.e.

q =

n∑
i=1

(ki mod 2). (3)

You have to produce a table with the format of Table 1. This table might
be necessary to interpret the results that are going to be obtained in coming
sections. You can adapt the script summary_table.R from session 2. The sample
size, the mean and then standard deviation can be obtained with the functions
length(...), mean(...) and sd(...).

3 Data analysis

> English = read.table("./data/English_dependency_tree_metrics.txt", header = FALSE)

> colnames(English) = c("vertices","degree_2nd_moment", "mean_length")

> English = English[order(English$vertices),]

2

https://universaldependencies.org/download.html

Table 1: Summary of the properties of the degree sequences. N is the sample
size (the number of sentences or dependency trees), µn and σn are, respectively,
the mean and the standard deviation of n, the sentence length (n is the number
of vertices of a trees), µx and σx are the mean and the standard deviation of
the target metric (

〈
k2

〉
in one group; ⟨d⟩ in the other group)

Language N µn σn µx σx

...

...

...

loads the information about a collection of dependency trees from sentence in
English and sorts the matrix rows by the number of vertices increasingly (that
will help later when visualizing the plots).

3.1 Preliminary visualization

Note: The following plots are generated using vintage R. Use ggplot2
for plots in your report.

Consider the mean dependency length. A preliminary plot can be obtained with

> plot(English$vertices, English$mean_length,

xlab = "vertices", ylab = "mean dependency length")

The same plot taking logs on both axes

> plot(English$vertices, English$mean_length,

xlab = "vertices", ylab = "mean dependency length", log = "xy")

suggest a power-law dependency between mean length and number of vertices,
in spite of the high dispersion. A clearer intuition about the underlying trend
can be obtained by averaging mean lengths for a given number of vertices:

> mean_English = aggregate(English, list(English$vertices), mean)

Now compare the plot obtained by

> plot(mean_English$vertices, mean_English$mean_length,

xlab = "vertices", ylab = "mean mean dependency length")

with

3

> plot(mean_English$vertices, mean_English$mean_length,

xlab = "vertices", ylab = "mean mean dependency length", log = "xy")

An intuition about how far the real scaling of ⟨d⟩ is from the a random linear
arrangement can be obtained by adding the expected mean length in that case,
which is E[⟨d⟩] = (n + 1)/3 [Ferrer-i-Cancho, 2004], to the plots. Consider for
instance a plot in double logarithmic scale with the averaged curve and the
random linear arrangement expectation

> plot(English$vertices, English$mean_length,

xlab = "vertices", ylab = "mean dependency length", log = "xy")

> lines(mean_English$vertices,mean_English$mean_length, col = "green")

> lines(mean_English$vertices,mean_English$vertices+1)/3, col = "red")

As for the scaling of
〈
k2

〉
a suitable null model are uniformly distributed ran-

dom undirected trees. f(n) can be estimated numerically by producing many
of those trees for a given n. The Aldous-Brother algorithm allows one to gen-
erate uniformly random labelled spanning trees from a graph [Aldous, 1990,
Broder, 1989]. Here we assume a complete graph as the source for the spanning
trees. Indeed, it has been shown that

〈
k2

〉
=

(
1− 1

n

)(
5− 6

n

)
(4)

for uniformly random labelled trees [Ferrer-i-Cancho, 2014].

An initial exploration of the scaling of
〈
k2

〉
can be performed with its expected

value in uniformly random trees (Eq. 4) and the theoretical lower and upper
bounds (Eq. 1):

> plot(English$vertices, English$degree_2nd_moment,

xlab = "vertices", ylab = "degree 2nd moment")

> lines(mean_English$vertices,mean_English$degree_2nd_moment, col = "green")

> lines(English$vertices,

(1 - 1/English$vertices)*(5 - 6/English$vertices), col = "red")

> lines(English$vertices,4-6/English$vertices, col = "blue")

> lines(English$vertices,English$vertices-1, col = "blue")

The plots suggest that both ⟨d⟩ and
〈
k2

〉
grow sublinearly with n. The plot

for ⟨d⟩ versus n suggests an almost power-law dependency. The functional
dependency between these metrics and n will be investigated next.

3.2 The ensemble of models

We consider an ensemble of models

4

� f(n) = (n/2)b (model 1). This models is obtained applying the condition
f(2) = 1 (satisfied both by ⟨d⟩ and

〈
k2

〉
) to a more general model, i.e.

f(n) = anb. This leads to a = 1/2b and finally f(n) = (n/2)b. The
motivation of this model is that

〈
k2

〉
= ⟨d⟩ = 1 when n = 2.

� f(n) = anb (model 2), a power-law model.

� f(n) = aecn (model 3), an exponential model.

� f(n) = a log n (model 4), a logarithmic model.

Model 4 is motivated by the logarithmic growth of ⟨d⟩ in minimum linear ar-
rangements of uniformly random labelled trees [Esteban et al., 2016].

Additionally, it is convenient to consider a null model (model 0). Concerning the
scaling of ⟨d⟩, a random linear arrangement of vertices gives f(n) = n/3 + 1/3
as the null model. Concerning the scaling of

〈
k2

〉
, uniformly random labelled

trees give f(n) =
(
1− 1

n

) (
5− 6

n

)
as the null model. Notice that f(n) depends

exclusively on n in both null models (no extra parameters are needed).

The additive term of the random linear arrangement model suggests that the
models above should be generalized giving

� f(n) = (n/2)b + d (model 1+).

� f(n) = anb + d (model 2+).

� f(n) = aecn + d (model 3+).

� f(n) = a log n+ d (model 4+).

� Certain + models can be hard to fit.

� The ease of fit of a + model may depend on the group (
〈
k2

〉
versus ⟨d⟩).

� We recommend working in two phases. First, work an all models except
the hard-to-fit + models produce an early draft of the report. Second,
add the remainder of + models and produce the final report.

4 Non-linear regression with R

We show how to fit model 2 to ⟨d⟩ as a function of n. The procedure for
〈
k2

〉
is

the same but replacing mean_length by degree_2nd_moment. The non-linear
regression can be invoked by means of the comment nls(...) through,

5

> a_initial = 4

> b_initial = 4

> nonlinear_model = nls(mean_length~a*vertices^b,data=English,

start = list(a = a_initial, b = b_initial), trace = TRUE)

where

� mean_length~a*vertices^b is the mathematical definition of the func-
tion to fit,

� data=English indicates the data source,

� start = list(a = a_initial, b = b_initial) defines the initial val-
ues of the parameters,

� trace = TRUE indicates that the progress of the optimization algorithm
must be shown.

We chose initial values for the parameters a and b arbitrarily. The initial val-
ues can be crucial to warrant that nls(...) is able to find a solution to the
optimization problem or simply to increase the time efficiency of the non-linear
regression. Try for instance a_initial = 0 to see an example of failure of
nls(...). Good initial values for a and b can be obtained with a double loga-
rithmic transformation, which gives

log ⟨d⟩ = b log n+ a′, (5)

where a′ = log a. A linear regression on that transformation allows one to obtain
an initial value for b and initial value for a thanks to a = ea

′
. This is what the

next code does:

> linear_model = lm(log(mean_length)~log(vertices), English)

> a_initial = exp(coef(linear_model)[1])

> b_initial = coef(linear_model)[2]

lm(...) is used to perform a non linear regression between log
〈
d2
〉
and log n.

coef(...) retrieves the parameters of the linear model: coef(...)[1] contains
the intercept and coef(...)[2] contains the slope.

We run the non-linear regression again with

> nonlinear_model = nls(mean_length~a*vertices^b,data=English,

start = list(a = a_initial, b = b_initial), trace = TRUE)

Notice the faster convergence of nls(...) with the new initial values of the
parameters.

6

Notice that a hidden assumption of the way we call nls(...) and non-linear
regression in general is homocesdasticity. You have to check if this assumption
holds. Plots of the original data can help but you may need to calculate the
variance of points as a function of the number of vertices of the tree. In case
that homocesdasticity does not hold, we suggest that nls(...) is fed with
the output of aggregate(...) and not the original data. There are other
approaches.

The RSS and the AIC of the nonlinear regression model can be retrieved, re-
spectively, simply with

deviance(nonlinear_model)

and

AIC(nonlinear_model)

It is important to be aware of a crucial difference between this lab session and an
Session 2. Here we are following a nonlinear regression approach to curve fitting.
Its goal is minimizing the error between the curve and the model (and the AIC
is a function of that error). In contrast, session 2 was based on a maximum
likelihood approach where there is no direct concern about that error. The AIC
is computed differently depending on the approach.

s can be obtained through

> sqrt(deviance(nonlinear_model)/df.residual(nonlinear_model))

The parameters giving the best fit can be obtained through

coef(nonlinear_model)

coef(nonlinear_model)[i] contains the value of the i-th parameters for the
best fit of the model (i = 1 for the 1st parameters). The mapping of pa-
rameter index to parameter is tricky and thus it is convenient that you use
coef(nonlinear_model)["a"] to retrieve the value of a giving the best fit and
coef(nonlinear_model)["b"] to retrieve the value of b giving the best fit.

Notice nls(...) cannot be used for models with no parameters. For instance,
the RSS and s2 for ⟨d⟩ = (n+ 1)/3 can be calculated with

RSS <- sum((English$mean_length-(English$vertices+1)/3)^2)

n <- length(English$vertices)

p <- 0

s <- sqrt(RSS/(n - p))

Finally, the corresponding AIC (assuming a non-linear regression model) can be
calculated with [Ritz and Streibig, 2008, p. 105; Eq. 7.2]

7

Language 0 1 2 3 4 1+ 2+ 3+ 4+
...
...
...

Table 2: Do not forget to include results for model 0 here

Model

1 2 3 4 1+ 2+ 3+ 4+
Language b a b a c a b d a b d a c d a d

...

Table 3: Notice that Model 0 is not included here because it has no parameters.

AIC <- n*log(2*pi) + n*log(RSS/n) + n + 2*(p + 1)

5 Results

5.1 Model selection

For each metric, you have to prepare:

� Separate tables for s (residual standard error), AIC (Akaike information
criterion), ∆ (AIC differences) following the format of Table 2.

� Table with the values of the parameters giving the best fit for each model
following the format of Table 3.

5.2 Final visualization

For each language, you have to plot the empirical data and the curve for the
best fit. Imagine that model 2 is the best model for the English language. Then
the data and the best fit can be plotted together with

> plot(English$vertices, English$mean_length,

xlab = "vertices", ylab = "mean dependency length", log = "xy")

> lines(English$vertices, fitted(nonlinear_model), col = "green")

8

6 Deliverables

You have to prepare a report including the following sections (in this order):
introduction, results, discussion and methods. Results includes all the tables
and figures (the preliminary plots and the plots of the best model to the real
data) and some guiding text. Methods should include any relevant methods
not explained in this guide (for instance, decisions that you had to made and
might have an influence on the results), initial values of the parameters used to
call nls(), the techniques used to obtain those initial values and so on... The
discussion should include a summary of the results and your interpretation. For
instance, you should discuss

� If there is a significant difference between the fit of the functions from null
hypotheses and that of alternative hypotheses.

� If the original data satisfy the assumption of homoscedasticity of the non-
linear regression methods considered here. In case that it does not hold,
you should explain how you have addressed it.

� Discuss if the function giving the best fit gives a reasonably good fit (e.g.,
checking visually that the best function provides a sufficiently good fit).
Remember that the best function of an ensemble is not necessarily the
best in absolute terms.

� The extent to which languages resemble or differ.

The discussion section should also include some conclusions.

Important rule: The lab session, and especially the report you have to hand in,
are strictly individual work. Plagiarism will be prosecuted. Nevertheless, you
are encouraged to ask the teacher as soon as possible if you think you do not
understand what you are supposed to do, and also if you feel you are spending
much more time than the rest of the group – sometimes a tiny error can be
tricky to find and does not add much to your knowledge. Questions can be
asked either in person or by email, and you will never be penalized by asking
questions, no matter how stupid they look in retrospect.

To deliver: You must deliver the report explained above. The formats accepted
for the report are, in principle, pdf, Word, OpenOffice, and Postscript. You also
have to hand in the source code in R (or other languages) that you have used,
including some minimal comments that can help the reader.

Procedure: Submit your work through the raco platform as a single zipped file.

Deadline: Work must be delivered within 2 weeks from the lab session you
attend. Late deliveries risk being penalized or not accepted at all. If you
anticipate problems with the deadline, please tell us as soon as possible.

9

http://www.fib.upc.edu/en/serveis/raco.html

7 Advanced exercises

� Compare the results of model selection using AIC against model selection
with BIC (Bayesian Information Criterion) [?].

� Consider adding the following models:

– f(n) = anbecn (model 5), a generalization of model 2 that is widely
used in quantitative linguistics.

– f(n) = anbecn + d (model 5+), a generalization of model 5 with an
additive term.

The challenge of the advanced exercises may require a careful choice of the
initial values of the parameters used to call nls(...), tuning some parameters
of nls(...) or using aggregate(...) to smooth the original dataset.

References

[Aldous, 1990] Aldous, D. (1990). The random walk construction of uniform
spanning trees and uniform labelled trees. SIAM J. Disc. Math., 3:450–465.

[Broder, 1989] Broder, A. (1989). Generating random spanning trees. In Symp.
Foundations of Computer Sci., IEEE, pages 442–447, New York.

[Esteban et al., 2016] Esteban, J. L., Ferrer-i-Cancho, R., and Gómez-
Rodŕıguez, C. (2016). The scaling of the minimum sum of edge lengths in
uniformly random trees. Journal of Statistical Mechanics, page 063401.

[Ferrer-i-Cancho, 2004] Ferrer-i-Cancho, R. (2004). Euclidean distance between
syntactically linked words. Physical Review E, 70:056135.

[Ferrer-i-Cancho, 2013] Ferrer-i-Cancho, R. (2013). Hubiness, length, crossings
and their relationships in dependency trees. Glottometrics, 25:1–21.

[Ferrer-i-Cancho, 2014] Ferrer-i-Cancho, R. (2014). A stronger null hypothesis
for crossing dependencies. Europhysics Letters, 108(5):58003.

[Ferrer-i-Cancho et al., 2021] Ferrer-i-Cancho, R., Gómez-Rodŕıguez, C., and
Esteban, J. L. (2021). Bounds of the sum of edge lengths in linear arrange-
ments of trees. Journal of Statistical Mechanics, page 023403.

[Ritz and Streibig, 2008] Ritz, C. and Streibig, J. C. (2008). Nonlinear regres-
sion with R. Springer, New York.

10

	Introduction
	Data preparation
	Data analysis
	Preliminary visualization
	The ensemble of models

	Non-linear regression with R
	Results
	Model selection
	Final visualization

	Deliverables
	Advanced exercises

