Exercise 1 (Homework 5).
(Turing machines)
Turing machines for simple languages
Describe explicitly a (deterministic) Turing machine deciding the following languages:
- \{a^nb^nc^n \mid n\in \mathbb N\}
- \{x\# y \mid x,y\in \{0,1\}^* \land \mathrm{value}_2(x)=\mathrm{value}_2(y)+1\}
- \{ww \mid w\in \{0,1\}^*\}
- \{a^{2^n} \mid n\in \mathbb N\}
- \{a^{n^2} \mid n\in \mathbb N\}
- \{a^{2^n}b^n \mid n\in \mathbb N\}
- \{w\in \{a,b\}^* \mid |w|_a=|w|_b^2\}
Tip
For some languages above it might be simpler to describe a Turing machine with two or more tapes instead of a 1-tape Turing machine.