Exercise 9 (Homework 1).
(theory of languages,
shift)
Shifting a language
Given a language L, we define the shift of L, denoted S(L), as the language that contains the words obtained by applying a circular shift to each word in L in all possible ways; formally, S(L) = \{vu\mid uv\in L\}. Argue whether the following statements are true (with a justification) or false (with a counterexample) for any L.
- S(L)^*\subseteq S(L^*).
- S(L)^*\supseteq S(L^*).
- \overline{S(L)}=S(\overline{L}).
- S(L^R)=S(L)^R.
- S(L_1\cup L_2)=S(L_1)\cup S(L_2).
- S(L_1\cap L_2)=S(L_1)\cap S(L_2).
- S(L_1L_2)=S(L_1)S(L_2).
- S(\sigma(L))=\sigma(S(L)), where \sigma is a homomorphism.