Problem Set 4

Instructions

Resources useful to solve the exercises in this problem set are the following:

Sipser’s video lectures

e Lecture 12: Time Complexity
e Lecture 13: P and NP, SAT, poly-time reducibility
e Lecture 15: NP-completeness

Books

o (Sipser 2013, § 7)
o (Hopcroft, Motwani, and Ullman 2007, § 10 and § 11.1)

Cases, Rafel, and Lluis Marquez. 2003. Llenguatges, Gramatiques i Automats : Curs Basic.
2a ed. Edicions UPC.

Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman. 2007. Introduction to Automata
Theory, Languages, and Computation. 3rd edition. Pearson Addison Wesley.

Sipser, Michael. 2013. Introduction to the Theory of Computation. 3rd edition. Cengage
Learning.


https://ocw.mit.edu/courses/18-404j-theory-of-computation-fall-2020/resources/lecture-12-time-complexity/
https://ocw.mit.edu/courses/18-404j-theory-of-computation-fall-2020/resources/lecture-14-p-and-np-sat-poly-time-reducibility/
https://ocw.mit.edu/courses/18-404j-theory-of-computation-fall-2020/resources/lecture-15-np-completeness/

All exercises

Exercise 4.1 (Travelling salesperson problem). Suppose that we are given an instance of the
Travelling Salesperson Problem (TSP) with n cities and distances d,;. For each subset S
of the cities excluding city 1, and for each j € S, define ¢[S, j] to be the shortest path that
starts from city 1, visits all cities in S and ends up in city j.

(a) Give an algorithm that calculates c[S, j] by dynamic programming, that is, progressing
from smaller to larger sets S and using a recurrent definition of ¢[S, j]. Show that this
algorithm solves the TSP in time O(n2?2"). What are the space requirements of the
algorithm?

(b) Suppose we wish to find the shortest (in the sense of sum of weights) path from 1 to n,
not necessarily visiting all cities. Argue why this problem can be solved in polynomial
time.



Exercise 4.2 (Searching for cliques). A k-clique in a graph G = (V, E) is a complete subgraph
of order k of GG, that is, a subgraph on k vertices having all possible edges between them. We
say that G’ is a clique in G if G’ is a k-clique in G for some k. Recall the following well-known
NP-complete problem.

Clique: Given an undirected graph G and a positive integer k, determine whether G contains a k-clique.

Some problems related to Clique are the following.

(a) Mazimal clique. A clique is mazimal if it cannot be enlarged, that is, if there is no
larger clique containing it. Describe an algorithm as efficient as possible that, given an
undirected graph G, finds a maximal clique of G. What’s the cost of your algorithm?

(b) Mazimum clique. A clique is mazimum if there is no other clique having more vertices (a
maximum clique is always maximal but the reverse inclusion is not always true). Describe
an algorithm as efficient as possible that, given an undirected graph G, finds a maximum
clique of G. What’s the cost of your algorithm?

(c) Planar clique. Recall that a graph is planar if it can be drawn on the plane without
edge crossings. Let PlanarClique be the following problem: given a planar undirected
graph G and a positive integer k, does G have a k-clique? Show that PlanarClique has
a polynomial-time algorithm.

i Note

Planarity testing can be done in linear time (on the number of vertices). You can
assume the existence of these algorithms for the exercise.

(d) Half clique. Let HalfClique be the following problem: given an undirected graph G, does
V(G|

G have a clique with at least [

| vertices? Prove that HalfClique is NP-complete.



Exercise 4.3 (Closure properties of P, NP and coNP). The goal of this exercise is to revise
some closure properties of P, NP, and coNP.

1. (closure w.r.t union) Prove the following implications

(a) Given Aand Bin P, AUB € P.
(b) Given A and B in NP, AU B € NP.
(¢) Given A and B in coNP, AU B € coNP.

2. (closure w.r.t intersection) Prove the following implications

(a) Given Aand Bin P, ANB € P.
(b) Given A and B in NP, AN B € NP.
(¢) Given A and B in coNP, AN B € coNP.

3. (closure w.r.t concatenation) Prove the following implications

(a) Given A and Bin P, A-B € P.
(b) Given A and B in NP, A- B € NP.
(c) Given A and B in coNP, A - B € coNP.



Exercise 4.4 (Polynomial-time reductions). Consider the relation <P among languages and
justify your answers to the following questions.
(a) Is <P reflexive? That is, does it hold that A <P A for any language A?
(b) Is <P symmetric? That is, does it hold that if A <P B, then B <P A for any languages
A, B?
(c) Is <P antisymmetric? That is, does it hold that A <P B and B <P A imply A = B for
any languages A, B?
(d) Is <P, transitive? That is, does it hold that A <P B and B <P C imply A <P C for
any languages A, B, and C?

1 Polynomial many-one reductions (or Karp reductions)

Recall that given two languages A, B over the same alphabet Y, we say that A polynomial-
time reduces to B (denoted as A <P B or A <, B) if there exists a total function
f:3* — ¥* computable in polynomial time s.t. for every w € ¥*, w € A if and only if
f(w) € B.

A useful property is the closure of the classes P, NP i coNP under polynomial-time
reductions, that is, given A <, B,

o if B P, then A € P,
e if B e NP, then A € NP, and
e if B € coNP, then A € coNP.

The m in <,, stands for the fact that f is many-one, that is, not necessarily injective.




Exercise 4.5 (Closure under the Kleene star).

(a) Show that P is closed under the Kleene star.

@ Tip

Use dynamic programming. Given a set A € P over ¥ and an input z = z; ...z,
for z; € ¥, build a table indicating for each ¢ < j whether the substring z; ...z is
in A*.

(b) Show that NP is closed under the Kleene star.



Exercise 4.6 (Search vs decision). Show the following consequences of the hypothesis P =
NP.

(a) There is a polynomial-time algorithm that produces a satisfying assignment when given
a satisfying Boolean formula.

(b) Integers can be factored in polynomial time.

(¢) There is a polynomial-time algorithm that takes an undirected graph as input and finds
a largest clique (see exercise 7.2) contained in that graph.

1 Note

The algorithms you are asked to provide compute a function, but NP contains languages,
not functions. The P = NP assumption implies that deciding satisfiability, composite-
ness, and the existence of cliques of a given size is all solvable in polynomial time. But
even though the assumption does not show how solutions are found, you must show that
you can find them anyway.




Exercise 4.7 (Berman’s theorem). A language is called unary if every string in it is of the
form 1" for some n > 0.

Prove Berman’s theorem (1978): if a unary language is NP-complete, then P = NP.

@ Tip

Use the fact that SAT is NP-complete and, by hypothesis, reducible to a unary language
via some function f. To decide SAT, given an input Boolean formula ¢, consider the tree
whose root (level 0) is ¢ and whose formulas at level k are obtained from the ones at
level k — 1, where the k-th variable takes the 2 possible truth values. Show how f allows
us to explore this tree in polynomial time.




Exercise 4.8 (NP and HALT). Show that HALT is NP-hard. Is it NP-complete?

i Note

Recall that
HALT = {(z,y) | M, (y)!} ,

where M, is the Turing machine with Gédel number = and the | means that the machine
terminates.




Exercise 4.9 (UniqueSAT). The class DP (for difference polynomial time) is defined as the set
of languages L for which there are two languages L; € NP, L, € coNP such that L = L; N L,.
Notice that since L, € NP, L is the difference of two NP sets (but do not confuse DP with
NP N coNP, which may seem superficially similar).

Consider the problem UniqueSAT on determining whether a Boolean formula has a unique
satisfying assignment (or model) and show the following facts.

(a) UniqueSAT € DP.
(b) If UniqueSAT is in NP, then NP = coNP.

10



Exercise 4.10 (Are they in P?). Prove that the following languages on undirected graphs
are in NP. Which ones of them are in P?

(a) Two coloring. 2COL = {G | graph G has a coloring with two colors}, where a k-coloring
of G is an assignment of a number in {1, ..., k} to each vertex of G such that no adjacent
vertices get the same number.

(b) Three coloring. 3COL = {G | graph G has a coloring with three colors}.

(¢) Hamiltonian path. HP = { G | graph G has a Hamiltonian path}, where a path is said to
be Hamiltonian if it visits every vertex exactly once.

(d) Connectivity. CONNECTED = {G | graph G is a connected graph}.

11



	Instructions
	All exercises

