
Problem Set 3

Instructions

Resources useful to solve the exercises in this problem set are the following:

Guille Godoy’s video lectures

• Maquinas de Turing (1)
• Maquinas de Turing (2)
• Equivalencia TM-programas
• Asumciones sobre TM-programas
• Operaciones sobre TM-programas

Books

• (Sipser 2013, § 3 and § 4.1)
• (Hopcroft, Motwani, and Ullman 2007, § 8)
• (Kozen 1997, Lectures 28-32)
• (Serna et al. 2004, § 1, 2, 3)

Cases, Rafel, and Lluís Màrquez. 2003. Llenguatges, Gramàtiques i Autòmats : Curs Bàsic.
2a ed. Edicions UPC.

Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman. 2007. Introduction to Automata
Theory, Languages, and Computation. 3rd edition. Pearson Addison Wesley.

Kozen, Dexter. 1997. Automata and Computability. Undergraduate Texts in Computer Sci-
ence. Springer.

Serna, Maria José, Carme Àlvarez, Rafel Cases, and Antoni Lozano. 2004. Els Límits de La
Computació : Indecidibilitat i NP-Completesa. 2a ed. Edicions UPC.

Sipser, Michael. 2013. Introduction to the Theory of Computation. 3rd edition. Cengage
Learning.

The following exercises use common notation in computability, in particular:

• R is the set of all decidable (aka recursive) languages.
• RE is the set of all semi-decidable (aka recursively enumerable) languages.

1

http://www.youtube.com/watch?v=AJthR3BW0r8
http://www.youtube.com/watch?v=AZXB0Rn5Ir0
http://www.youtube.com/watch?v=fQltYKdFr1E
http://www.youtube.com/watch?v=pwLSZ1eB0ao
http://www.youtube.com/watch?v=2DEI5BRVtIU

• coRE the set of all languages 𝐿 such that 𝐿 ∈ RE. coRE is not the complement of
RE. Indeed most of the languages are neither in RE nor in coRE.

Recall that R = RE ∩ coRE.

2

All exercises

Exercise 3.1 (Turing machines for simple languages). Describe explicitly a (deterministic)
Turing machine deciding the following languages:

(a) {𝑎𝑛𝑏𝑛𝑐𝑛 ∣ 𝑛 ∈ ℕ}
(b) {𝑥#𝑦 ∣ 𝑥, 𝑦 ∈ {0, 1}∗ ∧ value2(𝑥) = value2(𝑦) + 1}
(c) {𝑤𝑤 ∣ 𝑤 ∈ {0, 1}∗}
(d) {𝑎2𝑛 ∣ 𝑛 ∈ ℕ}
(e) {𝑎𝑛2 ∣ 𝑛 ∈ ℕ}
(f) {𝑎2𝑛𝑏𝑛 ∣ 𝑛 ∈ ℕ}
(g) {𝑤 ∈ {𝑎, 𝑏}∗ ∣ |𝑤|𝑎 = |𝑤|2𝑏}

Tip

For some languages above it might be simpler to describe a Turing machine with two or
more tapes instead of a 1-tape Turing machine.

3

Exercise 3.2 (Equivalent models of Turing machines). A computation model is Turing-
complete if it can be used to compute every Turing-computable function.

(a) Show that every partial function computable on a Turing machine with 𝑘 tapes can be
computed on a Turing machine with only 1 tape.

(b) Show that every partial function computable on a nondeterministic Turing machine can
be computed on a deterministic Turing machine.

(c) Consider the following variation of PDAs: one that has two stacks instead of just one.
Transitions then depend on the current state and on the top symbol of each stack. At
each step, the automaton can remove the top element from either stack or push new
symbols onto them. Such a machine can be used to compute functions: at the start of
the computation, one of the stacks contains the input, and at the end, the output is
left on a stack. Show that every Turing-computable function can be computed with this
2-stack version of PDAs.

(d) Consider the following variation of PDAs: one that has a queue instead of a stack.
Transitions depend on the current state and on the first element of the queue. At each
step, the first element of the queue can be removed and new elements can be added at the
end. Such a machine can be used to compute functions: at the start of the computation,
the queue contains the input, and at the end, the output is left on the queue. Show that
every Turing-computable function can be computed with this queue version of PDAs.

Tip

To show that a certain computational model is Turing-complete, it is enough to show
how to simulate the behaviour of a Turing machine. For this exercise there is no need to
give a very detailed description of the simulations. Just the general idea is enough.

Computable functions

Recall that a partial function 𝑓 ∶ ℕ𝑘 → ℕ is (Turing-)computable if there exists a Turing
machine 𝑀𝑓 s.t.

• if 𝑓(𝑥1, … , 𝑥𝑘) is defined, then, on input (𝑥1, … , 𝑥𝑘) the machine 𝑀𝑓 terminates
and the value 𝑓(𝑥1, … , 𝑥𝑘) is written in the memory;

• if 𝑓(𝑥1, … , 𝑥𝑘) is not defined, the machine 𝑀𝑓 does not terminate on input
(𝑥1, … , 𝑥𝑘).

4

Exercise 3.3 (R, RE, and coRE are closed under union, intersection, and reverse). The goal
of this exercise is to show some closure properties of R, RE, and coRE.

Note

Recall that a class 𝐶 of languages is closed under a binary operation ∘ (e.g., union or
intersection) if, for any 𝐴, 𝐵 ∈ 𝐶, it holds that 𝐴 ∘ 𝐵 ∈ 𝐶. Similarly, 𝐶 is closed under a
unary operation ∘ (e.g., complement or reverse) if for any 𝐴 ∈ 𝐶, it holds that ∘𝐴 ∈ 𝐶.

1. Union. Show the following properties:

(a) R is closed under union.
(b) RE is closed under union.
(c) coRE is closed under union.

2. Intersection. Show the following properties:

(a) R is closed under intersection.
(b) RE is closed under intersection.
(c) coRE is closed under intersection.

3. Set subtraction. Show the following property:

(a) R is closed under set subtraction.

4. Reverse. Show the following properties:

(a) R is closed under reverse.
(b) RE is closed under reverse.
(c) coRE is closed under reverse.

5

Exercise 3.4 (Other closure properties of R, RE, and coRE). The goal of this exercise is to
see how R, RE, and coRE behave w.r.t. complementation, concatenation, Kleene star, and
shift.

Note

Also recall that a class 𝐶 of languages is closed under a binary operation ∘ (e.g., union
or concatenation) if, for any 𝐴, 𝐵 ∈ 𝐶, it holds that 𝐴 ∘ 𝐵 ∈ 𝐶. Similarly, 𝐶 is closed
under a unary operation ∘ (e.g., complement or Kleene star) if for any 𝐴 ∈ 𝐶, it holds
that ∘𝐴 ∈ 𝐶.

1. Complement.

(a) Show that R is closed under complement.
(b) Show that if 𝐴 ∈ RE, then 𝐴 ∈ coRE.
(c) Show that if 𝐴 ∈ coRE, then 𝐴 ∈ RE.

2. Concatenation.

(a) Show that R is closed under concatenation.
(b) Show that RE is closed under concatenation.
(c) Is coRE closed under concatenation?

3. Kleene star.

(a) Show that R is closed under Kleen star.
(b) Show that RE is closed under Kleen star.
(c) Is coRE closed under Kleene star?

4. Shift (see Problem Set 1).

(a) Show that R is closed under shift.
(b) Show that RE is closed under shift.
(c) Is coRE closed under shift?

6

PS1.qmd

Exercise 3.5 (R, RE, and coRE and homomorphisms). The goal of this exercise is to inves-
tigate how R, RE, and coRE behave under homomorphisms and inverse homomorphisms.

Note

Also recall that a class 𝐶 of languages is closed under homomorphism if for any 𝐴 ∈ 𝐶
and homomorphism 𝜎, 𝜎(𝐴) ∈ 𝐶. Also, 𝐶 is closed under inverse homomorphism if for
any 𝐴 ∈ 𝐶 and homomorphism 𝜎, 𝜎−1(𝐴) ∈ 𝐶.

1. Homomorphism.

(a) Show that R is not closed under homomorphism.
(b) Show that RE is closed under homomorphism.
(c) Is coRE closed under homomorphism?

2. Inverse homomorphism.

(a) Show that R is closed under inverse homomorphism.
(b) Show that RE is closed under inverse homomorphism.
(c) Is coRE closed under inverse homomorhpism?

7

Exercise 3.6 (Some languages in RE). Show that the following languages belong to RE:

(a) {⟨𝑥, 𝑦⟩ ∣ 𝑀𝑥(𝑦) ↓}. In other words, this is the language of all pairs where the first entry
𝑥 is the Gödel-number of a Turing machine 𝑀𝑥, and the machine terminates when given
as input the second entry 𝑦.

(b) {𝑥 ∣ ∃𝑦 𝑀𝑥(𝑦) ↓}. In other words, this is the language of all 𝑥, where 𝑥 is the Gödel-
number of a Turing machine 𝑀𝑥 which terminates on some input.

(c) {⟨𝑢, 𝑣, 𝑅⟩ ∣ 𝑢 →∗ 𝑣}. In other words, this is the language of all triplets where the first
and second entries 𝑢, 𝑣 encode words, the third entry a set of production rules 𝑅, and
the word 𝑣 is reachable from 𝑢 using the production rules in 𝑅.

(d) {𝐺 ∈ CFG ∣ 𝐺 ambiguous}. In other words, this is the language of all ambiguous context-
free grammars.

(e) {⟨𝐺1, 𝐺2⟩ ∣ 𝐺1, 𝐺2 ∈ CFG ∧ ℒ(𝐺1) ∩ ℒ(𝐺2) ≠ ∅}. In other words, this is the language of
all pairs of context-free grammars with nonempty intersection (i.e., that generate some
common word).

8

Exercise 3.7 (R, RE, coRE, and symmetric difference). Given two sets 𝐴 and 𝐵 recall that
the symmetric difference of 𝐴 and 𝐵 is 𝐴Δ𝐵 = (𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵). Assume that 𝐴Δ𝐵 ∈ R.

(a) Does 𝐴 ∈ R imply that 𝐵 ∈ R?
(b) Does 𝐴 ∈ RE imply that 𝐵 ∈ RE?
(c) Does 𝐴 ∈ coRE imply that 𝐵 ∈ coRE?

9

Exercise 3.8 (Characterizations of R and RE). Let 𝑆 be an infinite language.

(a) 𝑆 ∈ RE if and only if there exists an injective total computable function 𝑓 such that
Im(𝑓) = 𝑆.

(b) 𝑆 ∈ R if and only if there exists an injective total computable function 𝑓 that is monotone
increasing and such that Im(𝑓) = 𝑆.

(c) 𝑆 ∈ ℝ if and only if the indicator function of 𝑆, 𝜒𝑆, is computable.

Note

Recall that, given a function 𝑓 , Im(𝑓) is the image of 𝑓 , that is, Im(𝑓) = {𝑦 ∣ ∃𝑥 𝑦 = 𝑓(𝑥)}.
The indicator function of a set 𝑆 is the Boolean valued function 𝜒𝑆 s.t. 𝜒𝑆(𝑥) = 1 if and
only if 𝑥 ∈ 𝑆.

10

Exercise 3.9 (Projection of RE). Let 𝐴 ∈ RE. Show that

{𝑥 ∣ ∃𝑦 ⟨𝑥, 𝑦⟩ ∈ 𝐴} ∈ RE .

11

Exercise 3.10 (On computable functions).

(a) Let 𝑓 be a function injective and computable. Is 𝑓−1 an injective and computable
function?

(b) Let 𝑓 ∶ ℕ → ℕ a strictly decreasing function. Is 𝑓 computable?

12

Exercise 3.11 (Classification — basic properties of TMs). For each of the following languages
𝐿, decide whether 𝐿 ∈ R, 𝐿 ∈ RE ∖ R, 𝐿 ∈ coRE ∖ R, or 𝐿 ∉ RE ∪ coRE.

(a) {𝑝 ∣ 𝑀𝑝(𝑝) = 𝑝}
(b) {𝑝 ∣ ∃𝑦 𝑀𝑦(𝑝) = 𝑝}
(c) {⟨𝑝, 𝑧⟩ ∣ ∃𝑦 𝑀𝑝(𝑦) = 𝑧}
(d) {⟨𝑝, 𝑧⟩ ∣ ∃𝑦 𝑀𝑝(𝑦) ≠ 𝑧}
(e) {⟨𝑝, 𝑞⟩ ∣ ∀𝑧 (𝑀𝑝(𝑧)↑ if and only if 𝑀𝑞(𝑧)↑)}
(f) {⟨𝑝, 𝑞⟩ ∣ ∀𝑧 (𝑀𝑝(𝑧)↓ if and only if 𝑀𝑞(𝑧)↑)}

13

Exercise 3.12 (Classification — computable languages). For a number 𝑝, define ℒ𝑝 = {𝑥 ∣
𝑀𝑝(𝑥) ↓ and accepts}. For each of the following languages 𝐿, decide whether 𝐿 ∈ R, 𝐿 ∈
RE ∖ R, 𝐿 ∈ coRE ∖ R, or 𝐿 ∉ RE ∪ coRE.

(a) {𝑝 ∣ ℒ𝑝 is finite}
(b) {𝑝 ∣ ℒ𝑝 is infinite}
(c) {𝑝 ∣ ℒ𝑝 is context-free}
(d) {𝑝 ∣ ℒ𝑝 is not context-free}

14

Exercise 3.13 (Classification — domain of computable functions).

For each of the following languages 𝐿, decide whether 𝐿 ∈ R, 𝐿 ∈ RE ∖ R, 𝐿 ∈ coRE ∖ R, or
𝐿 ∉ RE ∪ coRE.

(a) {𝑝 ∣ |Dom(𝜑𝑝)| ≥ 0}
(b) {𝑝 ∣ |Dom(𝜑𝑝)| ≥ 10} (solving this RACSO exercise might give some hints)
(c) {𝑝 ∣ Dom(𝜑𝑝) ⊆ 2ℕ}
(d) {𝑝 ∣ Dom(𝜑𝑝) ⊇ 2ℕ}
(e) {𝑝 ∣ ∃𝑦 Dom(𝜑𝑝) ⊆ Dom(𝜑𝑦)}
(f) {𝑝 ∣ ∃𝑦 Dom(𝜑𝑝) ⊇ Dom(𝜑𝑦)}
(g) {𝑝 ∣ Dom(𝜑𝑝) ∈ R}
(h) {𝑝 ∣ Dom(𝜑𝑝) ∉ R}
(i) {𝑝 ∣ Dom(𝜑𝑝) ∈ RE}
(j) {𝑝 ∣ Dom(𝜑𝑝) ∉ RE}
(k) {𝑝 ∣ 𝑝 ≤ 100 ∧ Dom(𝜑𝑝) ∈ R}
(l) {𝑝 ∣ 𝑝 ≤ 100 ∧ Dom(𝜑𝑝) ∈ RE}

15

https://racso.lsi.upc.edu/juezwsgi/exercise?exerciseid=151&inlist=1

Exercise 3.14 (Classification — image of computable functions).

For each of the following languages 𝐿, decide whether 𝐿 ∈ R, 𝐿 ∈ RE ∖ R, 𝐿 ∈ coRE ∖ R, or
𝐿 ∉ RE ∪ coRE.

(a) {𝑝 ∣ |Im(𝜑𝑝)| ≥ 0}
(b) {𝑝 ∣ |Im(𝜑𝑝)| ≥ 10} (solving this RACSO exercise might give some hints)
(c) {𝑝 ∣ Im(𝜑𝑝) ⊆ 2ℕ}
(d) {𝑝 ∣ Im(𝜑𝑝) ⊇ 2ℕ}
(e) {𝑝 ∣ ∃𝑦 Im(𝜑𝑝) ⊆ Im(𝜑𝑦)}
(f) {𝑝 ∣ ∃𝑦 Im(𝜑𝑝) ⊇ Im(𝜑𝑦)}
(g) {𝑝 ∣ Im(𝜑𝑝) ∈ R}
(h) {𝑝 ∣ Im(𝜑𝑝) ∉ R}
(i) {𝑝 ∣ Im(𝜑𝑝) ∈ RE}
(j) {𝑝 ∣ Im(𝜑𝑝) ∉ RE}
(k) {𝑝 ∣ 𝑝 ≤ 100 ∧ Im(𝜑𝑝) ∈ R}
(l) {𝑝 ∣ 𝑝 ≤ 100 ∧ Im(𝜑𝑝) ∈ RE}

(m) {𝑝 ∣ |Im(𝜑𝑝)| < |Dom(𝜑𝑝)| < ∞}
(n) {𝑝 ∣ |Dom(𝜑𝑝)| < |Im(𝜑𝑝)| < ∞}

16

https://racso.lsi.upc.edu/juezwsgi/exercise?exerciseid=153&inlist=1

Exercise 3.15 (Classification — properties of computable functions).

For each of the following languages 𝐿, decide whether 𝐿 ∈ R, 𝐿 ∈ RE ∖ R, 𝐿 ∈ coRE ∖ R, or
𝐿 ∉ RE ∪ coRE.

(a) {𝑝 ∣ 𝜑𝑝 is injective}
(b) {𝑝 ∣ 𝜑𝑝 is total and injective} (solving this RACSO exercise might give some hints)
(c) {𝑝 ∣ 𝜑𝑝 is onto}
(d) {𝑝 ∣ 𝜑𝑝 is total and onto}
(e) {𝑝 ∣ 𝜑𝑝 is increasing}
(f) {𝑝 ∣ 𝜑𝑝 is total and increasing}
(g) {𝑝 ∣ 𝜑𝑝 is strictly decreasing}
(h) {𝑝 ∣ 𝜑𝑝 is total and strictly decreasing}
(i) {𝑝 ∣ ∀𝑦 > 𝑝 𝜑𝑦 is bijective}
(j) {𝑝 ∣ ∀𝑦 < 𝑝 𝜑𝑦 is bijective}
(k) {𝑝 ∣ ∃𝑦 > 𝑝 𝜑𝑦 is bijective}
(l) {𝑝 ∣ ∃𝑦 < 𝑝 𝜑𝑦 is bijective}

17

https://racso.lsi.upc.edu/juezwsgi/exercise?exerciseid=148&inlist=1

Exercise 3.16 (Classificació VI — variacions de 𝐾).

For each of the following languages 𝐿, decide whether 𝐿 ∈ R, 𝐿 ∈ RE ∖ R, 𝐿 ∈ coRE ∖ R, or
𝐿 ∉ RE ∪ coRE.

(a) 𝐿 = 𝐾 × 𝐾
(b) 𝐿 = 𝐾 × 𝐾
(c) 𝐿 = 𝐾 × 𝐾
(d) 𝐿 = 𝐾 × 𝐾

Note

Recall that
𝐾 = {𝑛 ∣ 𝑀𝑛(𝑛)↓} ,

where 𝑀𝑛 is the Turing machine with Gödel number 𝑛 and the ↓ means that the machine
terminates.

18

Exercise 3.17 (On the image of decidable sets).

(a) Show that if 𝐶 ∈ RE and 𝑓 is a computable function, then 𝑓(𝐶) ∈ RE.
(b) Show that the previous sentence is not true if we substitute RE for R. That is, show

that there is a set 𝐶 ∈ R and a computable function 𝑓 such that 𝑓(𝐶) ∉ R.
(c) Show that there is a set 𝐶 ∈ R and a total computable function 𝑓 such that 𝑓(𝐶) ∉ R.

19

Exercise 3.18 (Are they computable?).

For each of the following functions 𝑓 , find whether 𝑓 is computable, Dom(𝑓) = ℕ (i.e. 𝑓 is
total), and what is Im(𝑓):

(a) 𝑓(𝑥) = {1 if ∃𝑛 𝑀𝑛(𝑥)↓
↑ otherwise

(b) 𝑓(𝑥) = {1 if ∀𝑛 𝑀𝑛(𝑥)↓
↑ otherwise

(c) 𝑓(𝑥) = {1 if ∃𝑛 𝑀𝑥(𝑛)↓
↑ otherwise

(d) 𝑓(𝑥) = {1 if ∀𝑛 𝑀𝑥(𝑛)↓
↑ otherwise

20

Exercise 3.19 (Are they (computable) functions?).

A set 𝑆 ⊆ ℕ × ℕ identifies with the graph of a (partial) function if whenever (𝑥, 𝑦) ∈ 𝑆 and
(𝑥, 𝑧) ∈ 𝑆, it holds that 𝑦 = 𝑧. Which of the following subsets of ℕ × ℕ are the graph of a
function? Are the functions computable?

A relation ℛ on ℕ (that is, a set ℛ ⊆ ℕ × ℕ) is a (partial) function if whenever (𝑥, 𝑦) ∈ ℛ and
(𝑥, 𝑧) ∈ ℛ, it holds that 𝑦 = 𝑧. Which of the following relations on ℕ are functions? Are the
functions computable?

(a) {(𝑥, 𝑦) ∣ 𝑀𝑥(𝑥) = 𝑦}.
(b) {(𝑥, 𝑦) ∣ 𝑀𝑥(𝑥) ≤ 𝑦}.
(c) {(𝑥, 𝑦) ∣ 𝑀𝑥(𝑥) ≥ 𝑦}.
(d) {(𝑥, 𝑦) ∣ 𝑀𝑥(𝑥) = 𝑀𝑦(𝑦)}.
(e) {(𝑥, 𝑦) ∣ 𝑀𝑥(𝑥) stops in 𝑦 steps or more}.
(f) {(𝑥, 𝑦) ∣ 𝑀𝑥(𝑥) stops in exactly 𝑦 steps}.
(g) {(𝑥, 1) ∣ 𝑀𝑥(𝑥)↓} ∪ {(𝑥, 0) ∣ 𝑀𝑥(𝑥)↑}.
(h) {(𝑥, 1) ∣ 𝑀𝑥(𝑥)↓}.
(i) {(𝑥, 0) ∣ 𝑀𝑥(𝑥)↑}.
(j) {(𝑥, 𝑦) ∣ 𝑦 = |{𝑧 ∣ 𝑀𝑥(𝑧)↓}| }.

21

	Instructions
	All exercises

