

Problem Set 2

Instructions

Resources useful to solve the exercises in this problem set are the following:

Guille Godoy's video lectures

- Gramáticas incontextuales
- Operaciones sobre gramáticas
- Depuración de gramáticas (1)
- Depuración de gramáticas (2)
- Depuración de gramáticas (3)

Books

- (Sipser 2013, § 2.1 Content-free Grammars)
- (Cases and Márquez 2003, § 2 and § 3)
- (Hopcroft, Motwani, and Ullman 2007, § 5)

Cases, Rafel, and Lluís Márquez. 2003. *Llenguatges, Gramàtiques i Autòmats : Curs Bàsic.* 2a ed. Edicions UPC.

Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman. 2007. *Introduction to Automata Theory, Languages, and Computation.* 3rd edition. Pearson Addison Wesley.

Sipser, Michael. 2013. *Introduction to the Theory of Computation.* 3rd edition. Cengage Learning.

All exercises

Exercise 2.1 (Just context-free, or actually regular?). Later in the course we will see that no algorithm exists that always terminates and gives the answer to the question “*Given a context-free grammar, does it generate a regular language?*”.

For each of the context-free grammars below, find what is the language generated and prove whether it is a regular language **or not**.

- (a)
$$\begin{cases} S \rightarrow AB \mid CD \\ A \rightarrow 0A0 \mid 0 \\ B \rightarrow 1B1 \mid \lambda \\ C \rightarrow 0C0 \mid \lambda \\ D \rightarrow 1D1 \mid \lambda \end{cases}$$
- (b)
$$\begin{cases} S \rightarrow aA \mid bB \mid \lambda \\ A \rightarrow Sa \mid Sb \\ B \rightarrow Sb \end{cases}$$
- (c)
$$\begin{cases} S \rightarrow AB \\ A \rightarrow 0A0 \mid 1 \\ B \rightarrow 1B1 \mid 0 \end{cases}$$
- (d)
$$\begin{cases} S \rightarrow 0S0 \mid 0S1 \mid \lambda \end{cases}$$
- (e)
$$\begin{cases} S \rightarrow AB \\ A \rightarrow 0A0 \mid 0A1 \mid \lambda \\ B \rightarrow 0B \mid 1B \mid \lambda \end{cases}$$
- (f)
$$\begin{cases} S \rightarrow A \mid B \\ A \rightarrow 0S0 \mid 1S1 \mid \lambda \\ B \rightarrow 0S1 \mid 1S0 \mid \lambda \end{cases}$$
- (g)
$$\begin{cases} S \rightarrow A \mid B \\ A \rightarrow 0A0 \mid 1A1 \mid \lambda \\ B \rightarrow 0B1 \mid 1B0 \mid \lambda \end{cases}$$
- (h)
$$\begin{cases} S \rightarrow aSa \mid bSb \mid X \\ X \rightarrow aXb \mid bXa \mid a \mid b \mid \lambda \end{cases}$$
- (i)
$$\begin{cases} S \rightarrow WXW' \\ X \rightarrow aX \mid bX \mid \lambda \\ W \rightarrow aW \mid bW \mid \lambda \\ W' \rightarrow W'a \mid W'b \mid \lambda \end{cases}$$

Exercise 2.2 (Ambiguous context-free grammars). Show that the following grammars are ambiguous.

- (a)
$$\begin{cases} S \rightarrow aSb \mid B \\ B \rightarrow bAa \mid bCb \mid \lambda \\ A \rightarrow aAbA \mid bAaA \mid \lambda \\ C \rightarrow Aaa \mid aAa \mid aaA \end{cases}$$
- (b)
$$\begin{cases} S \rightarrow aU_1 \mid aS \mid bZ_1 \mid bS \\ Z_1 \rightarrow aU_2 \mid bF \\ U_1 \rightarrow bU_2 \\ U_2 \rightarrow bF \mid b \\ F \rightarrow aF \mid bF \mid a \mid b \end{cases}$$
- (c)
$$\begin{cases} S \rightarrow AaBA \mid ABaA \mid ACA \mid AbabA \\ B \rightarrow bb \\ C \rightarrow bB \\ A \rightarrow aA \mid bA \mid \lambda \end{cases}$$
- (d)
$$\begin{cases} S \rightarrow aU_1 \mid aS \mid bZ_1 \mid bS \\ Z_1 \rightarrow aU_2 \mid bZ_2 \\ U_1 \rightarrow bU_2 \\ U_2 \rightarrow bF \\ Z_2 \rightarrow aF \mid bF \\ F \rightarrow aF \mid bF \mid \lambda \end{cases}$$

Exercise 2.3 (On Dyck languages). In this exercise we consider the *Dyck language*, that is the language of well-balanced parentheses (and variations of it). More precisely, given the alphabet $\Sigma = \{(), []\}$, the *Dyck language* $\text{dyck}(1)$ is

$$\text{dyck}(1) = \{w \in \Sigma^* \mid \text{for every prefix } u \text{ of } w \quad |u|_() \geq |u|_[] \wedge |w|_() = |w|_[]\}.$$

Similarly, let $\text{dyck}(s)$ be the *Dyck language* on s pairs of parentheses, i.e. the language of correctly nested sequences of s distinct types of parentheses. For instance, given the two types of parentheses $(,)$, and $[,]$, the word $([])) \in \text{dyck}(2)$, $(())[] \in \text{dyck}(2)$ but $([]) \notin \text{dyck}(2)$.

- (a) Show that the grammar $S \rightarrow SS \mid (S) \mid \lambda$ generates exactly $\text{dyck}(1)$. Is it ambiguous?
- (b) Show that the grammar $S \rightarrow (S)S \mid \lambda$ generates exactly $\text{dyck}(1)$. Is it ambiguous?
- (c) Show that the grammar $S \rightarrow SS \mid (S) \mid [S] \mid \lambda$ generates exactly $\text{dyck}(2)$. Is it ambiguous?
- (d) Show that the grammar $S \rightarrow (S)S \mid [S]S \mid \lambda$ generates exactly $\text{dyck}(2)$. Is it ambiguous?
- (e) Construct an unambiguous grammar that generates $\text{dyck}(s)$ for an arbitrary s .
- (f) Let $\sigma = \{(), []\}$ and L be the language of all words over Σ^* such that, ignoring the symbols $[,]$, the words are well-parenthesised on $(,)$, and, similarly, ignoring the symbols $(,)$, the words are well-parenthesised on $[,]$. In particular $\text{dyck}(2) \subseteq L$, but the containment is strict. For instance, $([]) \in L \setminus \text{dyck}(2)$. Show that L is not a context-free language.

 Tip

Use the fact that the language $\{a^n b^n c^n \mid n \in \mathbb{N}\}$ is not context-free.

 Note

The Dyck languages are important because, in a sense, they are the *most complicated* context-free languages. Indeed, the **Chomsky–Schützenberger representation theorem** states that a language L is context-free if and only if L is the image under an homomorphism of some $\text{dyck}(s)$ intersected with a regular language.

Exercise 2.4 (Context-free closure operations and ambiguity). Given unambiguous context-free grammars G_1 and G_2 ,

- (a) could the construction to obtain the grammar for the union $G_1 \cup G_2$ give an ambiguous grammar?
- (b) could the construction to obtain the grammar for the concatenation $G_1 \cdot G_2$ give an ambiguous grammar?
- (c) could the construction to obtain the grammar for the Kleene star G_1^* give an ambiguous grammar?
- (d) could the construction to obtain the grammar for the reverse G_1^R give an ambiguous grammar?
- (e) given also a homomorphism σ , could the construction to obtain the grammar for $\sigma(G_1)$ give an ambiguous grammar?

Exercise 2.5 (Depuration of grammars).

- (1) Given a grammar G , describe *an algorithm to eliminate λ -productions* (with only one possible exception) from G (without changing the generated language). Make sure that when G is unambiguous the algorithm described gives an unambiguous grammar. What is the cost of the algorithm?
- (2) Given a grammar G , describe *an algorithm to eliminate unary production rules* from G (without changing the generated language). Make sure that when G is unambiguous the algorithm described gives an unambiguous grammar. What is the cost of the algorithm?
- (3) Given a grammar G , describe *an algorithm to eliminate useless symbols* from G (without changing the generated language). Make sure that when G is unambiguous the algorithm described gives an unambiguous grammar. What is the cost of the algorithm?
- (4) Apply the depuration algorithm (remove λ -productions, unary productions, unproductive and unreachable symbols) to the following grammars:

(a) $\begin{cases} S \rightarrow SS \mid (S) \mid \lambda \end{cases}$

(b) $\begin{cases} S \rightarrow (S)S \mid \lambda \end{cases}$

(c) $\begin{cases} S \rightarrow AA \\ A \rightarrow AA \mid \lambda \end{cases}$

(d) $\begin{cases} S \rightarrow A \\ A \rightarrow B \\ B \rightarrow c \end{cases}$

(e) $\begin{cases} S \rightarrow AB \\ A \rightarrow a \mid \lambda \\ B \rightarrow b \mid \lambda \end{cases}$

(f) $\begin{cases} S \rightarrow AB \\ A \rightarrow aAb \mid \lambda \\ B \rightarrow bBc \mid \lambda \end{cases}$

(g) $\begin{cases} S \rightarrow BC \mid \lambda \\ A \rightarrow aA \mid \lambda \\ B \rightarrow bB \\ C \rightarrow c \end{cases}$

(h) $\begin{cases} S \rightarrow X \mid Y\lambda \\ X \rightarrow Xc \mid A \\ A \rightarrow aAb \mid \lambda \\ Y \rightarrow aY \mid B \\ B \rightarrow bBc \mid \lambda \end{cases}$

(i) $\begin{cases} S \rightarrow A \mid B \mid C \\ A \rightarrow SaSbS \mid \lambda \\ B \rightarrow SbSaS \mid \lambda \\ C \rightarrow Cc \mid \lambda \end{cases}$

Exercise 2.6 (On the Chomsky normal form).

- (a) Given a context-free grammar G , describe a polynomial time procedure to obtain a grammar G' producing the same language of G and in Chomsky Normal Form.
- (b) Given a grammar G in Chomsky normal form and a word w produced by G , in how many steps is w produced? (as a function of $|w|$)

i Note

Recall that a context-free grammar G is in *Chomsky normal form* if all of its production rules are of the form:

$$\begin{aligned} A &\rightarrow BC, \text{ or} \\ A &\rightarrow a, \text{ or} \\ S &\rightarrow \lambda, \end{aligned}$$

where A , B , and C are nonterminal symbols, the letter a is a terminal symbol, and S is the start symbol. Moreover, neither B nor C may be the start symbol S , and the production rule $S \rightarrow \lambda$ can only appear if λ is in the language produced by G .

Exercise 2.7 (Membership in a context-free language is decidable in polynomial time). Consider the following decision problem:

Membership_{CFL} : given an input $x \in \{0, 1\}^*$ and a context-free grammar G , determine whether $x \in L(G)$.

Show that **Membership_{CFL}** can be decided in polynomial time w.r.t. $|x|$ and the size of G . Do this describing how the *Cocke-Kasami-Younger algorithm* (CKY) works.

 Caution

The CKY algorithm assumes as input a grammar in Chomsky normal form.

Exercise 2.8 (Some decidable properties of context-free languages). Let L_G be the (context-free) language produced by the context-free grammar G . Given as input the grammar G , describe an algorithm to decide whether

- (a) L_G is empty.
- (b) L_G is infinite.
- (c) L_G contains some word of even length.
- (d) L_G contains infinite words of even length.

What is the asymptotic cost of the algorithm proposed as a function of the number of symbols in G ?

! Important

Later in the course we will see that a lot of very natural questions on context-free grammar do not have an algorithm to decide them. Note that we didn't find an algorithm yet. **No algorithm exists that always terminates and gives the answer.** For instance:

- Given a context-free grammar, is it ambiguous?
- Given a context-free grammar, does it describe a regular language?
- Given a context-free grammar G with terminals $\{a, b\}$, is $L_G = \{a, b\}^*$?
- Given two context-free grammars G_1 and G_2 , is $L_{G_1} \cap L_{G_2}$ empty?
- Given two context-free grammars G_1 and G_2 , is $L_{G_1} = L_{G_2}$?
- Given two context-free grammars G_1 and G_2 , is $L_{G_1} \subseteq L_{G_2}$?

Exercise 2.9 (Complement of context-free sometimes is context-free). In general context-free languages are not closed under complement, that is given a context-free language L it is not true in general that \bar{L} is also context-free.

This exercise is about some context-free languages whose complement is actually also context-free.

(a) Give a non-ambiguous context-free grammar generating $L = \{a^n b^n \mid n \in \mathbb{N}\}$ and a context-free grammar generating \bar{L} . Can you make this latter grammar non-ambiguous?

💡 Tip

Use [RACSO](#) to test whether your proposed grammar for \bar{L} is non-ambiguous.

(b) Give a non-ambiguous context-free grammar generating $L = \{w \in \{a, b\}^* \mid w = w^R\}$ and a context-free grammar generating \bar{L} . Can you make this latter grammar non-ambiguous?

💡 Tip

Use [RACSO](#) to test whether your proposed grammar for \bar{L} is non-ambiguous.

Exercise 2.10 (Sufficient conditions for unambiguity). Consider the following conditions for a context-free grammar:

- (1) Every production has at most one non-terminal symbol on its right-hand side.
- (2) The languages generated by two different productions of the same non-terminal symbol are always disjoint.

Show that any context-free grammar satisfying the above conditions must be unambiguous.

Exercise 2.11 (On regular grammars). A context-free grammar $G = (V, \Sigma, P, S)$ is *right linear* if all its productions are of the form $A \rightarrow wB$ or $A \rightarrow w$, where $A, B \in V$ and $w \in \Sigma^*$. Analogously, when all the productions of G are of the form $A \rightarrow Bw$ or $A \rightarrow w$, we say that G is *left linear*. A grammar which is either *right linear* or *left linear* is called *regular*. If the grammar G contains productions of the form $A \rightarrow wB$, $A \rightarrow Bw$, or $A \rightarrow w$, we say that G is *linear*.

The goal of this exercise is to show that regular languages can be generated by unambiguous grammars.

- (a) *Normal form.* Prove that for every right-linear grammar $G = (V, \Sigma, P, S)$ there exists an equivalent grammar whose productions are all of the form $A \rightarrow aB$ or $A \rightarrow \lambda$, where $A, B \in V$ and $a \in \Sigma$. Observe that a symmetric transformation can be applied to left-linear grammars.
- (b) *Linear grammars.* Construct a linear grammar generating a non-regular language.
- (c) *Regular grammars.* Prove that a language is regular if and only if it is generated by a regular grammar.

 Tip

Show this only for left-linear or right-linear grammars (it can be done independently for any of them and they are symmetric). Use the normal form above.

- (d) *Unambiguity of regular languages.* Show that the regular languages can be generated by unambiguous grammars.

 Tip

Use the construction from the previous item to transform a DFA into a regular grammar and show that the obtained grammar is unambiguous.