
Problem Set 2

Instructions

Resources useful to solve the exercises in this problem set are the following:

Guille Godoy’s video lectures

• Gramáticas incontextuales
• Operaciones sobre gramáticas
• Depuración de gramáticas (1)
• Depuración de gramáticas (2)
• Depuración de gramáticas (3)

Books

• (Sipser 2013, § 2.1 Content-free Grammars)
• (Cases and Màrquez 2003, § 2 and § 3)
• (Hopcroft, Motwani, and Ullman 2007, § 5)

Cases, Rafel, and Lluís Màrquez. 2003. Llenguatges, Gramàtiques i Autòmats : Curs Bàsic.
2a ed. Edicions UPC.

Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman. 2007. Introduction to Automata
Theory, Languages, and Computation. 3rd edition. Pearson Addison Wesley.

Sipser, Michael. 2013. Introduction to the Theory of Computation. 3rd edition. Cengage
Learning.

1

http://www.youtube.com/watch?v=K-LG1ujJj0k
http://www.youtube.com/watch?v=rHOyFDCOKbs
http://www.youtube.com/watch?v=F7VQHsfJUYY
http://www.youtube.com/watch?v=R_35mRYvEhA
http://www.youtube.com/watch?v=1qkt3kmPJWA

All exercises

Exercise 2.1 (Just context-free, or actually regular?). Later in the course we will see that
no algorithm exists that always terminates and gives the answer to the question “Given a
context-free grammar, does it generate a regular language?”.

For each of the context-free grammars below, find what is the language generated and prove
whether it is a regular language or not.

(a)

⎧{{
⎨{{⎩

𝑆 → 𝐴𝐵 ∣ 𝐶𝐷
𝐴 → 0𝐴0 ∣ 0
𝐵 → 1𝐵1 ∣ 𝜆
𝐶 → 0𝐶0 ∣ 𝜆
𝐷 → 1𝐷1 ∣ 𝜆

(b)
⎧{
⎨{⎩

𝑆 → 𝑎𝐴 ∣ 𝑏𝐵 ∣ 𝜆
𝐴 → 𝑆𝑎 ∣ 𝑆𝑏
𝐵 → 𝑆𝑏

(c)
⎧{
⎨{⎩

𝑆 → 𝐴𝐵
𝐴 → 0𝐴0 ∣ 1
𝐵 → 1𝐵1 ∣ 0

(d) { 𝑆 → 0𝑆0 ∣ 0𝑆1 ∣ 𝜆

(e)
⎧{
⎨{⎩

𝑆 → 𝐴𝐵
𝐴 → 0𝐴0 ∣ 0𝐴1 ∣ 𝜆
𝐵 → 0𝐵 ∣ 1𝐵 ∣ 𝜆

(f)
⎧{
⎨{⎩

𝑆 → 𝐴 ∣ 𝐵
𝐴 → 0𝑆0 ∣ 1𝑆1 ∣ 𝜆
𝐵 → 0𝑆1 ∣ 1𝑆0 ∣ 𝜆

(g)
⎧{
⎨{⎩

𝑆 → 𝐴 ∣ 𝐵
𝐴 → 0𝐴0 ∣ 1𝐴1 ∣ 𝜆
𝐵 → 0𝐵1 ∣ 1𝐵0 ∣ 𝜆

(h) { 𝑆 → 𝑎𝑆𝑎 ∣ 𝑏𝑆𝑏 ∣ 𝑋
𝑋 → 𝑎𝑋𝑏 ∣ 𝑏𝑋𝑎 ∣ 𝑎 ∣ 𝑏 ∣ 𝜆

(i)
⎧{{
⎨{{⎩

𝑆 → 𝑊𝑋𝑊 ′

𝑋 → 𝑎𝑋 ∣ 𝑏𝑋 ∣ 𝜆
𝑊 → 𝑎𝑊 ∣ 𝑏𝑊 ∣ 𝜆
𝑊 ′ → 𝑊 ′𝑎 ∣ 𝑊 ′𝑏 ∣ 𝜆

2

Exercise 2.2 (Ambiguous context-free grammars). Show that the following grammars are
ambiguous.

(a)
⎧{{
⎨{{⎩

𝑆 → 𝑎𝑆𝑏 ∣ 𝐵
𝐵 → 𝑏𝐴𝑎 ∣ 𝑏𝐶𝑏 ∣ 𝜆
𝐴 → 𝑎𝐴𝑏𝐴 ∣ 𝑏𝐴𝑎𝐴 ∣ 𝜆
𝐶 → 𝐴𝑎𝑎 ∣ 𝑎𝐴𝑎 ∣ 𝑎𝑎𝐴

(b)

⎧{{
⎨{{⎩

𝑆 → 𝑎𝑈1 ∣ 𝑎𝑆 ∣ 𝑏𝑍1 ∣ 𝑏𝑆
𝑍1 → 𝑎𝑈2 ∣ 𝑏𝐹
𝑈1 → 𝑏𝑈2
𝑈2 → 𝑏𝐹 ∣ 𝑏
𝐹 → 𝑎𝐹 ∣ 𝑏𝐹 ∣ 𝑎 ∣ 𝑏

(c)
⎧{{
⎨{{⎩

𝑆 → 𝐴𝑎𝐵𝐴 ∣ 𝐴𝐵𝑎𝐴 ∣ 𝐴𝐶𝐴 ∣ 𝐴𝑏𝑎𝑏𝐴
𝐵 → 𝑏𝑏
𝐶 → 𝑏𝐵
𝐴 → 𝑎𝐴 ∣ 𝑏𝐴 ∣ 𝜆

(d)

⎧{{{
⎨{{{⎩

𝑆 → 𝑎𝑈1 ∣ 𝑎𝑆 ∣ 𝑏𝑍1 ∣ 𝑏𝑆
𝑍1 → 𝑎𝑈2 ∣ 𝑏𝑍2
𝑈1 → 𝑏𝑈2
𝑈2 → 𝑏𝐹
𝑍2 → 𝑎𝐹 ∣ 𝑏𝐹
𝐹 → 𝑎𝐹 ∣ 𝑏𝐹 ∣ 𝜆

3

Exercise 2.3 (On Dyck languages). In this exercise we consider the Dyck language, that is
the language of well-balanced parentheses (and variations of it). More precisely, given the
alphabet Σ = {(,)}, the Dyck language dyck(1) is

dyck(1) = {𝑤 ∈ Σ∗ ∣ for every prefix 𝑢 of 𝑤 |𝑢|(≥ |𝑢|) ∧ |𝑤|(= |𝑤|)}.

Similarly, let dyck(𝑠) be the Dyck language on 𝑠 pairs of parentheses, i.e. the language of
correctly nested sequences of 𝑠 distinct types of parentheses. For instance, given the two types
of parentheses (,), and [,], the word ([]) ∈ dyck(2), ()[] ∈ dyck(2) but ([)] ∉ dyck(2).

(a) Show that the grammar 𝑆 → 𝑆𝑆 ∣ (𝑆) ∣ 𝜆 generates exactly dyck(1). Is it ambiguous?

(b) Show that the grammar 𝑆 → (𝑆)𝑆 ∣ 𝜆 generates exactly dyck(1). Is it ambiguous?

(c) Show that the grammar 𝑆 → 𝑆𝑆 ∣ (𝑆) ∣ [𝑆] ∣ 𝜆 generates exactly dyck(2). Is it ambigu-
ous?

(d) Show that the grammar 𝑆 → (𝑆)𝑆 ∣ [𝑆]𝑆 ∣ 𝜆 generates exactly dyck(2). Is it ambiguous?

(e) Construct an unambiguous grammar that generates dyck(𝑠) for an arbitrary 𝑠.

(f) Let 𝜎 = {(,), [,]} and 𝐿 be the language of all words over Σ∗ such that, ignoring the
symbols [,], the words are well-parenthesised on (,), and, similarly, ignoring the sym-
bols (,), the words are well-parenthesised on [,]. In particular dyck(2) ⊆ 𝐿, but the
containment is strict. For instance, ([)] ∈ 𝐿 ∖ dyck(2). Show that 𝐿 is not a context-free
language.

Tip

Use the fact that the language {𝑎𝑛𝑏𝑛𝑐𝑛 ∣ 𝑛 ∈ ℕ} is not context-free.

Note

The Dyck languages are important because, in a sense, they are the most complicated
context-free languages. Indeed, the Chomsky–Schützenberger representation the-
orem states that a language 𝐿 is context-free if an only if 𝐿 is the image under an
homomorphism of some dyck(𝑠) intersected with a regular language.

4

Exercise 2.4 (Context-free closure operations and ambiguity). Given unambiguous context-
free grammars 𝐺1 and 𝐺2,

(a) could the construction to obtain the grammar for the union 𝐺1 ∪ 𝐺2 give an ambiguous
grammar?

(b) could the construction to obtain the grammar for the concatenation 𝐺1 ⋅ 𝐺2 give an
ambiguous grammar?

(c) could the construction to obtain the grammar for the Kleene star 𝐺∗
1 give an ambiguous

grammar?
(d) could the construction to obtain the grammar for the reverse 𝐺𝑅

1 give an ambiguous
grammar?

(e) given also a homomorphism 𝜎, could the construction to obtain the grammar for 𝜎(𝐺1)
give an ambiguous grammar?

5

Exercise 2.5 (Depuration of grammars).

(1) Given a grammar 𝐺, describe an algorithm to eliminate 𝜆-productions (with only one
possible exception) from 𝐺 (without changing the generated language). Make sure that
when 𝐺 is unambiguous the algorithm described gives an unambiguous grammar. What
is the cost of the algorithm?

(2) Given a grammar 𝐺, describe an algorithm to eliminate unary production rules from 𝐺
(without changing the generated language). Make sure that when 𝐺 is unambiguous the
algorithm described gives an unambiguous grammar. What is the cost of the algorithm?

(3) Given a grammar 𝐺, describe an algorithm to eliminate useless symbols from 𝐺 (without
changing the generated language). Make sure that when 𝐺 is unambiguous the algorithm
described gives an unambiguous grammar. What is the cost of the algorithm?

(4) Apply the depuration algorithm (remove 𝜆-productions, unary productions, unproduc-
tive and unreachable symbols) to the following grammars:

(a) { 𝑆 → 𝑆𝑆 ∣ (𝑆) ∣ 𝜆
(b) { 𝑆 → (𝑆)𝑆 ∣ 𝜆
(c) { 𝑆 → 𝐴𝐴

𝐴 → 𝐴𝐴 ∣ 𝜆

(d)
⎧{
⎨{⎩

𝑆 → 𝐴
𝐴 → 𝐵
𝐵 → 𝑐

(e)
⎧{
⎨{⎩

𝑆 → 𝐴𝐵
𝐴 → 𝑎 ∣ 𝜆
𝐵 → 𝑏 ∣ 𝜆

(f)
⎧{
⎨{⎩

𝑆 → 𝐴𝐵
𝐴 → 𝑎𝐴𝑏 ∣ 𝜆
𝐵 → 𝑏𝐵𝑐 ∣ 𝜆

(g)
⎧{{
⎨{{⎩

𝑆 → 𝐵𝐶 ∣ 𝜆
𝐴 → 𝑎𝐴 ∣ 𝜆
𝐵 → 𝑏𝐵
𝐶 → 𝑐

(h)

⎧{{
⎨{{⎩

𝑆 → 𝑋 ∣ 𝑌 𝜆
𝑋 → 𝑋𝑐 ∣ 𝐴
𝐴 → 𝑎𝐴𝑏 ∣ 𝜆
𝑌 → 𝑎𝑌 ∣ 𝐵
𝐵 → 𝑏𝐵𝑐 ∣ 𝜆

(i)
⎧{{
⎨{{⎩

𝑆 → 𝐴 ∣ 𝐵 ∣ 𝐶
𝐴 → 𝑆𝑎𝑆𝑏𝑆 ∣ 𝜆
𝐵 → 𝑆𝑏𝑆𝑎𝑆 ∣ 𝜆
𝐶 → 𝐶𝑐 ∣ 𝜆

6

Exercise 2.6 (On the Chomsky normal form).

(a) Given a context-free grammar 𝐺, describe a polynomial time procedure to obtain a
grammar 𝐺′ producing the same language of 𝐺 and in Chomsky Normal Form.

(b) Given a grammar 𝐺 in Chomsky normal form and a word 𝑤 produced by 𝐺, in how
many steps is 𝑤 produced? (as a function of |𝑤|)

Note

Recall that a context-free grammar 𝐺 is in Chomsky normal form if all of its production
rules are of the form:

𝐴 → 𝐵𝐶, or
𝐴 → 𝑎, or
𝑆 → 𝜆,

where 𝐴, 𝐵, and 𝐶 are nonterminal symbols, the letter 𝑎 is a terminal symbol, and 𝑆
is the start symbol. Moreover, neither 𝐵 nor 𝐶 may be the start symbol 𝑆, and the
production rule 𝑆 → 𝜆 can only appear if 𝜆 is in the language produced by 𝐺.

7

Exercise 2.7 (Membership in a context-free language is decidable in polynomial time). Con-
sider the following decision problem:

MembershipCFL ∶ given an input 𝑥 ∈ {0, 1}∗ and a context-free grammar 𝐺, determine whether 𝑥 ∈ 𝐿(𝐺).

Show that MembershipCFL can be decided in polynomial time w.r.t. |𝑥| and the size of 𝐺. Do
this describing how the Cocke-Kasami-Younger algorithm (CKY) works.

Caution

The CKY algorithm assumes as input a grammar in Chomsky normal form.

8

Exercise 2.8 (Some decidable properties of context-free languages). Let 𝐿𝐺 be the (context-
free) language produced by the context-free grammar 𝐺. Given as input the grammar 𝐺,
describe an algorithm to decide whether

(a) 𝐿𝐺 is empty.
(b) 𝐿𝐺 is infinite.
(c) 𝐿𝐺 contains some word of even length.
(d) 𝐿𝐺 contains infinite words of even length.

What is the asymptotic cost of the algorithm proposed as a function of the number of symbols
in 𝐺?

Important

Later in the course we will see that a lot of very natural questions on context-free grammar
do not have an algorithm to decide them. Not that we didn’t find an algorithm yet. No
algorithm exists that always terminate and gives the answer. For instance:

• Given a context-free grammar, is it ambiguous?
• Given a context-free grammar, does it describe a regular language?
• Given a context-free grammar 𝐺 with terminals {𝑎, 𝑏}, is 𝐿𝐺 = {𝑎, 𝑏}∗?
• Given two context-free grammars 𝐺1 and 𝐺2, is 𝐿𝐺1

∩ 𝐿𝐺2
empty?

• Given two context-free grammars 𝐺1 and 𝐺2, is 𝐿𝐺1
= 𝐿𝐺2

?
• Given two context-free grammars 𝐺1 and 𝐺2, is 𝐿𝐺1

⊆ 𝐿𝐺2
?

9

Exercise 2.9 (Complement of context-free sometimes is context-free). In general context-free
languages are not closed under complement, that is given a context-free language 𝐿 it is not
true in general that 𝐿 is also context-free.

This exercise is about some context-free languages whose complement is actually also context-
free.

(a) Give a non-ambiguous context-free grammar generating 𝐿 = {𝑎𝑛𝑏𝑛 ∣ 𝑛 ∈ ℕ} and a
context-free grammar generating 𝐿. Can you make this latter grammar non-ambiguous?

Tip

Use RACSO to test whether your proposed grammar for 𝐿 is non-ambiguous.

(b) Give a non-ambiguous context-free grammar generating 𝐿 = {𝑤 ∈ {𝑎, 𝑏}∗ ∣ 𝑤 = 𝑤𝑅}
and a context-free grammar generating 𝐿. Can you make this latter grammar non-
ambiguous?

Tip

Use RACSO to test whether your proposed grammar for 𝐿 is non-ambiguous.

10

https://racso.cs.upc.edu/juezwsgi/exercise?exerciseid=78&inlist=1
https://racso.cs.upc.edu/juezwsgi/exercise?exerciseid=55&inlist=1

Exercise 2.10 (Sufficient conditions for unambiguity). Consider the following conditions for
a context-free grammar:

(1) Every production has at most one non-terminal symbol on its right-hand side.
(2) The languages generated by two different productions of the same non-terminal symbol

are always disjoint.

Show that any context-free grammar satisfying the above conditions must be unambiguous.

11

Exercise 2.11 (On regular grammars). A context-free grammar 𝐺 = (𝑉 , Σ, 𝑃 , 𝑆) is right
linear if all its productions are of the form 𝐴 → 𝑤𝐵 or 𝐴 → 𝑤, where 𝐴, 𝐵 ∈ 𝑉 and 𝑤 ∈ Σ∗.
Analogously, when all the productions of 𝐺 are of the form 𝐴 → 𝐵𝑤 or 𝐴 → 𝑤, we say that
𝐺 is left linear. A grammar which is either right linear or left linear is called regular. If the
grammar 𝐺 contains productions of the form 𝐴 → 𝑤𝐵, 𝐴 → 𝐵𝑤, or 𝐴 → 𝑤, we say that 𝐺 is
linear.

The goal of this exercise is to show that regular languages can be generated by unambiguous
grammars.

(a) Normal form. Prove that for every right-linear grammar 𝐺 = (𝑉 , Σ, 𝑃 , 𝑆) there exists
an equivalent grammar whose productions are all of the form 𝐴 → 𝑎𝐵 or 𝐴 → 𝜆, where
𝐴, 𝐵 ∈ 𝑉 and 𝑎 ∈ Σ. Observe that a symmetric transformation can be applied to
left-linear grammars.

(b) Linear grammars. Construct a linear grammar generating a non-regular language.

(c) Regular grammars. Prove that a language is regular if and only if it is generated by a
regular grammar.

Tip

Show this only for left-linear o right-linear grammars (it can be done independently
for any of them and they are symmetric). Use the normal form above.

(d) Unambiguity of regular languages. Show that the regular languages can be generated by
unambiguous grammars.

Tip

Use the construction from the previous item to transform a DFA into a regular
grammar and show that the obtained grammar is unambiguous.

12

	Instructions
	All exercises

