Problem Set 1

Instructions

Resources useful to solve the exercises in this problem set are the following:

Guille Godoy’s video lectures

e Autématas finitos deterministas

o Autématas finitos indeterministas
o Notacions de DFAs i NFAs (1)

o Notacions de DFAs i NFAs (2)

o Operacions sobre Reg (1)

o Operacions sobre Reg (2)

e Operacions sobre Reg (3)

o Minimitzacié de DFAs (1)

o Minimitzaci6 de DFAs (2)

o Minimitzacié de DFAs (3)

Books

o Exemples de construccié d’automats finits (Lluis Marquez, Enrique Romero)
o (Cases and Marquez 2003, § 4 and § 5)

(Sipser 2013, § 1.1 and § 1.2)

(Hopcroft, Motwani, and Ullman 2007, § 2.1, § 2.2 and § 4.2)

Cases, Rafel, and Lluis Marquez. 2003. Llenguatges, Gramatiques i Automats : Curs Basic.
2a ed. Edicions UPC.

Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman. 2007. Introduction to Automata
Theory, Languages, and Computation. 3rd edition. Pearson Addison Wesley.

Sipser, Michael. 2013. Introduction to the Theory of Computation. 3rd edition. Cengage
Learning.

http://www.youtube.com/watch?v=pk17OhAoAOM
http://www.youtube.com/watch?v=dq5phN18XAw
http://www.youtube.com/watch?v=60sCj0sMzOc
http://www.youtube.com/watch?v=BjDizQDL6oY
http://www.youtube.com/watch?v=apODUPsZMLc
http://www.youtube.com/watch?v=j9MU1uCntho
http://www.youtube.com/watch?v=L8HtVewJfzM
http://www.youtube.com/watch?v=QN7V3fVZRNI
http://www.youtube.com/watch?v=fPMyQOEQ3hI
http://www.youtube.com/watch?v=ON1DM6EBX6Y

All exercises

Exercise 1.1 (Union and intersection of regular languages — the product construction). Given
a word w € {a, b}, let

L, ={zwy|z,ye{ab}}.

In other words, L,, is the language of all words containing w as a subword.

(a) Show that for every word w, L,, is a regular language.

(b) Construct minimum DFAs recognizing the following languages. Show that the con-
structed DFAs are correct and have the smallest possible number of states.

o L,

® L(ICL

® Laaa

(c¢) Using the cartesian product construction, construct DFAs recognizing the following lan-
guages and minimize the DFAs obtained.

® Laa U Lbb
o L,ULyy,

What would change if we wanted the languages L,, N Ly, and L, N Ly, instead?

(d) Given two DFAs A and B as input, what is the cost of computing a DFA for L(A)UL(B)
and L(A) N L(B) using the cartesian product construction?

(e) Given minimum DFAs A and B, is the DFA recognizing L(A)U L(B) obatained applying
the product construction on A and B minimum? What about the DFA for L(A)NL(B)?

(f) What happens if we apply the cartesian product construction to NFAs instead of DFAs?

Does the product construction on NFAs still give a good NFA for the union (resp. inter-
section)?

Exercise 1.2 (Complement of a regular language is regular). Exchanging final and non-final
states in a DFA A produces a new DFA that recognizes the complement of the language
recognized by A.

(a) Show that L = {aax | x € {a,b}*} is a regular language. Construct the minimum DFAs
recognizing L and L.

(b) Show that L = {w € {a,b}* | |w| € 3N + 1} is a regular language. Construct the
minimum DFAs recognizing L and L.

(¢) Show that L = {w € {0,1}* | valuey(w) € 3N} is a regular language. Construct the
minimum DFAs recognizing L and L.

(d) Given as input a DFA A, what is the cost of constructing a DFA for L(A)?

(e) If we started with a minimum DFA | is the obtained DFA for the complement minimum?

—~
s
S~—

Does exchanging final states and non-final states in an NFA A produce an NFA recog-
nizing the complement of the language recognized by A?

Exercise 1.3 (Concatenation of regular languages is regular).
(1) Construct the minimum DFA for the language L, - Lo, where

(a) Ly = {woya | 2, € {a,b}*} and L, = {baby | 2,y € {a,b}"}.
(b) Ly = {zaay | z,y € {a,b}*} and L, = {bxb | x € {a,b}*}.
(¢) Ly ={zaya | z,y € {a,b}*} and Ly = {bxb | x € {a,b}*}.

Find the minimum DFAs recognizing L; and L,. From those DFAs, construct a A-NFA
A recognizing the language L, - L,. Now, using the power-set construction, make A
deterministic and minimize the DFA obtained.

(2) Given two DFAs A and B as input, what is the cost of constructing a DFA for L(A)-L(B)?

Exercise 1.4 (Kleene star of a regular language is regular).

(1) Explicitly construct the minimum DFA for the language L*, where

(a) L= {way € {a,b}" | ly| = 1}.
(b) L= {zaby € {a,b}" | |y| = 1}.
(¢) L ={awaby € {a,b}" | ly| = 1}.

Construct the minimum DFA recognizing L. From that DFA, construct a A-NFA A
recognizing the language L*. Using the power-set construction, make A deterministic
and then minimize the DFA obtained.

(2) Given a DFA A as input, what is the cost of computing a DFA for L(A)*?

Exercise 1.5 (Reverse of a regular language is regular).

(1) Explicitly construct the minimum DFA for the language L, where

(a) L={w € {a,b}* | Vwy,wy (w = wyawy = |wy], € 2N)}.
(b) L =A{w € {a,b}* | Vwy,wy (w = wyawy = |wy], € 2N+ 1)}.
(¢) L={w e {a,b}* | Vw,,wy (w=w awy = |wy| € 2N)}.

Construct the minimum DFA recognizing L. From that DFA, construct an NFA A rec-
ognizing the language L. Now, using the power-set construction, make A deterministic
and then minimize the DFA obtained.

Given a DFA A as input, what is the cost of constructing a DFA for L(A)%?

Reversing the direction of transitions and exchanging initial and final states in a DFA
A gives an NFA B for L(A)®. If the obtained NFA B is actually a DFA and A was

minimum, is B minimum too?

An NFA is uniquely accepting if for every word there is a unique accepting execution.
Show that, for a uniquely accepting NFA A, the NFA A% is uniquely accepting.

Exercise 1.6 (Homomorphism of a regular language is regular).
(1) Compute explicitly the minimum DFA for the language o (L), where

(a) L ={axbya | z,y € {a,b}*} and o is the homomorphism defined by o(a) = aa and
o(b) = ba.

(b) L = {axbyc | z,y € {a,b,c}*} and o is the homomorphism defined by o(a) = ab,
o(b) =b, and o(c) = A.

(¢c) L = {xbcya | x,y € {a,b,c}*} and o is the homomorphism defined by o(a) = bbb,
o(b) = a,, and o(c) = A.

Compute the minimum DFA recognizing L. From that DFA construct a A-NFA A recog-
nizing the language o(L). Now, using the power-set construction make A deterministic
and minimize the DFA obtained.

Recall that given a DFA A and a homomorphism o, it is possible to construct an
NFA recognizing the language o(L(A)) by transforming each transition % in A

o(a)
into — in an extended automaton and converting each extended transition into

a A>-NFA by adding new states.

(2) Given as input a DFA A, what is the cost of computing a DFA for o(L(A))? Does the
construction to obtain an NFA recognizing o(L(A)) give a DFA?

(3) Does the construction to obtain an NFA recognizing o(L(A)) still work if we started

with an NFA A? In other words, if each transition % in an NFA A is transformed into
o(a)
the extended transition — and then converted into a \-NFA by adding new states,

does that give a correct A-NFA for o(L(A))?

Exercise 1.7 (Inverse homomorphism of a regular language is regular).

(1) Show that L = {w € {0,1}* | valuey(w) € 3N} is a regular language. Compute
explicitly the minimum DFA for the language o~ 1(L), where o : {a,b,c} — {0,1} is
the homomorphism defined by

(a) o(a) =01,
o(b) =0, and
o(c) = A

(b) oa) =10,
o(b) =0, and
o(c) =\

(¢) o(a) =00,
o(b) =11, and
olc) =\

(d) o(a) =001,
o(b) =101, and
o(c)=0.

Recall that, given a DFA A and a homomorphism o, it is possible to construct a
DFA A’ recognizing the language o~ (L(A)) as follows: on input w, A’ will run A
on input o(w) and accept if A does.

(2) Given a DFA A and a morphism o, what is the cost of constructing a DFA for the
language o (L(A))?

(3) Does the construction used to obtain the DFA for o~ 1(L(A)) give us a minimum DFA if
we started with a minimum DFA A?

(4) Does the construction used to obtain the DFA for o1 (L(A)) still work if we started with
an NFA A?

Exercise 1.8 (On DFA minimization).

(a) A DFA with unreachable states cannot be minimum. What is the cost of determining
whether a DFA has unreachable states?

(b) What is the cost of Moore minimization algorithm (with a reasonable implementation)?

(¢) The minimum DFA recognizing a given language is unique up to isomorphism. What
about NFAs? In particular, is an NFA of minimum size unique for a given language?

Exercise 1.9 (NFAs can be exponentially more succinct than DFAs). Given an n € N, consider
the language L, = {zay | z,y € {a,b}* A|y| =n}.

(1) What is the cost of the determinization algorithm (as a function of the size of the input
NFA)?

(2) Show that L,, is regular by constructing an NFA recognizing L,, and having n + 2 states.

(3) Show that the minimum DFA recognizing L, has 2"*! states. In other words,

(a) show that there is a DFA recognizing L,, having 2"*! states and
(b) show that no DFA with strictly less than 27! states can recognize L,,.

Remember that the compact notation used in the definition of L, corresponds to the
language

{w e {a,b}" | Iz, y (w=zay A |ly| =n)}.

10

Exercise 1.10 (DFAs — some decidable properties). Show that the following computational
problems are decidable by providing an algorithm (with reasonable cost) that solves them.

(a) Given a DFA A, is L(A) = 07

(b) Given a DFA A, is L(A) an infinite set?

(c) Given two DFAs A and B, is L(A) = L(B)?
(d) Given two DFAs A and B, is L(A) C L(B)?

11

Exercise 1.11 (Finite languages are regular).

(a) Show that for every word w, the language {w} is regular.

(b) Show that every finite language, i.e. any language consisting only of a finite number of
words, is regular.

(c) A language L is co-finite if its complement L is finite. Show that if a language is co-finite,
then it is regular.

(d) Show that the language L = {0™ | the decimal expansion of 7w contains n consecutive Os}
is regular.

@ Hint

No knowledge about any property of the decimal expansion of 7 is needed (apart
from being infinite). Think instead of a nonconstructive proof by cases.

(e) A crucial part of the definition of DFAs is that they are only allowed to have a finite
number of states. Show that the definition would become trivial if DFAs were allowed to
have an infinite number of states, in the sense that every language (say over the alphabet
{a,b}) could be recognized by a DFA if we allowed it to have an infinite number of states.

12

Exercise 1.12 (Membership in a regular language is decidable in polynomial time). Consider
the following decision problem:

Membershipg,, : given an input z € {0,1}* and a DFA A, determine whether z € L(A).

Show that Membershipg,, can be decided in polynomial time w.r.t. || and the size of A.

13

Exercise 1.13 (Arithmetic progressions are regular). Let a = (aq,a,,...) be an arithmetic
progression, i.e. a sequence in which the difference between any two consecutive terms is a
constant. The goal of this exercise is (somewhat informally) to show that regardless of the
base chosen to represent the arithmetic progression, this gives rise to a regular language.

More precisely:

(a) Show that the language {1™ | m € a} is regular.

(b) Given n € N, how many states does the minum DFA recognizing {1™ | m € nN} have?
(c) Show that the language {w € {0,1}* | value,(w) € a} is regular.

(d) Given n € N, how many states does the minimum DFA recognizing {w € {0,1}* |

value,(w) € nN} have when n = 2* for some k € N? What about when n is odd? What
about when n = m2F for some k € N and m is odd?

(e) Show that the language {w € {0,1,2}* | valueg(w) € a} is regular.

(f) Show that the language {w € X* | value,(w) € a} is regular, where b > 2 and ¥ =
{0,1,2,...,b— 1} is an alphabet of digits.

Remember that, for any b > 2, value,(w) denotes the number obtained interpreting the
string w as a number written using base b. For instance,

value,(00101) =1-2°40-2' +1-2240-22+0-2'=1+4 =15,

valuey(0121) =1-3°+2-3'4+1-3240-33=1+6+9 = 16.

14

Exercise 1.14 (At least k occurrences of every symbol is a regular language). Given k € N,
consider the language

Ly ={we{a,b, e} | Jwl, > kAfwly = kA fwl, >k}
(a) Show that for any k, L, is a regular language.

(b) How many states (as a function of k) does the minimum DFA recognizing L, have?

15

Exercise 1.15 (First half of regular is regular). Given a language L, we define FirstHalf(L)
as the set of strings that constitute the first half of strings of even length in L, that is,

FirstHalf(L) = {z |3y (|z| = |y| A 2y € L)}.

Show that if L is regular, then FirstHalf(L) is regular.

16

Exercise 1.16 (Intercal AND of regulars is regular). Given two languages L, L, C ¥*, define

intercalAND(L,, Ly) = {z1y;-.-.2,y, | (n > 1) A (g, ..., 2, Y1, Yy € L) A (272, €
Ly) N (yy - yn € Lo)}

Show that if L; and L, are regular, then intercalAND(L,, L,) is also regular.

17

Exercise 1.17 (Prefixes and suffixes). Given a language L, define

Prefixes(L) = {w | 3z (wzx € L)}
and
Suffixes(L) = {w | 3z (zw € L)}.

(a) Givena DFA A, how can we construct a DFA to recognize the language Prefixes(L(A))?
(b) Given a DFA A, how can we construct a DFA to recognize the language Suffixes(L(A))?

18

Exercise 1.18 (Variations on a”b™). We saw in class that A = {a™b"™ | n € N} is not a regular
language.

(1) Consider now a language L C A. Show that L is regular if and only if L is finite.

@ Hint

Before proving the general result it might be easier to prove the special cases to get
ideas on how to proceed in general.

o How would you show that {a"b™ | n € 2N} is not regular?
o How would you show it with {a"d" | n € 3N}?

(2) Show that the following languages are not regular.

(a) {a"d™ |n,meNAn<m}
(b) {a"b™ |n,m e NAR>m}
(c) {a"0™ | n,m e NAn#m}
(d) {a®"b™ | n € 2N}

@ Hint

Using the pumping lemma directly is doable but a bit tricky. It is simpler to use
first closure properties of regular languages.

(3) Show that the following languages over {a,b, c} are not regular.

(a) {c™a™b" | n,m € N}
(b) {a"c™b™ | n,m € N}
(c¢) {a™b"c™ | n,m € N}
(d) {a,b}* U{c™a"™d™ | n,m € N}

(4) Show that the Dyck language is not regular, that is the language of all well-balanced
parentheses is not regular. More precisely, given the alphabet ¥ = {(,)}, show that the
language

{w e Z* | Jw| = [wl], A for every prefix u of w [uf > [ul}

is not regular.

19

Exercise 1.19 (Counting as and bs is (in general) not regular). Show that the following
languages are not regular.

(a) {w € {a,b}" | |wl, = [wl,}

(b) {w € {a,b}" | [w], > |wly}

(¢) {w e {a, b} | Jw|, < |wl,}

(d) {w € {a,b}" | [w], # |wly}

(e) {w e {a,b,c}" | wl, > fwly, V[w], = [w] .}
() {w € {a,b}" | [w] € 3N = Jwl, = [w]y}

20

Exercise 1.20 (On as in the first part and bs in the second part). Given k € N, show that
L, = {zy € {a,b}" | |z|, = kly|,} is regular if and only if k =1 or k = 0.

@ Hint

The hard part is to show that for £ > 1, the language L, is not regular. Think of k = 2
first. The argument for a generic k is a simple generalization of this case.

More hints

Consider the reverse of L.

21

Exercise 1.21 (Palindromes and partial palindromes).

O Caution

For this last point, the pumping lemma cannot be used to show non-regularity.
Why?

@ Hint

Suppose, towards a contradiction, that the language is regular and there is a DFA
with N states recognizing it. Test the behaviour of the automata against all the
words w; = aba?b?---a'b?, for i =1,2,...,N + 1.

22

Exercise 1.22 (Checking basic arithmetic is not regular). Show that the following languages
over alphabet {0, 1, #} are not regular.

(a) {u#v|u,ve{0,1}* A visa subword of u}

(b) {u#v|u,ve{0,1}* A (Ju| < |v|V |u| € 2N)}

(c) {uf#v|u,v e {0,1}* A valuey(u) = value,(v)}

(d) {u#v|u,ve{0,1}* A valuey(u) = valuey(v)+ 1}

(e) {u#v#z|u,v e {0,1}* A valuey(u)+ valuey(v) = valuey(z)}

23

Exercise 1.23 (Approximations of real numbers). Given a real number r € [0,1), let L, C
{0,1}* be the language consisting of non-empty words w, where w coincides with the first |w|
digits of the binary expansion of r. For instance,

e 1/2in binary is .1, and hence L, 5 = {1, 10,100, 1000, ... }
« 1/3 in binary is .01010101 ..., and hence L, ;5 = {0,01,010,0101,01010, ... }

(a) Show that L, is a regular language if and only if r is a rational number.
(b) Argue why for almost all real numbers r € [0,1), L, is not a regular language.

24

Exercise 1.24 (Unary sequences with arbitrarily large gaps). Let a = (a;, aq,a5,...) be an
ordered sequence of natural numbers. We say that the sequence a has arbitrarily large gaps if
for any n € N there is an index 4 such that a;,; > a; +n.

(1) Show that a has arbitrarily large gaps when

=920
= 42
is the i-th Fibonacci number

is the ¢-th prime number

a
b
c
(d

S

—
D

a;
a;
a;
a;

(2) Given a sequence a with arbitrarily large gaps, show that the language L, = {1* | k € a}
is not regular.

@ Hint

Try to prove that L, is not regular in the following two cases before proving the
general result: a; = 2° and a; = 2. This might give you ideas on how to proceed
in the general case.

(3) Using the ideas from the previous questions, show that the following languages are not
regular:

(a) {01012013--01" | n € N}
(b) {1™ | n is even or prime}

25

Exercise 1.25 (What operations preserve non-regularity?). Let A and B be two non-regular
languages and o a homomorphism. Which of the following languages can we always assure is
non-regular? Justify your answer (or give a counter-example if this is not true).

(a) A.

(b) AU B.

(c) AN B.

(d) A-B.

(e) AR,

(f) A*

(g) S(A) (recall that with S(A) we denote the shift of the language A, see Problem Set 1).
(h) o(A).

(i) o1 (A).

26

PS1.qmd

Exercise 1.26 (Arden’s Lemma and applications).

(1) Arden’s Lemma. Given languages A, B C ¥* and the equation
X = AX UB, (1)

show that

a. X = A*B is a solution of (Equation 1), that is A*B = AA*B U B;
b. if L is a solution of (Equation 1) then L O A*B;
c. if A ¢ A then A*B is the unique solution of (Equation 1).

(2) Symmetric version of Arden’s Lemma. Given A, B C ¥* and the equation

Y =YAUB, (2)

show that

a. Y = BA* is a solution of (Equation 2);
b. if L is a solution of (Equation 2) then L D BA*;
c. if A ¢ A then BA* is the unique solution of (Equation 2).

(3) For each of the following languages L, give a DFA A; recognizing L and two regular
expressions representing L. Obtain the regular expressions using Arden’s lemma and the
symmetric version of Arden’s lemma on A; where

(a) L is the language of words on {a, b} with an even number of as;

(b) L is the language of words on {a,b} with either an even number of as or an even
number of bs;

(¢) L is the language of words on {a,b} ending with ababa;

(d) L is the language of words on {a,b} not containing the subword aba;

(e) L is the language of words on {a, b, c} such that between every two as there is at
least one b;

(f) L is the language of words on {0, 1} with at least two consecutive Os;

(g) L ={we {0,1}* | valuey(w) € 3N}.

@ Tip
Given a DFA A, we can associate to each of its states ¢ two variables:

X, = the language of the words that in A bring us from ¢ to an accepting state

Y, = the language of the words that in A bring us from the initial state to ¢

Using the variables above, we can then set-up two systems of equations and solve
them using Arden’s lemma (and its symmetric version). The system that uses the

27

variables X can be resolved using Arden’s lemma, while the one using Y, can be
solved using the symmetric version of Arden’s lemma.

28

Exercise 1.27 (Regular expressions and closure properties of regular languages). We know
that regular expressions represent exactly the regular languages and we know that regular
languages are closed under several operations. This exercise is about finding regular expressions
for the languages after the application of one of such operations.

Given as input regular expressions r; and 74, representing respectively languages L; and L,
by construction (ry) + (r5), (r1)(ry), and (r,)* represent respectively the languages L; U L,
L,L,, and L;. What about the other operations that preserve reqularity?

(a)

(b)

(complement) Given as input a regular expression r, representing the language L, give
an algorithm to find the regular expression representing the language L. What is the
asymptotic cost of the algorithm proposed as a function of the number of symbols in r?

(intersection) Given as input regular expressions r; and r,, representing respectively
languages L, and L,, give an algorithm to find a regular expression representing the
language L, N L,. What is the asymptotic cost of the algorithm proposed as a function
of the number of symbols in r; and 747

(reverse) Given as input a regular expression r, representing the language L, give an algo-
rithm to find a regular expression representing the language L. What is the asymptotic
cost of the algorithm proposed as a function of the number of symbols in r?

(homomorphism) Given as input a regular expression r, representing the language L,
and a homomorphism o, give an algorithm to find a regular expression representing the
language o(L).

(inverse homomorphism) Given as input a regular expression r, representing the language
L, and a homomorphism o, give an algorithm to find a regular expression representing
the language o 1(L).

29

Exercise 1.28 (On some decidable properties of regular expressions). Let L, be the (regular)
language represented by the regular expression r. Given as input regular expressions r and s,
describe an algorithm to decide whether

(a) L, = L,.

(b) L. C L,.

(¢) L,=0.

(d) L, is infinite.

(e) L,NL,=0.

(f) L, N Ly is infinite.

What is the asymptotic cost of the algorithm proposed as a function of the number of symbols
in r and s?

30

Exercise 1.29 (Transformation of regular expressions). We say that two regular expressions
p,q are equivalent (p = q) if the languages represented by p and ¢ (resp. L(p) and L(q))
are the same. To check whether two regular expressions p, q are equivalent one could always
construct the associated DFAs and check whether they accept the same language. This is
computationally expensive.

This exercise is about checking the equivalence of two regular expressions using simple algebraic
manipulations. Show that for all regular expressions p, ¢, and r:

) (p+a)" =p*(ep”)"

(b) p(gp)* = (pa)*p-

) (p+q)={p+q9"

) If p = q, then pr = qr and rp = rq.

(e) If L(q) C L(p), then p*¢* = ¢"p* = p".

) pr=(A+p)=A+p)@pp).

) p*pp + A= (p*pp)* = (pp + ppp)*.

) pg+rp) =(+qT)q".
) (qq+ qp + p)*app* = p*q(pp*q + qp*q) pp*.
) (A+b)a*(b + bba*)* = b*(a + bb + bbb)*b*.

To prove some of the items (especially, the last three), it is useful to apply previous
equivalences.

'Deciding whether two regular expressions are equivalent is PSP ACE-complete, i.e., informally, it is the
hardest among the decision problems solvable using a polynomial amount of memory, but no limitations on
the running time.

31

	Instructions
	All exercises

