
Problem Set 1

Instructions

Resources useful to solve the exercises in this problem set are the following:

Guille Godoy’s video lectures

• Autómatas finitos deterministas
• Autómatas finitos indeterministas
• Notacions de DFAs i NFAs (1)
• Notacions de DFAs i NFAs (2)
• Operacions sobre Reg (1)
• Operacions sobre Reg (2)
• Operacions sobre Reg (3)
• Minimització de DFAs (1)
• Minimització de DFAs (2)
• Minimització de DFAs (3)

Books

• Exemples de construcció d’autòmats finits (Lluís Màrquez, Enrique Romero)
• (Cases and Màrquez 2003, § 4 and § 5)
• (Sipser 2013, § 1.1 and § 1.2)
• (Hopcroft, Motwani, and Ullman 2007, § 2.1, § 2.2 and § 4.2)

Cases, Rafel, and Lluís Màrquez. 2003. Llenguatges, Gramàtiques i Autòmats : Curs Bàsic.
2a ed. Edicions UPC.

Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman. 2007. Introduction to Automata
Theory, Languages, and Computation. 3rd edition. Pearson Addison Wesley.

Sipser, Michael. 2013. Introduction to the Theory of Computation. 3rd edition. Cengage
Learning.

1

http://www.youtube.com/watch?v=pk17OhAoAOM
http://www.youtube.com/watch?v=dq5phN18XAw
http://www.youtube.com/watch?v=60sCj0sMzOc
http://www.youtube.com/watch?v=BjDizQDL6oY
http://www.youtube.com/watch?v=apODUPsZMLc
http://www.youtube.com/watch?v=j9MU1uCntho
http://www.youtube.com/watch?v=L8HtVewJfzM
http://www.youtube.com/watch?v=QN7V3fVZRNI
http://www.youtube.com/watch?v=fPMyQOEQ3hI
http://www.youtube.com/watch?v=ON1DM6EBX6Y

All exercises

Exercise 1.1 (Union and intersection of regular languages – the product construction). Given
a word 𝑤 ∈ {𝑎, 𝑏}∗, let

𝐿𝑤 = {𝑥𝑤𝑦 ∣ 𝑥, 𝑦 ∈ {𝑎, 𝑏}∗}.
In other words, 𝐿𝑤 is the language of all words containing 𝑤 as a subword.

(a) Show that for every word 𝑤, 𝐿𝑤 is a regular language.

(b) Construct minimum DFAs recognizing the following languages. Show that the con-
structed DFAs are correct and have the smallest possible number of states.

• 𝐿𝑎
• 𝐿𝑎𝑎
• 𝐿𝑎𝑎𝑎

(c) Using the cartesian product construction, construct DFAs recognizing the following lan-
guages and minimize the DFAs obtained.

• 𝐿𝑎𝑎 ∪ 𝐿𝑏𝑏
• 𝐿𝑎 ∪ 𝐿𝑏𝑏𝑏

What would change if we wanted the languages 𝐿𝑎𝑎 ∩ 𝐿𝑏𝑏 and 𝐿𝑎 ∩ 𝐿𝑏𝑏𝑏 instead?

(d) Given two DFAs 𝐴 and 𝐵 as input, what is the cost of computing a DFA for 𝐿(𝐴)∪𝐿(𝐵)
and 𝐿(𝐴) ∩ 𝐿(𝐵) using the cartesian product construction?

(e) Given minimum DFAs 𝐴 and 𝐵, is the DFA recognizing 𝐿(𝐴)∪𝐿(𝐵) obatained applying
the product construction on 𝐴 and 𝐵 minimum? What about the DFA for 𝐿(𝐴)∩𝐿(𝐵)?

(f) What happens if we apply the cartesian product construction to NFAs instead of DFAs?
Does the product construction on NFAs still give a good NFA for the union (resp. inter-
section)?

2

Exercise 1.2 (Complement of a regular language is regular). Exchanging final and non-final
states in a DFA 𝐴 produces a new DFA that recognizes the complement of the language
recognized by 𝐴.

(a) Show that 𝐿 = {𝑎𝑎𝑥 ∣ 𝑥 ∈ {𝑎, 𝑏}∗} is a regular language. Construct the minimum DFAs
recognizing 𝐿 and 𝐿.

(b) Show that 𝐿 = {𝑤 ∈ {𝑎, 𝑏}∗ ∣ |𝑤| ∈ 3ℕ + 1} is a regular language. Construct the
minimum DFAs recognizing 𝐿 and 𝐿.

(c) Show that 𝐿 = {𝑤 ∈ {0, 1}∗ ∣ value2(𝑤) ∈ 3ℕ} is a regular language. Construct the
minimum DFAs recognizing 𝐿 and 𝐿.

(d) Given as input a DFA 𝐴, what is the cost of constructing a DFA for 𝐿(𝐴)?
(e) If we started with a minimum DFA, is the obtained DFA for the complement minimum?

(f) Does exchanging final states and non-final states in an NFA 𝐴 produce an NFA recog-
nizing the complement of the language recognized by 𝐴?

3

Exercise 1.3 (Concatenation of regular languages is regular).

(1) Construct the minimum DFA for the language 𝐿1 ⋅ 𝐿2, where

(a) 𝐿1 = {𝑥𝑎𝑦𝑎 ∣ 𝑥, 𝑦 ∈ {𝑎, 𝑏}∗} and 𝐿2 = {𝑏𝑥𝑏𝑦 ∣ 𝑥, 𝑦 ∈ {𝑎, 𝑏}∗}.
(b) 𝐿1 = {𝑥𝑎𝑎𝑦 ∣ 𝑥, 𝑦 ∈ {𝑎, 𝑏}∗} and 𝐿2 = {𝑏𝑥𝑏 ∣ 𝑥 ∈ {𝑎, 𝑏}∗}.
(c) 𝐿1 = {𝑥𝑎𝑦𝑎 ∣ 𝑥, 𝑦 ∈ {𝑎, 𝑏}∗} and 𝐿2 = {𝑏𝑥𝑏 ∣ 𝑥 ∈ {𝑎, 𝑏}∗}.

Find the minimum DFAs recognizing 𝐿1 and 𝐿2. From those DFAs, construct a 𝜆-NFA
𝐴 recognizing the language 𝐿1 ⋅ 𝐿2. Now, using the power-set construction, make 𝐴
deterministic and minimize the DFA obtained.

(2) Given two DFAs 𝐴 and 𝐵 as input, what is the cost of constructing a DFA for 𝐿(𝐴)⋅𝐿(𝐵)?

4

Exercise 1.4 (Kleene star of a regular language is regular).

(1) Explicitly construct the minimum DFA for the language 𝐿∗, where

(a) 𝐿 = {𝑥𝑎𝑦 ∈ {𝑎, 𝑏}∗ ∣ |𝑦| = 1}.
(b) 𝐿 = {𝑥𝑎𝑏𝑦 ∈ {𝑎, 𝑏}∗ ∣ |𝑦| = 1}.
(c) 𝐿 = {𝑎𝑥𝑎𝑏𝑦 ∈ {𝑎, 𝑏}∗ ∣ |𝑦| = 1}.

Construct the minimum DFA recognizing 𝐿. From that DFA, construct a 𝜆-NFA 𝐴
recognizing the language 𝐿∗. Using the power-set construction, make 𝐴 deterministic
and then minimize the DFA obtained.

(2) Given a DFA 𝐴 as input, what is the cost of computing a DFA for 𝐿(𝐴)∗?

5

Exercise 1.5 (Reverse of a regular language is regular).

(1) Explicitly construct the minimum DFA for the language 𝐿𝑅, where

(a) 𝐿 = {𝑤 ∈ {𝑎, 𝑏}∗ ∣ ∀𝑤1, 𝑤2 (𝑤 = 𝑤1𝑎𝑤2 ⇒ |𝑤1|𝑏 ∈ 2ℕ)}.
(b) 𝐿 = {𝑤 ∈ {𝑎, 𝑏}∗ ∣ ∀𝑤1, 𝑤2 (𝑤 = 𝑤1𝑎𝑤2 ⇒ |𝑤1|𝑏 ∈ 2ℕ + 1)}.
(c) 𝐿 = {𝑤 ∈ {𝑎, 𝑏}∗ ∣ ∀𝑤1, 𝑤2 (𝑤 = 𝑤1𝑎𝑤2 ⇒ |𝑤1| ∈ 2ℕ)}.

Construct the minimum DFA recognizing 𝐿. From that DFA, construct an NFA 𝐴 rec-
ognizing the language 𝐿𝑅. Now, using the power-set construction, make 𝐴 deterministic
and then minimize the DFA obtained.

(2) Given a DFA 𝐴 as input, what is the cost of constructing a DFA for 𝐿(𝐴)𝑅?

(3) Reversing the direction of transitions and exchanging initial and final states in a DFA
𝐴 gives an NFA 𝐵 for 𝐿(𝐴)𝑅. If the obtained NFA 𝐵 is actually a DFA and 𝐴 was
minimum, is 𝐵 minimum too?

(4) An NFA is uniquely accepting if for every word there is a unique accepting execution.
Show that, for a uniquely accepting NFA 𝐴, the NFA 𝐴𝑅 is uniquely accepting.

6

Exercise 1.6 (Homomorphism of a regular language is regular).

(1) Compute explicitly the minimum DFA for the language 𝜎(𝐿), where

(a) 𝐿 = {𝑎𝑥𝑏𝑦𝑎 ∣ 𝑥, 𝑦 ∈ {𝑎, 𝑏}∗} and 𝜎 is the homomorphism defined by 𝜎(𝑎) = 𝑎𝑎 and
𝜎(𝑏) = 𝑏𝑎.

(b) 𝐿 = {𝑎𝑥𝑏𝑦𝑐 ∣ 𝑥, 𝑦 ∈ {𝑎, 𝑏, 𝑐}∗} and 𝜎 is the homomorphism defined by 𝜎(𝑎) = 𝑎𝑏,
𝜎(𝑏) = 𝑏, and 𝜎(𝑐) = 𝜆.

(c) 𝐿 = {𝑥𝑏𝑐𝑦𝑎 ∣ 𝑥, 𝑦 ∈ {𝑎, 𝑏, 𝑐}∗} and 𝜎 is the homomorphism defined by 𝜎(𝑎) = 𝑏𝑏𝑏,
𝜎(𝑏) = 𝑎,, and 𝜎(𝑐) = 𝜆.

Compute the minimum DFA recognizing 𝐿. From that DFA construct a 𝜆-NFA 𝐴 recog-
nizing the language 𝜎(𝐿). Now, using the power-set construction make 𝐴 deterministic
and minimize the DFA obtained.

Recall that given a DFA 𝐴 and a homomorphism 𝜎, it is possible to construct an
NFA recognizing the language 𝜎(𝐿(𝐴)) by transforming each transition

𝑎→ in 𝐴
into

𝜎(𝑎)
→ in an extended automaton and converting each extended transition into

a 𝜆-NFA by adding new states.

(2) Given as input a DFA 𝐴, what is the cost of computing a DFA for 𝜎(𝐿(𝐴))? Does the
construction to obtain an NFA recognizing 𝜎(𝐿(𝐴)) give a DFA?

(3) Does the construction to obtain an NFA recognizing 𝜎(𝐿(𝐴)) still work if we started
with an NFA 𝐴? In other words, if each transition

𝑎→ in an NFA 𝐴 is transformed into

the extended transition
𝜎(𝑎)
→ and then converted into a 𝜆-NFA by adding new states,

does that give a correct 𝜆-NFA for 𝜎(𝐿(𝐴))?

7

Exercise 1.7 (Inverse homomorphism of a regular language is regular).

(1) Show that 𝐿 = {𝑤 ∈ {0, 1}∗ ∣ value2(𝑤) ∈ 3ℕ} is a regular language. Compute
explicitly the minimum DFA for the language 𝜎−1(𝐿), where 𝜎 ∶ {𝑎, 𝑏, 𝑐} → {0, 1} is
the homomorphism defined by

(a) 𝜎(𝑎) = 01,
𝜎(𝑏) = 0, and
𝜎(𝑐) = 𝜆.

(b) 𝜎(𝑎) = 10,
𝜎(𝑏) = 0, and
𝜎(𝑐) = 𝜆.

(c) 𝜎(𝑎) = 00,
𝜎(𝑏) = 11, and
𝜎(𝑐) = 𝜆.

(d) 𝜎(𝑎) = 001,
𝜎(𝑏) = 101, and
𝜎(𝑐) = 0.

Recall that, given a DFA 𝐴 and a homomorphism 𝜎, it is possible to construct a
DFA 𝐴′ recognizing the language 𝜎−1(𝐿(𝐴)) as follows: on input 𝑤, 𝐴′ will run 𝐴
on input 𝜎(𝑤) and accept if 𝐴 does.

(2) Given a DFA 𝐴 and a morphism 𝜎, what is the cost of constructing a DFA for the
language 𝜎−1(𝐿(𝐴))?

(3) Does the construction used to obtain the DFA for 𝜎−1(𝐿(𝐴)) give us a minimum DFA if
we started with a minimum DFA 𝐴?

(4) Does the construction used to obtain the DFA for 𝜎−1(𝐿(𝐴)) still work if we started with
an NFA 𝐴?

8

Exercise 1.8 (On DFA minimization).

(a) A DFA with unreachable states cannot be minimum. What is the cost of determining
whether a DFA has unreachable states?

(b) What is the cost of Moore minimization algorithm (with a reasonable implementation)?

(c) The minimum DFA recognizing a given language is unique up to isomorphism. What
about NFAs? In particular, is an NFA of minimum size unique for a given language?

9

Exercise 1.9 (NFAs can be exponentially more succinct than DFAs). Given an 𝑛 ∈ ℕ, consider
the language 𝐿𝑛 = {𝑥𝑎𝑦 ∣ 𝑥, 𝑦 ∈ {𝑎, 𝑏}∗ ∧ |𝑦| = 𝑛}.

(1) What is the cost of the determinization algorithm (as a function of the size of the input
NFA)?

(2) Show that 𝐿𝑛 is regular by constructing an NFA recognizing 𝐿𝑛 and having 𝑛 + 2 states.

(3) Show that the minimum DFA recognizing 𝐿𝑛 has 2𝑛+1 states. In other words,

(a) show that there is a DFA recognizing 𝐿𝑛 having 2𝑛+1 states and
(b) show that no DFA with strictly less than 2𝑛+1 states can recognize 𝐿𝑛.

Remember that the compact notation used in the definition of 𝐿𝑛 corresponds to the
language

{𝑤 ∈ {𝑎, 𝑏}∗ ∣ ∃𝑥, 𝑦 (𝑤 = 𝑥𝑎𝑦 ∧ |𝑦| = 𝑛)}.

10

Exercise 1.10 (DFAs – some decidable properties). Show that the following computational
problems are decidable by providing an algorithm (with reasonable cost) that solves them.

(a) Given a DFA 𝐴, is 𝐿(𝐴) = ∅?
(b) Given a DFA 𝐴, is 𝐿(𝐴) an infinite set?
(c) Given two DFAs 𝐴 and 𝐵, is 𝐿(𝐴) = 𝐿(𝐵)?
(d) Given two DFAs 𝐴 and 𝐵, is 𝐿(𝐴) ⊆ 𝐿(𝐵)?

11

Exercise 1.11 (Finite languages are regular).

(a) Show that for every word 𝑤, the language {𝑤} is regular.

(b) Show that every finite language, i.e. any language consisting only of a finite number of
words, is regular.

(c) A language 𝐿 is co-finite if its complement 𝐿 is finite. Show that if a language is co-finite,
then it is regular.

(d) Show that the language 𝐿 = {0𝑛 ∣ the decimal expansion of 𝜋 contains 𝑛 consecutive 0s}
is regular.

Hint

No knowledge about any property of the decimal expansion of 𝜋 is needed (apart
from being infinite). Think instead of a nonconstructive proof by cases.

(e) A crucial part of the definition of DFAs is that they are only allowed to have a finite
number of states. Show that the definition would become trivial if DFAs were allowed to
have an infinite number of states, in the sense that every language (say over the alphabet
{𝑎, 𝑏}) could be recognized by a DFA if we allowed it to have an infinite number of states.

12

Exercise 1.12 (Membership in a regular language is decidable in polynomial time). Consider
the following decision problem:

MembershipReg ∶ given an input 𝑥 ∈ {0, 1}∗ and a DFA 𝐴, determine whether 𝑥 ∈ 𝐿(𝐴).

Show that MembershipReg can be decided in polynomial time w.r.t. |𝑥| and the size of 𝐴.

13

Exercise 1.13 (Arithmetic progressions are regular). Let 𝑎 = (𝑎1, 𝑎2, …) be an arithmetic
progression, i.e. a sequence in which the difference between any two consecutive terms is a
constant. The goal of this exercise is (somewhat informally) to show that regardless of the
base chosen to represent the arithmetic progression, this gives rise to a regular language.

More precisely:

(a) Show that the language {1𝑚 ∣ 𝑚 ∈ 𝑎} is regular.

(b) Given 𝑛 ∈ ℕ, how many states does the minum DFA recognizing {1𝑚 ∣ 𝑚 ∈ 𝑛ℕ} have?

(c) Show that the language {𝑤 ∈ {0, 1}∗ ∣ value2(𝑤) ∈ 𝑎} is regular.

(d) Given 𝑛 ∈ ℕ, how many states does the minimum DFA recognizing {𝑤 ∈ {0, 1}∗ ∣
value2(𝑤) ∈ 𝑛ℕ} have when 𝑛 = 2𝑘 for some 𝑘 ∈ ℕ? What about when 𝑛 is odd? What
about when 𝑛 = 𝑚2𝑘 for some 𝑘 ∈ ℕ and 𝑚 is odd?

(e) Show that the language {𝑤 ∈ {0, 1, 2}∗ ∣ value3(𝑤) ∈ 𝑎} is regular.

(f) Show that the language {𝑤 ∈ Σ∗ ∣ value𝑏(𝑤) ∈ 𝑎} is regular, where 𝑏 ≥ 2 and Σ =
{0, 1, 2, … , 𝑏 − 1} is an alphabet of digits.

Remember that, for any 𝑏 ≥ 2, value𝑏(𝑤) denotes the number obtained interpreting the
string 𝑤 as a number written using base 𝑏. For instance,

value2(00101) = 1 ⋅ 20 + 0 ⋅ 21 + 1 ⋅ 22 + 0 ⋅ 23 + 0 ⋅ 24 = 1 + 4 = 5,

value3(0121) = 1 ⋅ 30 + 2 ⋅ 31 + 1 ⋅ 32 + 0 ⋅ 33 = 1 + 6 + 9 = 16.

14

Exercise 1.14 (At least 𝑘 occurrences of every symbol is a regular language). Given 𝑘 ∈ ℕ,
consider the language

𝐿𝑘 = {𝑤 ∈ {𝑎, 𝑏, 𝑐}∗ ∣ |𝑤|𝑎 ≥ 𝑘 ∧ |𝑤|𝑏 ≥ 𝑘 ∧ |𝑤|𝑐 ≥ 𝑘} .

(a) Show that for any 𝑘, 𝐿𝑘 is a regular language.

(b) How many states (as a function of 𝑘) does the minimum DFA recognizing 𝐿𝑘 have?

15

Exercise 1.15 (First half of regular is regular). Given a language 𝐿, we define FirstHalf(𝐿)
as the set of strings that constitute the first half of strings of even length in 𝐿, that is,

FirstHalf(𝐿) = {𝑥 ∣ ∃𝑦 (|𝑥| = |𝑦| ∧ 𝑥𝑦 ∈ 𝐿)}.

Show that if 𝐿 is regular, then FirstHalf(𝐿) is regular.

16

Exercise 1.16 (IntercalAND of regulars is regular). Given two languages 𝐿1, 𝐿2 ⊆ Σ∗, define

intercalAND(𝐿1, 𝐿2) = {𝑥1𝑦1...𝑥𝑛𝑦𝑛 ∣ (𝑛 ≥ 1) ∧ (𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛 ∈ Σ) ∧ (𝑥1 ⋯ 𝑥𝑛 ∈
𝐿1) ∧ (𝑦1 ⋯ 𝑦𝑛 ∈ 𝐿2)}.

Show that if 𝐿1 and 𝐿2 are regular, then intercalAND(𝐿1, 𝐿2) is also regular.

17

Exercise 1.17 (Prefixes and suffixes). Given a language 𝐿, define

Prefixes(𝐿) = {𝑤 ∣ ∃𝑥 (𝑤𝑥 ∈ 𝐿)}

and

Suffixes(𝐿) = {𝑤 ∣ ∃𝑥 (𝑥𝑤 ∈ 𝐿)}.

(a) Given a DFA 𝐴, how can we construct a DFA to recognize the language Prefixes(𝐿(𝐴))?
(b) Given a DFA 𝐴, how can we construct a DFA to recognize the language Suffixes(𝐿(𝐴))?

18

Exercise 1.18 (Variations on 𝑎𝑛𝑏𝑛). We saw in class that 𝐴 = {𝑎𝑛𝑏𝑛 ∣ 𝑛 ∈ ℕ} is not a regular
language.

(1) Consider now a language 𝐿 ⊆ 𝐴. Show that 𝐿 is regular if and only if 𝐿 is finite.

Hint

Before proving the general result it might be easier to prove the special cases to get
ideas on how to proceed in general.

• How would you show that {𝑎𝑛𝑏𝑛 ∣ 𝑛 ∈ 2ℕ} is not regular?
• How would you show it with {𝑎𝑛𝑏𝑛 ∣ 𝑛 ∈ 3ℕ}?

(2) Show that the following languages are not regular.

(a) {𝑎𝑛𝑏𝑚 ∣ 𝑛, 𝑚 ∈ ℕ ∧ 𝑛 ≤ 𝑚}
(b) {𝑎𝑛𝑏𝑚 ∣ 𝑛, 𝑚 ∈ ℕ ∧ 𝑛 ≥ 𝑚}
(c) {𝑎𝑛𝑏𝑚 ∣ 𝑛, 𝑚 ∈ ℕ ∧ 𝑛 ≠ 𝑚}
(d) {𝑎2𝑛𝑏𝑛 ∣ 𝑛 ∈ 2ℕ}

Hint

Using the pumping lemma directly is doable but a bit tricky. It is simpler to use
first closure properties of regular languages.

(3) Show that the following languages over {𝑎, 𝑏, 𝑐} are not regular.

(a) {𝑐𝑚𝑎𝑛𝑏𝑛 ∣ 𝑛, 𝑚 ∈ ℕ}
(b) {𝑎𝑛𝑐𝑚𝑏𝑛 ∣ 𝑛, 𝑚 ∈ ℕ}
(c) {𝑎𝑛𝑏𝑛𝑐𝑚 ∣ 𝑛, 𝑚 ∈ ℕ}
(d) {𝑎, 𝑏}∗ ∪ {𝑐𝑚𝑎𝑛𝑏𝑛 ∣ 𝑛, 𝑚 ∈ ℕ}

(4) Show that the Dyck language is not regular, that is the language of all well-balanced
parentheses is not regular. More precisely, given the alphabet Σ = {(,)}, show that the
language

{𝑤 ∈ Σ∗ ∣ |𝑤|(= |𝑤|) ∧ for every prefix 𝑢 of 𝑤 |𝑢|(≥ |𝑢|)}

is not regular.

19

Exercise 1.19 (Counting 𝑎s and 𝑏s is (in general) not regular). Show that the following
languages are not regular.

(a) {𝑤 ∈ {𝑎, 𝑏}∗ ∣ |𝑤|𝑎 = |𝑤|𝑏}
(b) {𝑤 ∈ {𝑎, 𝑏}∗ ∣ |𝑤|𝑎 ≥ |𝑤|𝑏}
(c) {𝑤 ∈ {𝑎, 𝑏}∗ ∣ |𝑤|𝑎 ≤ |𝑤|𝑏}
(d) {𝑤 ∈ {𝑎, 𝑏}∗ ∣ |𝑤|𝑎 ≠ |𝑤|𝑏}
(e) {𝑤 ∈ {𝑎, 𝑏, 𝑐}∗ ∣ |𝑤|𝑎 ≥ |𝑤|𝑏 ∨ |𝑤|𝑏 ≥ |𝑤|𝑐}
(f) {𝑤 ∈ {𝑎, 𝑏}∗ ∣ |𝑤| ∈ 3ℕ ⇒ |𝑤|𝑎 = |𝑤|𝑏}

20

Exercise 1.20 (On 𝑎s in the first part and 𝑏s in the second part). Given 𝑘 ∈ ℕ, show that
𝐿𝑘 = {𝑥𝑦 ∈ {𝑎, 𝑏}∗ ∣ |𝑥|𝑎 = 𝑘|𝑦|𝑏} is regular if and only if 𝑘 = 1 or 𝑘 = 0.

Hint

The hard part is to show that for 𝑘 > 1, the language 𝐿𝑘 is not regular. Think of 𝑘 = 2
first. The argument for a generic 𝑘 is a simple generalization of this case.

More hints
Consider the reverse of 𝐿2.

21

Exercise 1.21 (Palindromes and partial palindromes).

(a) Show that the language {𝑤 ∈ {𝑎, 𝑏}∗ ∣ 𝑤 = 𝑤𝑅} is not regular.

(b) Show that the language {𝑤𝑤𝑅 ∣ 𝑤 ∈ {𝑎, 𝑏}∗} is not regular.

(c) Show that the language {𝑤𝑤 ∣ 𝑤 ∈ {𝑎, 𝑏}∗} is not regular.

(d) (hard) Show that the language {𝑤𝑤𝑅𝑥 ∣ 𝑤, 𝑥 ∈ {𝑎, 𝑏}+} is not regular.

Caution

For this last point, the pumping lemma cannot be used to show non-regularity.
Why?

Hint

Suppose, towards a contradiction, that the language is regular and there is a DFA
with 𝑁 states recognizing it. Test the behaviour of the automata against all the
words 𝑤𝑖 = 𝑎𝑏𝑎2𝑏2 ⋯ 𝑎𝑖𝑏𝑖, for 𝑖 = 1, 2, … , 𝑁 + 1.

22

Exercise 1.22 (Checking basic arithmetic is not regular). Show that the following languages
over alphabet {0, 1, #} are not regular.

(a) {𝑢#𝑣 ∣ 𝑢, 𝑣 ∈ {0, 1}∗ ∧ 𝑣 is a subword of 𝑢}
(b) {𝑢#𝑣 ∣ 𝑢, 𝑣 ∈ {0, 1}∗ ∧ (|𝑢| < |𝑣| ∨ |𝑢| ∈ 2ℕ)}
(c) {𝑢#𝑣 ∣ 𝑢, 𝑣 ∈ {0, 1}∗ ∧ value2(𝑢) = value2(𝑣)}
(d) {𝑢#𝑣 ∣ 𝑢, 𝑣 ∈ {0, 1}∗ ∧ value2(𝑢) = value2(𝑣) + 1}
(e) {𝑢#𝑣#𝑧 ∣ 𝑢, 𝑣 ∈ {0, 1}∗ ∧ value2(𝑢) + value2(𝑣) = value2(𝑧)}

23

Exercise 1.23 (Approximations of real numbers). Given a real number 𝑟 ∈ [0, 1), let 𝐿𝑟 ⊆
{0, 1}∗ be the language consisting of non-empty words 𝑤, where 𝑤 coincides with the first |𝑤|
digits of the binary expansion of 𝑟. For instance,

• 1/2 in binary is .1, and hence 𝐿1/2 = {1, 10, 100, 1000, … }
• 1/3 in binary is .01010101 …, and hence 𝐿1/3 = {0, 01, 010, 0101, 01010, … }

(a) Show that 𝐿𝑟 is a regular language if and only if 𝑟 is a rational number.
(b) Argue why for almost all real numbers 𝑟 ∈ [0, 1), 𝐿𝑟 is not a regular language.

24

Exercise 1.24 (Unary sequences with arbitrarily large gaps). Let 𝑎 = (𝑎1, 𝑎2, 𝑎3, …) be an
ordered sequence of natural numbers. We say that the sequence 𝑎 has arbitrarily large gaps if
for any 𝑛 ∈ ℕ there is an index 𝑖 such that 𝑎𝑖+1 > 𝑎𝑖 + 𝑛.

(1) Show that 𝑎 has arbitrarily large gaps when

(a) 𝑎𝑖 = 2𝑖

(b) 𝑎𝑖 = 𝑖2

(c) 𝑎𝑖 is the 𝑖-th Fibonacci number
(d) 𝑎𝑖 is the 𝑖-th prime number

(2) Given a sequence 𝑎 with arbitrarily large gaps, show that the language 𝐿𝑎 = {1𝑘 ∣ 𝑘 ∈ 𝑎}
is not regular.

Hint

Try to prove that 𝐿𝑎 is not regular in the following two cases before proving the
general result: 𝑎𝑖 = 2𝑖 and 𝑎𝑖 = 𝑖2. This might give you ideas on how to proceed
in the general case.

(3) Using the ideas from the previous questions, show that the following languages are not
regular:

(a) {01012013 ⋯ 01𝑛 ∣ 𝑛 ∈ ℕ}
(b) {1𝑛 ∣ 𝑛 is even or prime}

25

Exercise 1.25 (What operations preserve non-regularity?). Let 𝐴 and 𝐵 be two non-regular
languages and 𝜎 a homomorphism. Which of the following languages can we always assure is
non-regular? Justify your answer (or give a counter-example if this is not true).

(a) ̄𝐴.
(b) 𝐴 ∪ 𝐵.
(c) 𝐴 ∩ 𝐵.
(d) 𝐴 ⋅ 𝐵.
(e) 𝐴𝑅.
(f) 𝐴∗.
(g) 𝑆(𝐴) (recall that with 𝑆(𝐴) we denote the shift of the language 𝐴, see Problem Set 1).
(h) 𝜎(𝐴).
(i) 𝜎−1(𝐴).

26

PS1.qmd

Exercise 1.26 (Arden’s Lemma and applications).

(1) Arden’s Lemma. Given languages 𝐴, 𝐵 ⊆ Σ∗ and the equation

𝑋 = 𝐴𝑋 ∪ 𝐵, (1)

show that

a. 𝑋 = 𝐴∗𝐵 is a solution of (Equation 1), that is 𝐴∗𝐵 = 𝐴𝐴∗𝐵 ∪ 𝐵;
b. if 𝐿 is a solution of (Equation 1) then 𝐿 ⊇ 𝐴∗𝐵;
c. if 𝜆 ∉ 𝐴 then 𝐴∗𝐵 is the unique solution of (Equation 1).

(2) Symmetric version of Arden’s Lemma. Given 𝐴, 𝐵 ⊆ Σ∗ and the equation

𝑌 = 𝑌 𝐴 ∪ 𝐵, (2)

show that

a. 𝑌 = 𝐵𝐴∗ is a solution of (Equation 2);
b. if 𝐿 is a solution of (Equation 2) then 𝐿 ⊇ 𝐵𝐴∗;
c. if 𝜆 ∉ 𝐴 then 𝐵𝐴∗ is the unique solution of (Equation 2).

(3) For each of the following languages 𝐿, give a DFA 𝐴𝐿 recognizing 𝐿 and two regular
expressions representing 𝐿. Obtain the regular expressions using Arden’s lemma and the
symmetric version of Arden’s lemma on 𝐴𝐿 where

(a) 𝐿 is the language of words on {𝑎, 𝑏} with an even number of 𝑎s;
(b) 𝐿 is the language of words on {𝑎, 𝑏} with either an even number of 𝑎s or an even

number of 𝑏s;
(c) 𝐿 is the language of words on {𝑎, 𝑏} ending with 𝑎𝑏𝑎𝑏𝑎;
(d) 𝐿 is the language of words on {𝑎, 𝑏} not containing the subword 𝑎𝑏𝑎;
(e) 𝐿 is the language of words on {𝑎, 𝑏, 𝑐} such that between every two 𝑎s there is at

least one 𝑏;
(f) 𝐿 is the language of words on {0, 1} with at least two consecutive 0s;
(g) 𝐿 = {𝑤 ∈ {0, 1}∗ ∣ value2(𝑤) ∈ 3ℕ}.

Tip

Given a DFA 𝐴, we can associate to each of its states 𝑞 two variables:

𝑋𝑞 = the language of the words that in 𝐴 bring us from 𝑞 to an accepting state
𝑌𝑞 = the language of the words that in 𝐴 bring us from the initial state to 𝑞

Using the variables above, we can then set-up two systems of equations and solve
them using Arden’s lemma (and its symmetric version). The system that uses the

27

variables 𝑋𝑞 can be resolved using Arden’s lemma, while the one using 𝑌𝑞 can be
solved using the symmetric version of Arden’s lemma.

28

Exercise 1.27 (Regular expressions and closure properties of regular languages). We know
that regular expressions represent exactly the regular languages and we know that regular
languages are closed under several operations. This exercise is about finding regular expressions
for the languages after the application of one of such operations.

Given as input regular expressions 𝑟1 and 𝑟2, representing respectively languages 𝐿1 and 𝐿2,
by construction (𝑟1) + (𝑟2), (𝑟1)(𝑟2), and (𝑟1)∗ represent respectively the languages 𝐿1 ∪ 𝐿2,
𝐿1𝐿2, and 𝐿∗

1. What about the other operations that preserve regularity?

(a) (complement) Given as input a regular expression 𝑟, representing the language 𝐿, give
an algorithm to find the regular expression representing the language 𝐿. What is the
asymptotic cost of the algorithm proposed as a function of the number of symbols in 𝑟?

(b) (intersection) Given as input regular expressions 𝑟1 and 𝑟2, representing respectively
languages 𝐿1 and 𝐿2, give an algorithm to find a regular expression representing the
language 𝐿1 ∩ 𝐿2. What is the asymptotic cost of the algorithm proposed as a function
of the number of symbols in 𝑟1 and 𝑟2?

(c) (reverse) Given as input a regular expression 𝑟, representing the language 𝐿, give an algo-
rithm to find a regular expression representing the language 𝐿𝑅. What is the asymptotic
cost of the algorithm proposed as a function of the number of symbols in 𝑟?

(d) (homomorphism) Given as input a regular expression 𝑟, representing the language 𝐿,
and a homomorphism 𝜎, give an algorithm to find a regular expression representing the
language 𝜎(𝐿).

(e) (inverse homomorphism) Given as input a regular expression 𝑟, representing the language
𝐿, and a homomorphism 𝜎, give an algorithm to find a regular expression representing
the language 𝜎−1(𝐿).

29

Exercise 1.28 (On some decidable properties of regular expressions). Let 𝐿𝑟 be the (regular)
language represented by the regular expression 𝑟. Given as input regular expressions 𝑟 and 𝑠,
describe an algorithm to decide whether

(a) 𝐿𝑟 = 𝐿𝑠.
(b) 𝐿𝑟 ⊆ 𝐿𝑠.
(c) 𝐿𝑟 = ∅.
(d) 𝐿𝑟 is infinite.
(e) 𝐿𝑟 ∩ 𝐿𝑠 = ∅.
(f) 𝐿𝑟 ∩ 𝐿𝑠 is infinite.

What is the asymptotic cost of the algorithm proposed as a function of the number of symbols
in 𝑟 and 𝑠?

30

Exercise 1.29 (Transformation of regular expressions). We say that two regular expressions
𝑝, 𝑞 are equivalent (𝑝 ≡ 𝑞) if the languages represented by 𝑝 and 𝑞 (resp. 𝐿(𝑝) and 𝐿(𝑞))
are the same. To check whether two regular expressions 𝑝, 𝑞 are equivalent one could always
construct the associated DFAs and check whether they accept the same language. This is
computationally expensive.1

This exercise is about checking the equivalence of two regular expressions using simple algebraic
manipulations. Show that for all regular expressions 𝑝, 𝑞, and 𝑟:

(a) (𝑝 + 𝑞)∗ ≡ 𝑝∗(𝑞𝑝∗)∗.
(b) 𝑝(𝑞𝑝)∗ ≡ (𝑝𝑞)∗𝑝.
(c) (𝑝 + 𝑞∗)∗ ≡ (𝑝 + 𝑞)∗.
(d) If 𝑝 ≡ 𝑞, then 𝑝𝑟 ≡ 𝑞𝑟 and 𝑟𝑝 ≡ 𝑟𝑞.
(e) If 𝐿(𝑞) ⊆ 𝐿(𝑝), then 𝑝∗𝑞∗ ≡ 𝑞∗𝑝∗ ≡ 𝑝∗.
(f) 𝑝∗ ≡ (𝜆 + 𝑝)∗ ≡ (𝜆 + 𝑝)(𝑝∗𝑝𝑝)∗.
(g) 𝑝∗𝑝𝑝 + 𝜆 ≡ (𝑝∗𝑝𝑝)∗ ≡ (𝑝𝑝 + 𝑝𝑝𝑝)∗.
(h) 𝑝∗(𝑞 + 𝑟𝑝∗)∗ ≡ (𝑝 + 𝑞∗𝑟)∗𝑞∗.
(i) (𝑞𝑞 + 𝑞𝑝 + 𝑝)∗𝑞𝑝𝑝∗ ≡ 𝑝∗𝑞(𝑝𝑝∗𝑞 + 𝑞𝑝∗𝑞)∗𝑝𝑝∗.
(j) (𝜆 + 𝑏)𝑎∗(𝑏 + 𝑏𝑏𝑎∗)∗ ≡ 𝑏∗(𝑎 + 𝑏𝑏 + 𝑏𝑏𝑏)∗𝑏∗.

Tip

To prove some of the items (especially, the last three), it is useful to apply previous
equivalences.

1Deciding whether two regular expressions are equivalent is PSPACE-complete, i.e., informally, it is the
hardest among the decision problems solvable using a polynomial amount of memory, but no limitations on
the running time.

31

	Instructions
	All exercises

