
Llista de problemes 4

Intruccions

Els recursos útils per resoldre els exercicis d’aquest conjunt de problemes són els següents:

Vídeos de Sipser

• Lecture 12: Time Complexity
• Lecture 13: P and NP, SAT, poly-time reducibility
• Lecture 15: NP-completeness

Llibres

• (Sipser 2013, § 7)
• (Hopcroft, Motwani, i Ullman 2007, § 10 and § 11.1)

Cases, Rafel, i Lluís Màrquez. 2003. Llenguatges, gramàtiques i autòmats : curs bàsic. 2a ed.
Edicions UPC.

Hopcroft, John E., Rajeev Motwani, i Jeffrey D. Ullman. 2007. Introduction to Automata
Theory, Languages, and Computation. 3rd edition. Pearson Addison Wesley.

Sipser, Michael. 2013. Introduction to the theory of computation. 3rd edition. Cengage
Learning.
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Tots els exercicis

Exercici 4.1 (Problema del viatjant de comerç). Suposem que se’ns dona una instància del
Problema del Viatjant de Comerç (TSP) amb 𝑛 ciutats i distàncies 𝑑𝑖𝑗. Per a cada subconjunt
𝑆 de les ciutats excloent la ciutat 1, i per a cada 𝑗 ∈ 𝑆, definim 𝑐[𝑆, 𝑗] com el camí més curt
que comença a la ciutat 1, visita totes les ciutats de 𝑆 i acaba a la ciutat 𝑗.

(a) Doneu un algorisme que calculi 𝑐[𝑆, 𝑗] mitjançant programació dinàmica, és a dir, pro-
gressant de conjunts 𝑆 més petits a conjunts més grans i utilitzant una definició recurrent
de 𝑐[𝑆, 𝑗]. Mostreu que aquest algoritme resol el TSP en temps 𝑂(𝑛22𝑛). Quins són els
requeriments d’espai de l’algoritme?

(b) Suposem que volem trobar el camí més curt (en el sentit de la suma dels pesos) de 1 a
𝑛, sense necessitat de visitar totes les ciutats. Argumenteu per què aquest problema es
pot resoldre en temps polinòmic.
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Exercici 4.2 (A la recerca de cliques). Una 𝑘-clica en un graf 𝐺 = (𝑉 , 𝐸) és un subgraf
complet d’ordre 𝑘 de 𝐺, és a dir, un subgraf de 𝑘 vèrtexs que conté totes les arestes possibles
entre ells. Diem que 𝐺′ és una clica en 𝐺 si 𝐺′ és una 𝑘-clica en 𝐺 per a algun 𝑘. Recordeu
que el problema següent és un NP-complet conegut.

Clica: Donat un graf no dirigit 𝐺 i un natural 𝑘, determinar si 𝐺 conté una 𝑘-clica.

Els següents són alguns problemes relacionats amb Clica.

(a) Clica maximal. Una clica és maximal si no es pot estendre, és a dir, si no hi ha cap clica
més gran que la contingui. Descriviu un algorisme tan eficient com pugueu que, donat
un graf no dirigit 𝐺, trobi una clica maximal de 𝐺. Quin és el cost de l’algorisme?

(b) Clica màxima. Una clica és màxima si no hi ha cap altra clica que tingui més vèrtexs (una
clica màxima sempre és maximal però la inclusió inversa no sempre és certa). Descriviu
un algorisme tan eficient com pugueu que, donat un graf no dirigit 𝐺, trobi una clica
màxima de 𝐺. Quin és el cost de l’algorisme?

(c) Clica planar. Recordeu que un graf és planar si es pot dibuixar en el pla sense creuaments
d’arestes. Sigui ClicaPlanar el problema següent: donat un graf planar no dirigit 𝐺 i
un natural 𝑘, té 𝐺 una 𝑘-clica? Demostreu que ClicaPlanar té un algorisme de temps
polinòmic.

Nota

La comprovació de la planaritat es pot fer en temps lineal (en el nombre de vèrtexs).
Podeu assumir l’existència d’aquests algorismes per l’exercici.

(d) Mitja clica. Sigui MitjaClica el problema següent: donat un graf no dirigit 𝐺, té 𝐺 una
clica amb almenys ⌈ |𝑉 (𝐺)|

2 ⌉ vèrtexs? Demostreu que MitjaClica és NP-complet.
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Exercici 4.3 (Propietats de tancament de P, NP i coNP). L’objectiu d’aquest exercici és
revisar algunes propietats de tancament de P, NP i coNP.

1. (propietat de tancament respecte de la unió) Demostreu les implicacions següents:

(a) Donats 𝐴 i 𝐵 a P, 𝐴 ∪ 𝐵 ∈ P.

(b) Donats 𝐴 i 𝐵 a NP, 𝐴 ∪ 𝐵 ∈ NP.

(c) Donats 𝐴 i 𝐵 a coNP, 𝐴 ∪ 𝐵 ∈ coNP.

2. (propietat de tancament respecte de la intersecció) Demostreu les implicacions següents:

(a) Donats 𝐴 i 𝐵 a P, 𝐴 ∩ 𝐵 ∈ P.

(b) Donats 𝐴 i 𝐵 a NP, 𝐴 ∩ 𝐵 ∈ NP.

(c) Donats 𝐴 i 𝐵 a coNP, 𝐴 ∩ 𝐵 ∈ coNP.

3. (propietat de tancament respecte de la concatenació) Demostreu les implicacions següents:

(a) Donats 𝐴 i 𝐵 a P, 𝐴 ⋅ 𝐵 ∈ P.

(b) Donats 𝐴 i 𝐵 a NP, 𝐴 ⋅ 𝐵 ∈ NP.

(c) Donats 𝐴 i 𝐵 a coNP, 𝐴 ⋅ 𝐵 ∈ coNP.
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Exercici 4.4 (Reduccions de temps polinòmic). Considereu la relació ≤𝑝
𝑚 entre llenguatges i

justifiqueu les respostes a les preguntes següents.

(a) És ≤𝑝
𝑚 reflexiva? És a dir, es compleix que 𝐴 ≤𝑝

𝑚 𝐴 per a qualsevol llenguatge 𝐴?

(b) És ≤𝑝
𝑚 simètrica? És a dir, es compleix que si 𝐴 ≤𝑝

𝑚 𝐵, aleshores 𝐵 ≤𝑝
𝑚 𝐴 per a

qualssevol llenguatges 𝐴, 𝐵?

(c) És ≤𝑝
𝑚 antisimètrica? És a dir, es compleix que 𝐴 ≤𝑝

𝑚 𝐵 i 𝐵 ≤𝑝
𝑚 𝐴 impliquen 𝐴 = 𝐵

per a qualssevol llenguatges 𝐴, 𝐵?

(d) És ≤𝑝
𝑚 transitiva? És a dir, es compleix que 𝐴 ≤𝑝

𝑚 𝐵 i 𝐵 ≤𝑝
𝑚 𝐶 impliquen 𝐴 ≤𝑝

𝑚 𝐶 per
a qualssevol llenguatges 𝐴, 𝐵 i 𝐶?

Reduccions polinomiques ≤𝑝
𝑚

Recordeu que, donats dos llenguatges 𝐴, 𝐵 sobre el mateix alfabet Σ, diem que 𝐴 es
redueix polinòmicamente a 𝐵 (s’escriu 𝐴 ≤𝑝

𝑚 𝐵 o 𝐴 ≤𝑝 𝐵) si existeix una funció total
𝑓 ∶ Σ∗ → Σ∗ computable en temps polinòmic tal que per a tot 𝑤 ∈ Σ∗, 𝑤 ∈ 𝐴 si i només
si 𝑓(𝑤) ∈ 𝐵.
Una propietat útil és el tancament de les classes P, NP i coNP per reduccions polinò-
miques, és a dir, donat 𝐴 ≤𝑝

𝑚 𝐵,

• si 𝐵 ∈ P, llavors 𝐴 ∈ P,
• si 𝐵 ∈ NP, llavors 𝐴 ∈ NP, i
• si 𝐵 ∈ coNP, llavors 𝐴 ∈ coNP.

La 𝑚 en la notació ≤𝑝
𝑚 indica que la funció 𝑓 no és necessàriament injectiva (és many-

one).

5



Exercici 4.5 (Tancament per l’estrella de Kleene).

(a) Mostreu que P és tancada per l’estrella de Kleene.

Consell

Utilitzeu programació dinàmica. Donat un conjunt 𝐴 ∈ P sobre Σ i una entrada
𝑥 = 𝑥1 … 𝑥𝑛 amb 𝑥𝑖 ∈ Σ, construïu una taula que indiqui per a cada 𝑖 < 𝑗 si el
submot 𝑥𝑖 … 𝑥𝑗 és a 𝐴∗.

(b) Mostreu que NP és tancada per l’estrella de Kleene.
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Exercici 4.6 (Cerca vs decisió). Demostreu les conseqüències següents de la hipòtesi P = NP.

(a) Existeix un algorisme de temps polinòmic que produeix un model (una assignació que
satisfà la fórmula) quan se li dóna una fórmula booleana satisfactible.

(b) Els enters es poden factoritzar en temps polinòmic.

(c) Hi ha un algorisme de temps polinòmic que pren com a entrada un graf no dirigit i troba
una clica màxima (vegeu l’exercici 7.2) continguda en aquest graf.

Nota

Els algorismes que se us demana proporcionar calculen una funció, però NP conté llen-
guatges, no funcions. L’assumpció P = NP implica que decidir satisfactibilitat, no
primalitat i l’existència de cliques d’una mida donada és resoluble en temps polinòmic.
Però, encara que l’assumpció no mostra com trobar les solucions, heu de demostrar que
es poden trobar igualment.
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Exercici 4.7 (Teorema de Berman). Un llenguatge s’anomena unari si cada mot que conté
és de la forma 1𝑛 per a algun 𝑛 ≥ 0.

Demostreu el teorema de Berman (1978): si un llenguatge unari és NP-complet, aleshores
P = NP.

Consell

Utilitzeu el fet que SAT és NP-complet i, per hipòtesi, reductible a un llenguatge unari
mitjançant una funció 𝑓 . Per decidir SAT, donada una fórmula booleana d’entrada 𝜙,
considereu l’arbre on l’arrel (nivell 0) és 𝜙 i les fórmules al nivell 𝑘 s’obtenen de les
del nivell 𝑘 − 1 de manera que la 𝑘-èsima variable pren els 2 valors de veritat possibles.
Demostreu com 𝑓 permet explorar aquest arbre en temps polòmic.
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Exercici 4.8 (NP i HALT). Demostreu que HALT és NP-difícil. És també NP-complet?

Nota

Recordeu que
HALT = {⟨𝑥, 𝑦⟩ ∣ 𝑀𝑥(𝑦)↓} ,

on 𝑀𝑥 és la màquina de Turing amb nombre de Gödel 𝑥 i el símbol ↓ indica que la
màquina finalitza.
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Exercici 4.9 (UniqueSAT). La classe DP (de difference polynomial time) es defineix com el
conjunt de llenguatges 𝐿 per als quals existeixen dos llenguatges 𝐿1 ∈ NP, 𝐿2 ∈ coNP tals
que 𝐿 = 𝐿1 ∩ 𝐿2. Cal notar que, com que 𝐿2 ∈ NP, 𝐿 és la diferència de dos conjunts de NP
(però no confongueu DP amb NP ∩ coNP, que s’assembla superficialment).

Considereu el problema UniqueSAT, que consisteix a determinar si una fórmula booleana té
una única assignació satisfactible (o model) i demostreu els següents fets.

(a) UniqueSAT ∈ DP.

(b) Si UniqueSAT és a NP, aleshores NP = coNP.
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Exercici 4.10 (Pertanyen a P?). Demostreu que els llenguatges següents sobre grafs no dirigits
són a NP. Quins pertanyen a P?

(a) Dos coloració. 2COL = {𝐺 ∣ el graf 𝐺 té una 2-coloració}, on una 𝑘-coloració de 𝐺 és
una assignació d’un nombre a {1, … , 𝑘} a cada vèrtex de 𝐺 tal que tot parell de vèrtexs
adjacents rep colors diferents.

(b) Tres coloració. 3COL = {𝐺 ∣ el graf 𝐺 té una 3-coloració}.
(c) Camí hamiltonià. HP = { 𝐺 ∣ el graf 𝐺 té un camí hamiltonià}, on un camí se’n diu

hamiltonià si visita cada vèrtex exactament un cop.
(d) Connectivitat. CONNECTED = {𝐺 ∣ 𝐺 és un graf connex}.
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