
Presentación del laboratorio de PRO2

El laboratorio de la asignatura Programació 2 (abreviadamente PRO2) tiene como objetivo
ejercitar los conocimientos impartidos en dicha asignatura y la precedente, Programació 1,
sobre especificación, diseño e implementación de programas y adquirir experiencia en la puesta
a punto (“debugging” & “testing”) de programas de tamaño y dificultad medios.

En cada sesión de laboratorio se ejercitan técnicas de diseño de algoritmos y uso de estruc-
turas de datos presentados previamente en la teorı́a de la asignatura.

Las mencionadas sesiones se describen en este documento, que es al mismo tiempo una
guı́a de referencia y un manual de ejercicios. Algunas sesiones además dedicarán parte de su
tiempo a la supervisión de la práctica de la asignatura.

El entorno de trabajo sobre el que realizaremos las sesiones consta del sistema operativo
Linux y el lenguaje de programación C++. Supondremos que el alumnado ya está familiarizado
con los conceptos básicos del lenguaje C++ (instrucciones de control, tipos simples, el cons-
tructor struct, la clase vector, etc.) y posee un mı́nimo dominio del sistema operativo Linux
(por ejemplo, con editores y con la gestión de ficheros).

En esta página encontraréis un resumen de lo que se puede hacer en el Linux de la FIB

https://www.fib.upc.edu/ca/la-fib/serveis-tic/entorn-de-treball-als-ordinadors

Sobre el compilador de C++, recomendamos el g++ (http://gcc.gnu.org), a ser posible
la versión 11.3, como en el Jutge, o superior. Viene incorporado en todas las distribuciones
normales de Linux y es actualizable via web.

Toda la información sobre la asignatura se encuentra en la página

http://www.cs.upc.edu/pro2

Dicha página incluye: un enlace a la guı́a docente, los apuntes de teorı́a, este manual, el
enunciado de la práctica, etc.

También es importante mirar periódicamente los avisos del Racó de la FIB.

Sesión 1

Entorno de trabajo y repaso de C++

Algunos de los ejercicios contenidos en este documento se han de resolver en el Jutge
(en la lista correspondiente del curso actual); aquı́ están señalados convenientemente

En general, los ejercicios contenidos en este documento se presentan por orden de
dificultad. Por ello, recomendamos resolverlos en el orden en el que aparecen. No se
supervisarán los problemas del Jutge si antes no se han resuelto los ejercicios previos.

En esta primera sesión proponemos algunos ejercicios para repasar la codificación de algo-
ritmos en C++. Para empezar, copiad en vuestra cuenta toda la carpeta /assig/pro2/sessio1,
ya que en este texto mencionamos ficheros contenidos en ella. Es recomendable crear una car-
peta distinta por cada sesión.

1.1. Compilación y enlazado de programas en C++
Comenzaremos repasando el proceso de obtención de un fichero ejecutable de C++ (extensión
.exe) a partir de un fichero fuente (extensión .cc).

Consideremos el fichero PRO2.cc, contenido en sessio1. Para obtener el correspondiente
PRO2.exe aplicamos el comando

g++ -o PRO2.exe PRO2.cc

Si el fichero fuente no contiene errores, e incluye un método main, se generará el corres-
pondiente ejecutable; la opción -o es la que nos permite elegir el nombre del mismo. El proceso
implica generar el código máquina de nuestro programa y combinarlo con todos los elementos
standard del lenguaje que necesita para funcionar.

Si un programa se compone de varios ficheros fuente y todos se encuentran en la carpeta en
la que estamos trabajando, se pueden compilar todos juntos de la misma manera. Si el fichero
f1.cc es el que contiene el método main y los demás ficheros implicados son f2.cc ...
fn.cc, podemos hacer

g++ -o f1.exe f1.cc f2.cc ... fn.cc

4 SESIÓN 1. ENTORNO DE TRABAJO Y REPASO DE C++

Sin embargo, muchas veces resulta conveniente que cada uno de esos ficheros se compile de
forma separada, con lo que el ejecutable no se obtendrá mediante una única instrucción como la
anterior. Esto es particularmente relevante en programación modular, como la que introducimos
en esta asignatura, pues cada módulo o clase dará lugar a ficheros que se habrán de compilar
separadamente.

En esos casos, se trabaja en dos fases: primero se obtiene el código máquina de cada fichero
fuente, dando lugar a los correspondientes ficheros objeto (extensión .o). Cada fichero objeto
contendrá también la información necesaria para que su código máquina pueda usar o ser usado
por el de otros ficheros objeto. Por último se combinan, o enlazan, todos esos ficheros objeto
para formar el ejecutable.

En el ejemplo de PRO2.cc las dos fases serı́an:

g++ -c PRO2.cc --> compilación: produce el fichero objeto PRO2.o

g++ -o PRO2.exe PRO2.o --> linkado: enlaza PRO2.o con los elementos que le faltan

En un caso general harı́amos

g++ -c f1.cc f2.cc ... fn.cc --> produce f1.o, f2.o ... fn.o

g++ -o f1.exe f1.o f2.o ... fn.o

En la próxima sesión iremos más allá: veremos ejemplos de programas que usan código
contenido en ficheros fuente a los que no tendremos acceso (por tanto, no los podremos com-
pilar nosotros mismos), pero sı́ a los correspondientes ficheros objeto.

Para garantizar una compilación en las mismas condiciones que el Jutge de PRO2, se ha
definido un comando en el linux de la FIB, llamado p2++1.

Para usar dicha definición hay que hacer

p2++ -c PRO2.cc

Para conocer las opciones de compilación más importantes de g++ puede visitarse

https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html

La opción -D GLIBCXX DEBUG será comentada en un momento posterior de la sesión.

1Para obtener el mismo efecto en un linux tipo ubuntu hay que definir un alias con las opciones correspondien-
tes. Una posibilidad serı́a añadir el siguiente comando (en una sola lı́nea y terminado por un salto de lı́nea) en el
fichero .bashrc de vuestro directorio principal ($HOME). Cuidado con el copy&paste, que no suele copiar bien
todos los caracteres.

alias p2++="g++ -D GLIBCXX DEBUG -O2 -Wall -Wextra -Werror -Wno-sign-compare -std=c++11
-fno-extended-identifiers"

1.2. EJECUCIÓN DE PROGRAMAS EN C++ 5

1.2. Ejecución de programas en C++

Los programas que codificaremos en la asignatura gestionarán su entrada/salida mediante el
canal estándar, en ocasiones redirigido a ficheros de texto.

Las ejecuciones se realizarán desde la lı́nea de comandos. Por ejemplo, si queremos ejecutar
el programa contenido en el fichero PRO2.exe, recibiendo sus datos por teclado y escribiendo
sus resultados en pantalla, tecleamos

./PRO2.exe

y a continuación escribimos los datos del programa respetando el formato esperado por éste.
Tras la ejecución, veremos escrita la salida del mismo.

Si deseamos ejecutar el mismo programa sobre los datos almacenados en el fichero PRO2.dat,
pero queremos ver los resultados por pantalla, redireccionaremos el canal estándar de entrada
hacia ese fichero:

./PRO2.exe <PRO2.dat

Si además queremos que los resultados no se escriban en pantalla sino en otro fichero
PRO2.sal ejecutaremos

./PRO2.exe <PRO2.dat >PRO2.sal

Éstos son los mecanismos de redirección de los canales estándar de entrada y salida en
Linux. Puede usarse cualquier combinación de ellos cuando sea preciso.

Tenéis un segundo ejemplo, puramente numérico, en el fichero suma.cc. Probad con él
todo el proceso de compilación, linkado y ejecución.

1.2.1. Ejercicio: suma de una secuencia de enteros (Jutge)

Modificad el programa suma.cc para que sume una secuencia de enteros terminada en una
marca preestablecida. Leed y sumad los números en el mismo método main, pero de forma que
cada número se pierda una vez sumado (no vale almacenar primero los números en un vector
y luego sumarlos). Probadlo de forma interactiva y mediante redirección de la entrada. En
el fichero sumasec ejemplos.txt tenéis algunas posibles entradas con sus correspondientes
salidas.

Escribid una segunda versión que permita sumar varias secuencias distintas en una misma
ejecución. Esta es la versión que encontraréis en el Jutge.

1.3. Estructura de un programa en C++

Un programa en C++ puede consistir en un único fichero (normalmente con extensión .cc o
.cpp; en esta asignatura optamos por la extensión .cc). En ese caso, el fichero ha de tener la
siguiente estructura.

6 SESIÓN 1. ENTORNO DE TRABAJO Y REPASO DE C++

inclusiones y espacio de nombres

definiciones de constantes o tipos

procedimientos

programa principal (main)

Las inclusiones permiten emplear en el programa elementos definidos en otro lugar. Las
más tı́picas proceden de clases o librerı́as del propio C++:

#include <iostream>: canales standard de entrada y salida

#include <vector>: clase vector

#include <string>: clase string

#include <cmath>: funciones matemáticas

Sin embargo, en cuanto un programa adquiere un cierto tamaño seguramente requerirá una
cierta descomposición modular. C++ ofrece un mecanismo esencial para obtener programas
modulares: la clase. En PRO2 usaremos clases para traducir módulos de datos. Para cada pro-
grama C++ nos tocará obtener un fichero .cc que contendrá el correspondiente main y varios
ficheros más que contendrán las diversas clases que necesitemos.

En un programa codificado en C++ pueden aparecer una o varias clases, que clasificamos
en los siguientes grupos:

las clases estándar del lenguaje (iostream, vector, etc)

las clases definidas en el directorio en el que estemos

las clases definidas en otros directorios

Para poder usar una clase que no sea estándar y que no tengamos definida en nuestro direc-
torio, hemos de informar al compilador del lugar donde se encuentra. Veremos cómo se hace
en próximos capı́tulos.

Otra posibilidad para descomponer y reutilizar código consiste en distribuirlo en varios
ficheros, compilar éstos separadamente y usar solo los componentes que nos interesen en cada
momento. Veremos un ejemplo en esta misma sesión.

1.4. Acciones y funciones; paso de parámetros
Un requisito de la asignatura es que todas las variables que intervengan en las acciones y fun-
ciones que diseñemos han de aparecer en la cabecera de éstas o bien ser locales (no se permiten
variables globales). Mantendremos esta lı́nea al codificar nuestros algoritmos en C++, si bien
deberemos adaptarnos a las particularidades de dicho lenguaje.

Independientemente del lenguaje de programación empleado, podemos clasificar los paráme-
tros de una acción de la siguiente manera (en una función todos los parámetros son de entrada):

1.4. ACCIONES Y FUNCIONES; PASO DE PARÁMETROS 7

De entrada: su valor inicial permanece inalterado tras la ejecución de la acción, aunque
durante ésta se haya modificado

De entrada/salida: su valor inicial es relevante para la ejecución de la acción pero puede
quedar modificado tras la misma

De salida: su valor inicial es irrelevante para la ejecución de la acción (muchas veces ni
siquiera se conoce) y su valor final es creado por la propia acción

En C++ existen las siguientes opciones, que permiten traducir la clasificación anterior con
bastante claridad:

1. Parámetros por valor. La acción recibe una copia del parámetro y trabaja con ella. Al
acabar, dicha copia se destruye. El valor del parámetro no cambia, por lo que este meca-
nismo trata a los parámetros como de entrada según la clasificación anterior.

Para indicar que un parámetro se pasa por valor no hay que hacer nada.

2. Parámetros por referencia. La acción recibe la dirección de memoria del parámetro y
toda modificación del mismo es permanente. Respecto a la clasificación anterior, este
mecanismo trata a los parámetros como de salida si al entrar en la acción no tienen valor
(por ejemplo, si no han sido inicializados) o su valor es irrelevante. En caso contrario,
tendrı́amos un parámetro de entrada/salida.

Para indicar que un parámetro se pasa por referencia, se precede su nombre de un signo
&.

3. Parámetros por referencia constante. Al igual que con los parámetros por referencia, la
acción recibe la dirección de memoria del parámetro, pero si intenta modificar su valor el
compilador da un error, por lo que de hecho funcionan como parámetros por valor. Este
mecanismo es especialmente indicado para usar vectores y otras estructuras complejas
como parámetros de entrada.

Para indicar que un parámetro se pasa por referencia constante, se precede su nombre de
un signo & y su tipo de la palabra const.

Ejemplos:

1. Cabecera de una acción que intercambia los valores de las variables enteras m y n. Como
deseamos que ambos parámetros cambien de valor, los definimos como de entrada/salida.
Al realizar la codificación en C++, han de pasarse por referencia.

void intercambiar(int& m, int& n)
/* Pre: cierto */
/* Post: m y n tienen sus valores intercambiados respecto a los iniciales */

2. Cabecera de una acción que intercambia los valores de las posiciones i y j de un vector
v. Claramente el vector es un parámetro de entrada/salida, pues deseamos modificarlo,
mientras que las posiciones son sólo de entrada. La codificación en C++ serı́a ası́

8 SESIÓN 1. ENTORNO DE TRABAJO Y REPASO DE C++

void intercambiar_vect(vector<int>& v, int i, int j)
/* Pre: 0 <= i, j < v.size() */
/* Post: v[i] y v[j] tienen sus valores intercambiados respecto a los iniciales */

Por la mencionada caracterı́stica de C++, aseguramos que el vector será modificado de
forma permanente y los enteros no.

3. Cabecera de una función que busca un elemento x en un vector v y devuelve el resultado
en un booleano. Notad que, al tratarse de una función, los parámetros son de entrada y
podrı́an traducirse a C++ como parámetros por valor. Sin embargo, en el caso del vector,
es conveniente pasarlo por referencia constante, para ahorrarnos la copia del mismo.

bool busqueda_lin(const vector<int>& v, int x)
/* Pre: cierto */
/* Post: el resultado indica si x está en v */

4. Cabecera de una función que obtiene los valores máximo y mı́nimo de un vector v. Para
poder devolver dos resultados hemos de usar un struct o un pair.

struct parint {
int prim, seg;

};

parint max_min(const vector<int>& v)
/* Pre: v.size()>0 */
/* Post: el primer componente del resultado es el valor máximo de v;

el segundo componente del resultado es el valor mı́nimo de v */

pair<int,int> max_min(const vector<int>& v)
/* Pre: v.size()>0 */
/* Post: el primer componente del resultado es el valor máximo de v;

el segundo componente del resultado es el valor mı́nimo de v */

Otra opción consiste en convertir la función en acción y obtener los resultados como
parámetros por referencia:

void max_min(const vector<int>& v, int& x, int& y)
/* Pre: v.size()>0 */
/* Post: x es el valor máximo de v; y es el valor mı́nimo de v */

Por último, hay dos soluciones más que no consideramos adecuadas para este ejercicio. Una
es escribir los resultados dentro de la operación de búsqueda, mediante cout. La otra consiste
en tratar uno de los resultados como tal y el otro como parámetro de salida. Lo que queda es un
hı́brido entre acción y función al que no deseamos recurrir por ahora.

Observemos que, si bien en la asignatura se establece claramente la diferencia entre accio-
nes y funciones, en ocasiones necesitaremos transformar alguna función en acción, ya sea por
conveniencia o por obligación. Para ello, sustituimos los resultados de la misma por parámetros
por referencia, como en el ejemplo anterior.

1.4. ACCIONES Y FUNCIONES; PASO DE PARÁMETROS 9

1.4.1. Ejercicio: Intercambio de valores de dos variables enteras
Escribid un programa para intercambiar los valores de dos variables enteras, mediante una
acción como la especificada en el apartado anterior. Comprobad qué ocurre si los parámetros
no se pasan por referencia.

1.4.2. Ejercicio: Búsqueda lineal en un vector de enteros (Jutge)
En el fichero busquedalin.cc tenéis una función basada en el algoritmo de búsqueda lineal so-
bre un vector de enteros, con una cabecera como la mostrada antes. El programa que la contiene
usa la operación leerVector int, cuya cabecera está definida en el fichero vectorIOint.hh
(notad el #include en busquedalin.cc) y su código se encuentra en vectorIOint.cc. Las
operaciones de estos ficheros se pueden reutilizar en otros programas tal como lo hacemos en
éste.

Como vimos en la sección 1.1, para probar dicha operación se deben compilar los dos
ficheros .cc y linkar ambos para formar el ejecutable.

p2++ -c busquedalin.cc
p2++ -c vectorIOint.cc

p2++ -o busquedalin.exe busquedalin.o vectorIOint.o

Una vez probado que todo funciona correctamente, modificad la función lo mı́nimo posible
para que devuelva un resultado entero que diga si el elemento buscado está en el vector. En
caso de éxito, el entero ha de contener una posición en la que se encuentre dicho elemento. Re-
escribid la postcondición para que el valor del resultado quede exactamente definido en el caso
de que el elemento buscado no esté en el vector. Notad que si no se modifica vectorIOint.cc,
no hace falta volver a compilarlo.

Probad vuestra solución modificando adecuadamente el main.
En el Jutge encontraréis un ejercicio basado en una especificación concreta para la nueva

versión de la función de búsqueda.
Aprovecharemos este ejercicio para ilustrar el efecto de la opción -D GLIBCXX DEBUG al

compilar un programa. En general, dicha opción detecta y avisa de los accesos prohibidos a
memoria realizados por operaciones de clases tales como los vectores y otros contenedores
standard. Si se da el caso, el programa se interrumpe y se genera un mensaje con información
sobre el problema.

Por ejemplo, en la función de búsqueda sustituid la instrucción int i = 0; por int i =
-1; y analizad cuidadosamente el error obtenido en la ejecución.

1.4.3. Ejercicio: Intercambio de dos posiciones de un vector
Escribid un programa para intercambiar los valores de dos posiciones de un vector de enteros.
Emplead una acción con la cabecera vista anteriormente y reutilizad las operaciones de los
ficheros vectorIOint.hh y .cc. Completad el programa con un método main que lea un
vector y dos posiciones, realice el intercambio y escriba el nuevo vector, todo ello empleando
las operaciones mencionadas. Tened en cuenta que si dimensionamos un vector con un valor n,

10 SESIÓN 1. ENTORNO DE TRABAJO Y REPASO DE C++

las posiciones disponibles son las del intervalo [0..n-1]. Comprobad qué ocurre si intentamos
intercambiar otras.

1.4.4. Ejercicio: Máximo y mı́nimo de un vector de enteros (Jutge)
Escribid un programa para obtener los valores máximo y mı́nimo de un vector de enteros,
recorriendo éste sólo una vez. Producid tres versiones de la función max min basadas en las
especificaciones del apartado anterior.

Antes de realizar la entrega, probad las funciones con un programa aparte. Reutilizad las
operaciones de los ficheros vectorIOint.hh y .cc.

1.4.5. Ejemplo: suma de matrices
En C++ las matrices se representan como vectores de dos dimensiones y su parametrización es
igual que la de los vectores de una dimensión.

Por ejemplo, una función que sume matrices de enteros se puede escribir ası́

vector<vector<int> > suma(const vector<vector<int> >& m1,
const vector<vector<int> >& m2)

/* Pre: m1 y m2 son de la misma dimensión */
{

vector <vector<int> > s;
...
...
return s;

}
/* Post: el resultado es la suma de m1 y m2 */

Se puede abreviar un poco el código empleando la palabra clave typedef, que permite
renombrar el tipo vector<vector<int> >.

typedef vector<vector<int> > Matriz;

Matriz suma(const Matriz& m1, const Matriz& m2)
/* Pre: m1 y m2 son de la misma dimensión */
{

Matriz s;
...
...
return s;

}
/* Post: el resultado es la suma de m1 y m2 */

En el fichero suma mat.cc tenéis una implementación de esta función, ası́ como operacio-
nes de lectura y escritura de matrices. En los ficheros matrizIOint.hh y matrizIOint.cc

1.4. ACCIONES Y FUNCIONES; PASO DE PARÁMETROS 11

tenéis operaciones reutilizables de lectura y escritura de matrices. En el fichero suma mat.dat
tenéis un ejemplo de datos de entrada. En el fichero suma mat.sal tenéis el resultado corres-
pondiente.

Como ejercicio, modificad la cabecera de la operación para que la matriz suma se obtenga
como parámetro de salida, pasándolo por referencia y programad esta nueva versión. Compro-
bad que el programa resultante sigue siendo correcto.

1.4.6. Ejercicio: producto de matrices
Usad los elementos anteriores para obtener y probar la función del producto de matrices.

Matriz producto(const Matriz& m1, const Matriz& m2)
/* Pre: el número de columnas de m1 es igual al número de filas de m2 */
/* Post: el resultado es el producto de m1 y m2 */
{
Matriz prod;
...
...
return prod;

}

Ayuda: el resultado de multiplicar una matriz a de dimensión x,y por otra matriz b de di-
mensión y,z es una matriz m de dimensión x,z. Cada posición (i, j) de m contendrá el resultado
de multiplicar la fila i de a por la columna j de b, es decir,

∀i, j, 1≤ i≤ x, 1≤ j ≤ z, m(i, j) = ∑
1≤k≤y

a(i,k)b(k, j)

Ejemplo: si a es de dimensión 2,3 y b es de dimensión 3,1, su producto es una matriz de
dimensión 2,1.

a =

(
1 1 1
2 2 2

)
b =

 3
3
3

 a ·b =

(
9

18

)

En el fichero prod mat.dat tenéis un ejemplo de datos de entrada. En el fichero prod mat.sal
tenéis el resultado correspondiente.

Escribid y probad una segunda versión en la cual la matriz prod se obtenga como parámetro
de salida, pasándolo por referencia.

1.4.7. Ejercicio: clasificación de la liga (Jutge)
Consideremos una matriz cuadrada m de pares de naturales, que representa los resultados de
una competición deportiva a doble vuelta de N equipos. En la posición m(i, j) se encuentra
el resultado del partido de ida del equipo i contra el equipo j, mientras que el resultado del
correspondiente partido de vuelta se encuentra en m(j, i). El primer número del par alojado en

12 SESIÓN 1. ENTORNO DE TRABAJO Y REPASO DE C++

m(i, j) son los goles del equipo i y el segundo los del equipo j (al revés en el partido de vuelta).
La información de la diagonal (es decir, las posiciones m(i, j) tales que i = j) no es relevante.

Supongamos que, para cada enfrentamiento, el equipo ganador se anota 3 puntos y el per-
dedor 0. En caso de empate, se llevan 1 cada uno. Programad una operación que, a partir de una
matriz de estas caracterı́sticas, obtenga la clasificación de la competición, ordenada decrecien-
temente por puntos. En caso de empate a puntos, se ha de usar el orden decreciente respecto
a la diferencia de goles a favor y goles en contra de cada equipo. Si persiste el empate, los
equipos implicados han de aparecer en orden creciente respecto a su ı́ndice. Para cada equipo
ha de listarse su identificador, sus puntos, sus goles a favor y sus goles en contra.

Ejemplo, con N = 4. Los resultados del equipo 1 contra el equipo 2 han sido 1-0 en la ida
y 2-2 en la vuelta, etc. Donde pone x x puede haber cualquier par de enteros, ya que no será
relevante para el programa.

m =


x x 1 0 2 1 0 2
2 2 x x 3 3 1 3
1 1 1 2 x x 3 2
1 0 0 1 2 3 x x

 Clasificación =

4 9 10 8
3 8 12 12
1 8 6 7
2 8 9 10

En el fichero clasif.dat tenéis un ejemplo de datos de entrada. En el fichero clasif.res
tenéis el resultado correspondiente.

Para ordenar la clasificación podéis usar sort (ver “Normes de programació de P1”), defi-
niendo adecuadamente la relación de orden entre los equipos.

1.4.8. Ejercicio: clasificación de la liga (2) (Jutge)
Supongamos ahora que no disponemos de la matriz de pares con los goles de los partidos sino
de un listado con los resultados de toda la competición hasta una jornada determinada. Escribid
una nueva operación que transforme dicho listado en una matriz válida para el ejercicio anterior.
Integrad la nueva operación en la solución para que ésta funcione con el nuevo formato de los
datos.

En el fichero jornadas1-24 1314.dat tenéis los resultados de las primeras 24 jornadas
de la temporada 13-14 de la liga de fútbol de primera división de España, que como sabéis
consta de 20 equipos. Para que los resultados resulten más inteligibles, primero aparecen los de
la primera jornada, después los de la segunda, etc., aunque esto no es estrictamente necesario.
En el fichero jornadas1-24 1314.res tenéis la matriz resultante. Un par -1 -1 denota un
partido aún no jugado y también se usa en la diagonal.

En el fichero clasif j24 1314.res tenéis la clasificación correspondiente por si queréis
usar la matriz de jornadas1-24 1314.res para probar el programa anterior. Tendréis que
retocarlo ligeramente, de forma que no trate los pares -1 -1 de la matriz como empates.

En el fichero equipos 1314.txt tenéis la relación entre ı́ndices y nombres de equipos, por
si queréis verificar los datos por vuestra cuenta, ası́ como otra información útil para interpretar
los ficheros jornadas1-24 1314.dat y jornadas1-24 1314.res.

