Presentacion del laboratorio de PRO2

El laboratorio de la asignatura Programacié 2 (abreviadamente PRO2) tiene como objetivo
ejercitar los conocimientos impartidos en dicha asignatura y la precedente, Programacio 1,
sobre especificacion, disefio e implementacion de programas y adquirir experiencia en la puesta
a punto (“debugging” & “testing”) de programas de tamafio y dificultad medios.

En cada sesion de laboratorio se ejercitan técnicas de disefio de algoritmos y uso de estruc-
turas de datos presentados previamente en la teoria de la asignatura.

Las mencionadas sesiones se describen en este documento, que es al mismo tiempo una
guia de referencia y un manual de ejercicios. Algunas sesiones ademds dedicaran parte de su
tiempo a la supervision de la practica de la asignatura.

El entorno de trabajo sobre el que realizaremos las sesiones consta del sistema operativo
Linux y el lenguaje de programacion C++. Supondremos que el alumnado ya estd familiarizado
con los conceptos basicos del lenguaje C++ (instrucciones de control, tipos simples, el cons-
tructor struct, la clase vector, etc.) y posee un minimo dominio del sistema operativo Linux
(por ejemplo, con editores y con la gestion de ficheros).

En esta pagina encontraréis un resumen de lo que se puede hacer en el Linux de la FIB

https://www.fib.upc.edu/ca/la-fib/serveis-tic/entorn-de-treball-als-ordinadors

Sobre el compilador de C++, recomendamos el g++ (http://gcc.gnu.org), a ser posible
la version 11.3, como en el Jutge, o superior. Viene incorporado en todas las distribuciones
normales de Linux y es actualizable via web.

Toda la informacion sobre la asignatura se encuentra en la pagina

http://www.cs.upc.edu/pro2

Dicha pagina incluye: un enlace a la guia docente, los apuntes de teoria, este manual, el
enunciado de la préctica, etc.
También es importante mirar periddicamente los avisos del Racé de la FIB.

Sesion 1

Entorno de trabajo y repaso de C++

= Algunos de los ejercicios contenidos en este documento se han de resolver en el Jutge
(en la lista correspondiente del curso actual); aqui estan sefialados convenientemente

= En general, los ejercicios contenidos en este documento se presentan por orden de
dificultad. Por ello, recomendamos resolverlos en el orden en el que aparecen. No se
supervisardn los problemas del Jutge si antes no se han resuelto los ejercicios previos.

En esta primera sesion proponemos algunos ejercicios para repasar la codificacion de algo-
ritmos en C++. Para empezar, copiad en vuestra cuenta toda la carpeta /assig/pro2/sessiol,
ya que en este texto mencionamos ficheros contenidos en ella. Es recomendable crear una car-
peta distinta por cada sesion.

1.1. Compilacion y enlazado de programas en C++

Comenzaremos repasando el proceso de obtencion de un fichero ejecutable de C++ (extension
.exe) a partir de un fichero fuente (extension .cc).

Consideremos el fichero PRO2. cc, contenido en sessiol. Para obtener el correspondiente
PRO2.exe aplicamos el comando

g+t+ -o PRO2.exe PRO2.cc

Si el fichero fuente no contiene errores, e incluye un método main, se generara el corres-
pondiente ejecutable; la opcion -o es la que nos permite elegir el nombre del mismo. El proceso
implica generar el cdigo maquina de nuestro programa y combinarlo con todos los elementos
standard del lenguaje que necesita para funcionar.

Si un programa se compone de varios ficheros fuente y todos se encuentran en la carpeta en
la que estamos trabajando, se pueden compilar todos juntos de la misma manera. Si el fichero
fl.cc es el que contiene el método main y los demds ficheros implicados son £2.cc
fn.cc, podemos hacer

gtt -o fl.exe fl.cc f2.cc ... fn.cc

4 SESION 1. ENTORNO DE TRABAJO Y REPASO DE C++

Sin embargo, muchas veces resulta conveniente que cada uno de esos ficheros se compile de
forma separada, con lo que el ejecutable no se obtendra mediante una tinica instruccion como la
anterior. Esto es particularmente relevante en programacion modular, como la que introducimos
en esta asignatura, pues cada modulo o clase dard lugar a ficheros que se habran de compilar
separadamente.

En esos casos, se trabaja en dos fases: primero se obtiene el cddigo maquina de cada fichero
fuente, dando lugar a los correspondientes ficheros objeto (extension . o). Cada fichero objeto
contendrd también la informacién necesaria para que su cddigo maquina pueda usar o ser usado
por el de otros ficheros objeto. Por ultimo se combinan, o enlazan, todos esos ficheros objeto
para formar el ejecutable.

En el ejemplo de PRO2. cc las dos fases serian:

gt+ —-c PRO2.cc --> compilacidén: produce el fichero objeto PRO2.0

gt+ -o PRO2.exe PRO2.0 --> linkado: enlaza PRO2.0 con los elementos que le faltan

En un caso general hariamos

gt+t -c¢ fl.cc f2.cc ... fn.cc --> produce fl.o, f2.0 ... fn.o

gtt+ -o fl.exe fl.o f2.0 ... fn.o
En la préxima sesion iremos maés alla: veremos ejemplos de programas que usan cédigo

contenido en ficheros fuente a los que no tendremos acceso (por tanto, no los podremos com-
pilar nosotros mismos), pero si a los correspondientes ficheros objeto.

Para garantizar una compilacion en las mismas condiciones que el Jutge de PRO2, se ha
definido un comando en el linux de la FIB, llamado p2++'.

Para usar dicha definicién hay que hacer

p2++ -c PRO2.cc

Para conocer las opciones de compilacién mas importantes de g++ puede visitarse
https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html

La opcion -D_GLIBCXX_DEBUG sera comentada en un momento posterior de la sesion.

"Para obtener el mismo efecto en un linux tipo ubuntu hay que definir un alias con las opciones correspondien-
tes. Una posibilidad serfa afiadir el siguiente comando (en una sola linea y terminado por un salto de linea) en el
fichero .bashrc de vuestro directorio principal ($HOME). Cuidado con el copy&paste, que no suele copiar bien
todos los caracteres.

alias p2++="g++ -D_GLIBCXX_DEBUG -02 -Wall -Wextra -Werror -Wno-sign-compare -std=c++11
-fno-extended-identifiers"

1.2. EJECUCION DE PROGRAMAS EN C++ 5

1.2. Ejecucion de programas en C++

Los programas que codificaremos en la asignatura gestionardn su entrada/salida mediante el
canal estandar, en ocasiones redirigido a ficheros de texto.

Las ejecuciones se realizaran desde la linea de comandos. Por ejemplo, si queremos ejecutar
el programa contenido en el fichero PRO2 . exe, recibiendo sus datos por teclado y escribiendo
sus resultados en pantalla, tecleamos

./PRO2 .exe

y a continuacion escribimos los datos del programa respetando el formato esperado por éste.
Tras la ejecucion, veremos escrita la salida del mismo.

Si deseamos ejecutar el mismo programa sobre los datos almacenados en el fichero PRO2 . dat,
pero queremos ver los resultados por pantalla, redireccionaremos el canal estandar de entrada
hacia ese fichero:

./PRO2.exe <PRO2.dat

Si ademds queremos que los resultados no se escriban en pantalla sino en otro fichero
PRO2.sal ejecutaremos

./PRO2.exe <PRO2.dat >PRO2.sal

Estos son los mecanismos de redireccién de los canales estindar de entrada y salida en
Linux. Puede usarse cualquier combinacién de ellos cuando sea preciso.

Tenéis un segundo ejemplo, puramente numérico, en el fichero suma.cc. Probad con €l
todo el proceso de compilacidn, linkado y ejecucion.

1.2.1. Ejercicio: suma de una secuencia de enteros (Jutge)

Modificad el programa suma.cc para que sume una secuencia de enteros terminada en una
marca preestablecida. Leed y sumad los nimeros en el mismo método main, pero de forma que
cada niimero se pierda una vez sumado (no vale almacenar primero los nimeros en un vector
y luego sumarlos). Probadlo de forma interactiva y mediante redireccién de la entrada. En
el fichero sumasec_ejemplos.txt tenéis algunas posibles entradas con sus correspondientes
salidas.

Escribid una segunda version que permita sumar varias secuencias distintas en una misma
ejecucion. Esta es la version que encontraréis en el Jutge.

1.3. Estructura de un programa en C++

Un programa en C++ puede consistir en un unico fichero (normalmente con extensiéon .cc o
.Cpp; en esta asignatura optamos por la extension .cc). En ese caso, el fichero ha de tener la
siguiente estructura.

6 SESION 1. ENTORNO DE TRABAJO Y REPASO DE C++

= inclusiones y espacio de nombres
= definiciones de constantes o tipos
= procedimientos

= programa principal (main)

Las inclusiones permiten emplear en el programa elementos definidos en otro lugar. Las
mas tipicas proceden de clases o librerias del propio C++:

#include <iostream>: canales standard de entrada y salida
#include <vector>: clase vector
#include <string>: clase string

#include <cmath>: funciones matemdticas

Sin embargo, en cuanto un programa adquiere un cierto tamafio seguramente requerird una
cierta descomposicion modular. C++ ofrece un mecanismo esencial para obtener programas
modulares: la clase. En PRO2 usaremos clases para traducir modulos de datos. Para cada pro-
grama C++ nos tocard obtener un fichero .cc que contendrd el correspondiente main y varios
ficheros mds que contendran las diversas clases que necesitemos.

En un programa codificado en C++ pueden aparecer una o varias clases, que clasificamos
en los siguientes grupos:

= las clases estandar del lenguaje (iostream, vector, etc)
= las clases definidas en el directorio en el que estemos
= las clases definidas en otros directorios

Para poder usar una clase que no sea estdndar y que no tengamos definida en nuestro direc-
torio, hemos de informar al compilador del lugar donde se encuentra. Veremos como se hace
en proximos capitulos.

Otra posibilidad para descomponer y reutilizar cddigo consiste en distribuirlo en varios
ficheros, compilar €stos separadamente y usar solo los componentes que nos interesen en cada
momento. Veremos un ejemplo en esta misma sesion.

1.4. Acciones y funciones; paso de parametros

Un requisito de la asignatura es que todas las variables que intervengan en las acciones y fun-
ciones que disefiemos han de aparecer en la cabecera de éstas o bien ser locales (no se permiten
variables globales). Mantendremos esta linea al codificar nuestros algoritmos en C++, si bien
deberemos adaptarnos a las particularidades de dicho lenguaje.

Independientemente del lenguaje de programacion empleado, podemos clasificar los parame-
tros de una accidn de la siguiente manera (en una funcién todos los pardmetros son de entrada):

1.4. ACCIONES Y FUNCIONES; PASO DE PARAMETROS 7

= De entrada: su valor inicial permanece inalterado tras la ejecucién de la accién, aunque
durante ésta se haya modificado

» De entrada/salida: su valor inicial es relevante para la ejecucion de la accion pero puede
quedar modificado tras la misma

» De salida: su valor inicial es irrelevante para la ejecucion de la accion (muchas veces ni
siquiera se conoce) y su valor final es creado por la propia accion

En C++ existen las siguientes opciones, que permiten traducir la clasificacion anterior con
bastante claridad:

1. Pardmetros por valor. La accidn recibe una copia del pardmetro y trabaja con ella. Al
acabar, dicha copia se destruye. El valor del pardmetro no cambia, por lo que este meca-
nismo trata a los parametros como de entrada segun la clasificacion anterior.

Para indicar que un pardmetro se pasa por valor no hay que hacer nada.

2. Pardmetros por referencia. La accion recibe la direccion de memoria del pardmetro y
toda modificacion del mismo es permanente. Respecto a la clasificacién anterior, este
mecanismo trata a los pardmetros como de salida si al entrar en la accion no tienen valor
(por ejemplo, si no han sido inicializados) o su valor es irrelevante. En caso contrario,
tendriamos un parametro de entrada/salida.

Para indicar que un parametro se pasa por referencia, se precede su nombre de un signo
&.

3. Pardmetros por referencia constante. Al igual que con los parametros por referencia, la
accion recibe la direcciéon de memoria del parametro, pero si intenta modificar su valor el
compilador da un error, por lo que de hecho funcionan como pardmetros por valor. Este
mecanismo es especialmente indicado para usar vectores y otras estructuras complejas
como pardmetros de entrada.

Para indicar que un pardmetro se pasa por referencia constante, se precede su nombre de
un signo & y su tipo de la palabra const.

Ejemplos:

1. Cabecera de una accion que intercambia los valores de las variables enteras m y n. Como
deseamos que ambos pardmetros cambien de valor, los definimos como de entrada/salida.
Al realizar la codificacién en C++, han de pasarse por referencia.

vold intercambiar (int& m, int& n)
/* Pre: cierto */
/* Post: m y n tienen sus valores intercambiados respecto a los iniciales */

2. Cabecera de una accion que intercambia los valores de las posiciones iy j de un vector
v. Claramente el vector es un parametro de entrada/salida, pues deseamos modificarlo,
mientras que las posiciones son s6lo de entrada. La codificacion en C++ seria asi

8 SESION 1. ENTORNO DE TRABAJO Y REPASO DE C++

void intercambiar_vect (vector<int>& v, int i, int 3J)
/* Pre: 0 <=1, j < v.size() */
/* Post: v[i] y v[]j] tienen sus valores intercambiados respecto a los iniciales */

Por la mencionada caracteristica de C++, aseguramos que el vector serd modificado de
forma permanente y los enteros no.

3. Cabecera de una funcién que busca un elemento x en un vector v y devuelve el resultado
en un booleano. Notad que, al tratarse de una funcién, los pardmetros son de entrada y
podrian traducirse a C++ como parametros por valor. Sin embargo, en el caso del vector,
es conveniente pasarlo por referencia constante, para ahorrarnos la copia del mismo.

bool busqueda_lin(const vector<int>& v, int x)
/* Pre: cilerto */
/* Post: el resultado indica si x estd en v */

4. Cabecera de una funcién que obtiene los valores maximo y minimo de un vector v. Para
poder devolver dos resultados hemos de usar un struct o un pair.

struct parint {
int prim, seg;

}i

parint max_min(const vector<int>& v)

/* Pre: v.size()>0 */

/* Post: el primer componente del resultado es el valor méximo de v;
el segundo componente del resultado es el valor minimo de v */

pair<int, int> max_min(const vector<int>& v)

/* Pre: v.size()>0 */

/* Post: el primer componente del resultado es el valor mdximo de v;
el segundo componente del resultado es el valor minimo de v */

Otra opcion consiste en convertir la funcién en accion y obtener los resultados como
parametros por referencia:

void max_min (const vector<int>& v, inté& x, inté& y)
/* Pre: v.size()>0 */
/* Post: x es el valor méximo de v; y es el valor minimo de v */

Por dltimo, hay dos soluciones mas que no consideramos adecuadas para este ejercicio. Una
es escribir los resultados dentro de la operacion de biisqueda, mediante cout. La otra consiste
en tratar uno de los resultados como tal y el otro como parametro de salida. Lo que queda es un
hibrido entre accion y funcion al que no deseamos recurrir por ahora.

Observemos que, si bien en la asignatura se establece claramente la diferencia entre accio-
nes y funciones, en ocasiones necesitaremos transformar alguna funcién en accidn, ya sea por
conveniencia o por obligacion. Para ello, sustituimos los resultados de la misma por parametros
por referencia, como en el ejemplo anterior.

1.4. ACCIONES Y FUNCIONES; PASO DE PARAMETROS 9

1.4.1. Ejercicio: Intercambio de valores de dos variables enteras

Escribid un programa para intercambiar los valores de dos variables enteras, mediante una
accion como la especificada en el apartado anterior. Comprobad qué ocurre si los pardmetros
no se pasan por referencia.

1.4.2. Ejercicio: Busqueda lineal en un vector de enteros (Jutge)

Enel fichero busquedalin. cc tenéis una funcion basada en el algoritmo de busqueda lineal so-
bre un vector de enteros, con una cabecera como la mostrada antes. El programa que la contiene
usa la operacion leerVector_int, cuya cabecera estd definida en el fichero vectorIOint.hh
(notad el #include en busquedalin.cc) y su cddigo se encuentra en vectorIOint.cc. Las
operaciones de estos ficheros se pueden reutilizar en otros programas tal como lo hacemos en
éste.

Como vimos en la seccion 1.1, para probar dicha operacion se deben compilar los dos
ficheros . cc y linkar ambos para formar el ejecutable.

p2++ -c busquedalin.cc
p2++ -c vectorIOint.cc
p2++ -0 busquedalin.exe busquedalin.o vectorIOint.o

Una vez probado que todo funciona correctamente, modificad la funcion lo minimo posible
para que devuelva un resultado entero que diga si el elemento buscado estd en el vector. En
caso de éxito, el entero ha de contener una posicion en la que se encuentre dicho elemento. Re-
escribid la postcondicion para que el valor del resultado quede exactamente definido en el caso
de que el elemento buscado no esté en el vector. Notad que si no se modifica vectorIOint.cc,
no hace falta volver a compilarlo.

Probad vuestra solucién modificando adecuadamente el main.

En el Jutge encontraréis un ejercicio basado en una especificacion concreta para la nueva
version de la funcién de buasqueda.

Aprovecharemos este ejercicio para ilustrar el efecto de la opcién -D_GLIBCXX_DEBUG al
compilar un programa. En general, dicha opcion detecta y avisa de los accesos prohibidos a
memoria realizados por operaciones de clases tales como los vectores y otros contenedores
standard. Si se da el caso, el programa se interrumpe y se genera un mensaje con informacion
sobre el problema.

Por ejemplo, en la funcién de busqueda sustituid la instruccién int i = 0; por int i =
-1; y analizad cuidadosamente el error obtenido en la ejecucion.

1.4.3. Ejercicio: Intercambio de dos posiciones de un vector

Escribid un programa para intercambiar los valores de dos posiciones de un vector de enteros.
Emplead una accion con la cabecera vista anteriormente y reutilizad las operaciones de los
ficheros vectorIOint.hh y .cc. Completad el programa con un método main que lea un
vector y dos posiciones, realice el intercambio y escriba el nuevo vector, todo ello empleando
las operaciones mencionadas. Tened en cuenta que si dimensionamos un vector con un valor n,

10 SESION 1. ENTORNO DE TRABAJO Y REPASO DE C++

las posiciones disponibles son las del intervalo [0..n-1]. Comprobad qué ocurre si intentamos
intercambiar otras.

1.4.4. Ejercicio: Maximo y minimo de un vector de enteros (Jutge)

Escribid un programa para obtener los valores mdximo y minimo de un vector de enteros,
recorriendo éste s6lo una vez. Producid tres versiones de la funcién max_min basadas en las
especificaciones del apartado anterior.

Antes de realizar la entrega, probad las funciones con un programa aparte. Reutilizad las
operaciones de los ficheros vectorIOint.hhy .cc.

1.4.5. Ejemplo: suma de matrices

En C++ las matrices se representan como vectores de dos dimensiones y su parametrizacion es
igual que la de los vectores de una dimension.
Por ejemplo, una funcién que sume matrices de enteros se puede escribir asi

vector<vector<int> > suma(const vector<vector<int> >& ml,
const vector<vector<int> >& m2)
/* Pre: ml y m2 son de la misma dimensidén */

{

vector <vector<int> > s;

return s;

}

/* Post: el resultado es la suma de ml y m2 */

Se puede abreviar un poco el cédigo empleando la palabra clave typedef, que permite
renombrar el tipo vector<vector<int> >.

typedef vector<vector<int> > Matriz;

Matriz suma(const Matriz& ml, const Matrizé& m2)
/* Pre: ml y m2 son de la misma dimensién */

{

Matriz s;

return s;

}

/* Post: el resultado es la suma de ml y m2 */

En el fichero suma_mat . cc tenéis una implementacion de esta funcién, asi como operacio-
nes de lectura y escritura de matrices. En los ficheros matrizIOint.hh y matrizIOint.cc

1.4. ACCIONES Y FUNCIONES; PASO DE PARAMETROS 11

tenéis operaciones reutilizables de lectura y escritura de matrices. En el fichero suma_mat .dat
tenéis un ejemplo de datos de entrada. En el fichero suma_mat .sal tenéis el resultado corres-
pondiente.

Como ejercicio, modificad la cabecera de la operacion para que la matriz suma se obtenga
como pardmetro de salida, pasdndolo por referencia y programad esta nueva version. Compro-
bad que el programa resultante sigue siendo correcto.

1.4.6. Ejercicio: producto de matrices

Usad los elementos anteriores para obtener y probar la funcion del producto de matrices.

Matriz producto(const Matriz& ml, const Matrizé& m2)
/* Pre: el numero de columnas de ml es igual al numero de filas de m2 */
/* Post: el resultado es el producto de ml y m2 */

{
Matriz prod;

return prod;

Ayuda: el resultado de multiplicar una matriz a de dimension x,y por otra matriz b de di-
mension y, z es una matriz m de dimension x, z. Cada posicion (i, j) de m contendra el resultado
de multiplicar la fila i de a por la columna j de b, es decir,

Vi j, 1<i<x, 1<j<z, m(i,j)=Y, a(ik)b(k,j)
1<k<y
Ejemplo: si a es de dimension 2,3 y b es de dimension 3, 1, su producto es una matriz de
dimensién 2, 1.

3
111 9
a—(222> b=1| 3 a-b—(lg)
3
Enel fichero prod mat . dat tenéis un ejemplo de datos de entrada. En el fichero prod mat . sal
tenéis el resultado correspondiente.

Escribid y probad una segunda version en la cual la matriz prod se obtenga como parametro
de salida, pasandolo por referencia.

1.4.7. Ejercicio: clasificacion de la liga (Jutge)

Consideremos una matriz cuadrada m de pares de naturales, que representa los resultados de
una competicién deportiva a doble vuelta de N equipos. En la posicién m(i, j) se encuentra
el resultado del partido de ida del equipo i contra el equipo j, mientras que el resultado del
correspondiente partido de vuelta se encuentra en m(j,i). El primer nimero del par alojado en

12 SESION 1. ENTORNO DE TRABAJO Y REPASO DE C++

m(i, j) son los goles del equipo i y el segundo los del equipo j (al revés en el partido de vuelta).
La informacién de la diagonal (es decir, las posiciones m(i, j) tales que i = j) no es relevante.

Supongamos que, para cada enfrentamiento, el equipo ganador se anota 3 puntos y el per-
dedor 0. En caso de empate, se llevan 1 cada uno. Programad una operacion que, a partir de una
matriz de estas caracteristicas, obtenga la clasificacion de la competicion, ordenada decrecien-
temente por puntos. En caso de empate a puntos, se ha de usar el orden decreciente respecto
a la diferencia de goles a favor y goles en contra de cada equipo. Si persiste el empate, los
equipos implicados han de aparecer en orden creciente respecto a su indice. Para cada equipo
ha de listarse su identificador, sus puntos, sus goles a favor y sus goles en contra.

Ejemplo, con N = 4. Los resultados del equipo 1 contra el equipo 2 han sido 1-0 en la ida
y 2-2 en la vuelta, etc. Donde pone x x puede haber cualquier par de enteros, ya que no sera
relevante para el programa.

xx 10 21 02 4 9 10 8
m— 22 xx 33 13 Clasificacién — 3 8 12 12
11T 12 xx 32 1 8 6 7
10 01 23 xx 28 9 10

En el fichero clasif.dat tenéis un ejemplo de datos de entrada. En el fichero clasif.res
tenéis el resultado correspondiente.

Para ordenar la clasificacion podéis usar sort (ver “Normes de programacié de P17), defi-
niendo adecuadamente la relacion de orden entre los equipos.

1.4.8. Ejercicio: clasificacion de la liga (2) (Jutge)

Supongamos ahora que no disponemos de la matriz de pares con los goles de los partidos sino
de un listado con los resultados de toda la competicion hasta una jornada determinada. Escribid
una nueva operacion que transforme dicho listado en una matriz valida para el ejercicio anterior.
Integrad la nueva operacion en la solucion para que ésta funcione con el nuevo formato de los
datos.

En el fichero jornadas1-24_1314.dat tenéis los resultados de las primeras 24 jornadas
de la temporada 13-14 de la liga de fuitbol de primera division de Espafia, que como sabéis
consta de 20 equipos. Para que los resultados resulten més inteligibles, primero aparecen los de
la primera jornada, después los de la segunda, etc., aunque esto no es estrictamente necesario.
En el fichero jornadas1-24_1314.res tenéis la matriz resultante. Un par -1 -1 denota un
partido ain no jugado y también se usa en la diagonal.

En el fichero clasif_j24_1314.res tenéis la clasificacion correspondiente por si queréis
usar la matriz de jornadasl-24_1314.res para probar el programa anterior. Tendréis que
retocarlo ligeramente, de forma que no trate los pares -1 -1 de la matriz como empates.

En el fichero equipos_1314.txt tenéis la relacion entre indices y nombres de equipos, por
si queréis verificar los datos por vuestra cuenta, asi como otra informacion ttil para interpretar
los ficheros jornadas1-24_1314.dat y jornadasl-24_1314.res.

