
Problema 1 (5 punts)

Primera part:

node_llista *ant ;
bool creixent = true ;
int cont = 0;

ant = prim; // caixa 1
act = prim→seg;

while (act 6=NULL and creixent) {

if (ant→info > act→info) creixent = false ; // caixa 2
else {

ant = act ;
act = act → seg;

}
++ cont;

}

Aquesta és la solució standard. Hi ha solucions equivalents on només canvia l’ordre de les instruccions.
Les solucions amb més d’un if (o un if amb més d’una condició) són en general una mica més dolentes.
Existeix una versió una mica més bona on ant només intervé quan canvia creixent, però això comporta
altres canvis bastant significatius per assolir l’estat que volem.

En aquest punt, act ha d’apuntar al primer element de la segona escala de P (o és NULL, si P només té
una escala); ant ha d’apuntar a l’element de P anterior a l’apuntat per act (o a l’últim element de P, si act
és NULL); per tant ant 6= NULL i apunta a l’últim element de la primera escala de P; cont és la mida de la
primera escala de P.

A l’exemple, ant apuntaria al primer 2 i act al segon 1; cont seria igual a 2.

Segona part:

if (act 6= NULL) {

ult = ant ; // caixa 3: la primera escala
l .prim = l . ult = ant = act ; // acaba en ant i la segona
l .prim → ant = NULL; // comença en act; avancem
act = act → seg;

longitud = cont ;
l . longitud = 1;
bool senar = false ;

INVARIANT DEL SEGON BUCLE:
1) act apunta a un element del p.i. o és NULL; si act no és NULL ant apunta a l’element del p.i. o de l que
era l’anterior d’act a P; (*)
2) entre prim i ult hi són totes les escales senars que apareixien a P abans que act, i el tros fins a ant (inclòs)
de la que contenia ant, si aquesta és senar, totes en el seu ordre original;
3) entre l.prim i l.ult hi són totes les escales parells que apareixien a P abans que act, i el tros fins a ant (inclòs)
de la que contenia ant, si aquesta és parell, totes en el seu ordre original;
4) senar indica si ant apareixia a una escala senar de P;
5) longitud és el nombre d’elements de P anteriors a act que pertanyien a escales senars; l.longitud és el
nombre d’elements de P anteriors a act que pertanyien a escales parells

(*) als punts 2-5 de l’invariant, on apareix un punter volem referir-nos a l’element apuntat per aquest punter

while (act 6= NULL) {
if (senar) { // ant pertany a una escala senar

if (ant→info ≤ act→info) { // act i ant pertanyen a la mateixa escala

ult = act ; // caixa 4: act es queda al p.i.
++longitud;

}
else { // act i ant NO pertanyen a la mateixa escala

l . ult → seg = act ; // caixa 5: act passa a l
act → ant = l . ult ;
l . ult = act ;
++l. longitud ;
senar = false ;

}
}
else { // ant pertany a una escala parell

if (ant→info ≤ act→info) { // act i ant pertanyen a la mateixa escala

l . ult = act ; // caixa 6: act passa a l
++l. longitud ;

}
else { // act i ant NO pertanyen a la mateixa escala

ult → seg = act ; // caixa 7: act es queda al p.i.
act → ant = ult ;
ult = act ;
++longitud;
senar = true ;

}
}

ant = act ; // caixa 8: avancem el bucle
act = act → seg;

}
ult→seg = l. ult→seg = NULL;
l . act = l .prim;

}
act = prim;

}

Aquesta és la solució standard. Existeix una solució similar que fa servir creixent però s’ha de fer amb
molta cura; a més, aquesta variable hauria de participar a l’invariant. Recordeu que demanem solucions
que compleixin els requeriments marcats per l’esquema donat (invariant, comentaris al codi, etc) i només
continguin assignacions. Això també afecta a les solucions amb new i delete, que a més són ineficients;
encara pitjor, si fan servir new però no delete, llavors o no compleixen la postcondició o bé generen memory
leak. Noteu, per últim, que l.act no apareix a cap caixa i el seu ús seria redundant en el millor dels casos.

Observacions particulars:

caixa 5: un error típic és suposar que quan s’entra en aquest else es pot fer servir ant en comptes de l.ult

caixa 7: anàlogament, aquí ant no es pot fer servir en comptes d’ult

caixes 5 i 6: existeix la temptació de refer els enllaços per mantenir connectat act->seg amb el p.i.; això
simplificaria la caixa 7 però implica un risc de segmentation fault que s’hauria d’evitar amb ifs; noteu que
s’hauria de fer el mateix a l’inicialització del bucle.

