
Primer examen parcial de PRO2 Durada: 2h 30m 4/5/2017

Cognoms Nom DNI
�� ���� �� �� ��
Observació: Heu de fer servir els espais indicats per entrar la resposta d’alguns apartats dels problemes.
Noteu que podeu deixar en blanc alguna de les caixetes si creieu que no cal cap instrucció en aquell punt.

Problema 1 (5 punts)

Una escala d’una llista v de naturals és una subllista d’elements consecutius de v on cada element és menor
o igual que el seu següent. Construı̈u un programa que llegeixi una seqüència de naturals acabada en 0,
l’emmagatzemi en una llista d’enters, calculi la longitud de l’escala de longitud màxima d’aquesta llista i
la posició del primer element d’aquesta escala, i escrigui l’escala de longitud màxima.

Per facilitar l’especificació i la implementació de les operacions descrites en aquest problema hem definit
els tipus Li, It i CIt.

typedef list<int> Li;
typedef list<int>:: iterator It ;
typedef list<int>:: const iterator CIt ;

El vostre programa ha d’utilitzar la funció max long esc especificada a continuació.

pair<int, CIt> max long esc(const Li& v);
/* Pre: Cert. */
/* Post: El primer component del resultat és la longitud de l ' escala de v de
longitud màxima. El segon component del resultat apunta al primer element de
l ' escala de longitud màxima de v, i en cas d'empat apunta al primer element de
l ' escala de longitud màxima de v més propera a v.begin(). Si v és buida, el
primer component del resultat és 0 i el segon component apunta a v.end(). */

Per exemple, si la seqüència d’entrada és 1 2 1 2 3 1 2 2 4 0 el programa ha de llegir la
seqüència, emmagatzemar la llista (1, 2, 1, 2, 3, 1, 2, 2, 4) en una variable v de tipus list<int>, cridar la
funció max long esc amb v, i escriure la subllista 1 2 2 4

Semblantment, si la seqüència d’entrada és 4 1 2 3 2 3 1 3 4 0 el programa ha de llegir
la seqüència, emmagatzemar la llista (4, 1, 2, 3, 2, 3, 1, 3, 4) en una variable v de tipus list<int>, cridar la
funció max long esc amb v, i escriure la subllista 1 2 3

Finalment, si la seqüència d’entrada és 4 3 2 1 0 el programa ha de llegir la seqüència, emmagatzemar
la llista (4, 3, 2, 1) en una variable v de tipus list<int>, cridar la funció max long esc amb v, i escriure la
subllista 4

Concretament es demana

Problema 1.1 (2.5 punts): Implementar iterativament la funció max long esc. Es valorarà l’eficiència de la
vostra implementació.

Problema 1.2 (1.5 punts): Justificar la correctesa de la vostra implementació de la funció max long esc.
Heu de donar l’invariant, la justificació del cos del bucle i de les inicialitzacions, i la funció de fita.



Problema 1.3 (0.25 punts): Completar l’especificació i la implementació de la següent acció.

void llegir (

�
�

�
�) {

/* Pre: Hi ha una seqüència de naturals acabada en 0 al canal d'entrada estàndard. */
/* Post: Els elements de la seqüència s'han emmagatzemat a la llista v. */�
�

�
�

int x ;
cin >> x;
while (x 6= 0) {�
�

�
�

cin >> x;
}

}

Problema 1.4 (0.5 punts): Especificar e implementar una acció anomenada escriure que escrigui pel ca-
nal estàndard de sortida una subllista d’una llista donada coneixent la posició del primer element
de la subllista (un iterador de tipus CIt) i la longitud de la subllista. Heu de donar la capçalera,
precondició, postcondició i implementació de l’acció escriure.

void escriure (

�
�

�
�) {

/* Pre:�
�

�

*/

/* Post:'

&

$

%*/'

&

$

%
}

Problema 1.5 (0.25 punts): Completar el programa principal cridant a les operacions max long esc, llegir
i escriure.

int main() {
list <int> v;
llegir (v );�
�

�
�

escriure (

�
�

�
�);

}



Primer examen parcial de PRO2 Durada: 2h 30m 4/5/2017

Cognoms Nom DNI
�� ���� �� �� ��
Problema 2 (5 punts)

En un llenguatge de programació com ara C++ podem definir expressions booleanes com les següents

(a and b) or not c
(c and false) and true

Si a i b són certs i c és fals, el resultat d’avaluar la primera expressió és cert, mentre que el resultat d’avaluar
la segona expressió és fals.

Tota expressió booleana com les anteriors es pot representar mitjançant un arbre de cadenes de caràcters
(Arbre<string>) on els nodes són operadors booleans (and, or, not), identificadors de variables boolea-
nes, o constants booleanes (true, false). Per exemple, les expressions anteriors donen lloc als arbres'

&

$

%

or

and

a b

not

c

and

and

c f alse

true

Suposem que les expressions booleanes estan ben formades, és a dir, no donarien cap error de compilació
en C++. En particular, totes les variables de les expressions estan definides. Per tant, els arbres associats a
una expressió booleana són arbres de string no buits amb les següents propietats:

1. Si l’arrel és un operador booleà binari, aleshores els subarbres fill esquerre i fill dret no són buits.

2. Si l’arrel és un operador booleà unari, aleshores el subarbre fill esquerre no és buit però el subarbre
fill dret és buit.

3. Les fulles només poden ser constants booleanes o variables booleanes (no poden ser operadors).

4. Els nodes interns només poden ser operadors booleans.

5. No hi ha cap node de l’arbre que contingui parèntesis.

Problema 2.1 (2.5 punts): Implementeu eficientment la funció avaluar especificada a continuació.

bool avaluar(Arbre<string> &a, const Variables& e );
/* Pre: a = A; A és un arbre no buit associat a una expressió booleana ben
formada; totes les variables que apareixen a A estan definides al objecte e
de tipus Variables i es pot calcular el seu valor cridant el mètode ''valor ''
d'aquest objecte . */
/* Post: Retorna el resultat d'avaluar l ' expressió booleana que representa A. */

Teniu en compte que C++ avalua les expressions booleanes de forma curtcircuitada: si el resultat d’avaluar
el primer argument de l’operador and és false, C++ no avalua el segon argument; i si el resultat d’avaluar
el primer argument de l’operador or és true, C++ no avalua el segon argument. Per exemple, per avaluar
l’expressió (a and b) or not c (corresponent a l’arbre esquerre de la figura) C++ no avaluaria el subarbre
d’aquest arbre amb arrel not. Semblantment, per avaluar l’expressió (c and false) and true (corresponent
a l’arbre dret de la figura) C++ no avaluaria els dos subarbres amb arrels false i true.



Per obtenir el valor d’una variable booleana amb identificador s podeu fer servir el mètode públic valor

de la classe Variables.

bool valor (const string & s );
/* Pre: s és l ' identificador d'una variable booleana definida al paràmetre implı́cit. */
/* Post: El resultat és el valor de la variable amb identificador s al paràmetre implı́cit. */

Observació: No heu d’implementar el mètode valor ni la classe Variables a la vostra resposta.

Problema 2.2 (0.5 punts): Especifiqueu l’ordre que utilitza el vostre algoritme per tractar els nodes de
l’arbre (pre-ordre, in-ordre, post-ordre o per nivells), i perquè.'

&

$

%
Problema 2.3 (2 punts): Justifiqueu la correctesa de la vostra implementació de la funció avaluar. Escri-
viu les hipòtesis d’inducció i utilitzeu aquestes hipòtesis d’inducció per justificar la correctesa dels casos
recursius (1 punt). Justifiqueu l’acabament de la funció que heu implementat (1 punt).


