Introduction to Programming (in C++)

Algorithms on sequences.
Reasoning about loops: Invariants.

Jordi Cortadella, Ricard Gavaldà, Fernando Orejas
Dept. of Computer Science, UPC
Outline

• Algorithms on sequences
 – Treat-all algorithms
 – Search algorithms

• Reasoning about loops: invariants
Maximum of a sequence

• Write a program that tells the largest number in a non-empty sequence of integers.

// Pre: a non-empty sequence of integers is ready to be read at cin
// Post: the maximum number of the sequence has been written at the output

Assume the input sequence is: 23 12 -16 34 25

<table>
<thead>
<tr>
<th>elem:</th>
<th>-</th>
<th>12</th>
<th>-16</th>
<th>34</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>m:</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>34</td>
<td>34</td>
</tr>
</tbody>
</table>

// Invariant: m is the largest number read from the sequence
Maximum of a sequence

```cpp
int main() {
    int m;

    int elem;
    cin >> m;
    // Inv: m is the largest element read from the sequence
    while (cin >> elem) {
        if (elem > m) m = elem;
    }
    cout << m << endl;
}
```

Why is this necessary?
Checks for end-of-sequence and reads a new element.
Reading with \texttt{cin}

- The statement \texttt{cin >> n} can also be treated as a Boolean expression:
 - It returns \texttt{true} if the operation was successful
 - It returns \texttt{false} if the operation failed:
 - no more data were available (EOF condition) or
 - the data were not formatted correctly (e.g. trying to read a double when the input is a string)

- The statement:

 \[
 \texttt{cin >> n}
 \]

 can be used to detect the end of the sequence and read a new element simultaneously. If the end of the sequence is detected, \texttt{n} is not modified.
Finding a number greater than n

• Write a program that detects whether a sequence of integers contains a number greater than n.

// Pre: at the input there is a non-empty sequence of integers in which the first number is n.
// Post: writes a Boolean value that indicates whether a number larger than n exists in the sequence.

Assume the input sequence is: 23 12 -16 24 25

<table>
<thead>
<tr>
<th>num:</th>
<th>-</th>
<th>12</th>
<th>-16</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>n:</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>found:</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

// Invariant: “found” indicates that a value greater than n has been found.
Finding a number greater than n

```cpp
int main() {
    int n, num;
    cin >> n;
    bool found = false;

    // Inv: found indicates that a number
    // greater than N has been found
    while (not found and cin >> num) {
        found = num > n;
    }

    cout << found << endl;
}
```
Algorithmic schemes on sequences

• The previous examples perform two different operations on a sequence of integers:
 – Finding the maximum number
 – Finding whether there is a number greater than N

• They have a distinctive property:
 – The former requires all elements to be visited
 – The latter requires one element to be found
Treat-all algorithms

• A classical scheme for algorithms that need to treat all the elements in a sequence

```
Initialize (the sequence and the treatment)
// Inv: The visited elements have been treated
while (not end of sequence) {
    Get a new element e;
    Treat e;
}
```
Search algorithms

• A classical scheme for algorithms that need to find an element with a certain property in a sequence

```cpp
bool found = false;
Initialize;
// Inv: “found” indicates whether the element has been found in the visited part of the sequence
while (not found and not end of sequence) {
    Get a new element e;
    if (Property(e)) found = true;
}
// “found” indicates whether the element has been found.
// “e” contains the element.
Longest repeated subsequence

• Assume we have a sequence of strings

  cat dog bird cat bird bird cat cat cat dog mouse horse

• We want to calculate the length of the longest sequence of repetitions of the first string. Formally, if we have a sequence of strings

  \[ S_1, S_2, \ldots, S_n \]

  we want to calculate

  \[ \max \{ j - i + 1 : 1 \leq i \leq j \leq n \land s_i = s_{i+1} = \ldots = s_{j-1} = s_j = s_1 \} . \]
Longest repeated subsequence

// Specification: see previous slide
// Variable to store the first string.
string first;
cin >> first;
string next; // Visited string in the sequence
// Length of the current and longest subsequences
int length = 1;
int longest = 1;
// Inv: “length” is the length of the current subsequence.
// “longest” is the length of the longest subsequence visited so far.
while (cin >> next) {
    if (first != next) length = 0; // New subsequence
    else {
        // The current one is longer
        length = length + 1;
        if (length > longest) longest = length;
    }
}
// “longest” has the length of the longest subsequence
Search in the dictionary

• Assume we have a sequence of strings representing words. The first string is a word that we want to find in the dictionary that is represented by the rest of the strings. The dictionary is ordered alphabetically.

• Examples:

  dog ant bird cat cow dog eagle fox lion mouse pig rabbit shark whale yak

  frog ant bird cat cow dog eagle fox lion mouse pig rabbit shark whale yak

• We want to write a program that tells us whether the first word is in the dictionary or not.
// Specification: see previous slide
// First word in the sequence (to be sought).
string word;
cin >> word;

// A variable to detect the end of the search
// (when a word is found that is not smaller than “word”).
bool found = false;

// Visited word in the dictionary (initialized as empty for
// the case in which the dictionary might be empty).
string next = "";

// Inv: not found => the visited words are smaller than “word”
while (not found and cin >> next) found = next >= word;
// “found” has detected that there is no need to read the rest of
// the dictionary
found = word == next;
// “found” indicates that the word was found.
Increasing number

• We have a natural number $n$. We want to know whether its representation in base 10 is a sequence of increasing digits.

• Examples:

  134679 $\rightarrow$ increasing
  56688 $\rightarrow$ increasing
  3 $\rightarrow$ increasing
  134729 $\rightarrow$ non-increasing
// Pre: n >= 0
// Post: It writes YES if the sequence of digits representing n (in base 10)
// is increasing, and it writes NO otherwise

int main() {
    int n;
    cin >> n;
    // The algorithm visits the digits from LSB to MSB.
    bool incr = true;
    int previous = 9;  // Stores a previous "fake" digit

    // Inv: n contains the digits no yet treated, previous contains the
    // last treated digit (that can never be greater than 9),
    // incr implies all the treated digits form an increasing sequence
    while (incr and n > 0) {
        int next = n%10;
        incr = next <= previous;
        previous = next;
        n /= 10;
    }

    if (incr) cout << "YES" << endl;
    else cout << "NO" << endl;
}
Insert a number in an ordered sequence

• Read a sequence of integers that are all in ascending order, except the first one. Write the same sequence with the first element in its correct position.

• Note: the sequence has at least one number. The output sequence must have a space between each pair of numbers, but not before the first one or after the last one.

• Example

Input: 15 2 6 9 12 18 20 35 75
Output: 2 6 9 12 15 18 20 35 75

• The program can be designed with a combination of search and treat-all algorithms.
int first;
cin >> first;

bool found = false; // controls the search of the location
int next; // the next element in the sequence

// Inv: All the read elements that are smaller than the first have been written
// not found => no number greater than or equal to the first has been
// found yet
while (not found and cin >> next) {
    if (next >= first) found = true;
    else cout << next << “ ”;
}

cout << first;

if (found) {
    cout << “ “ << next;
    // Inv: all the previous numbers have been written
    while (cin >> next) cout << “ “ << next;
}
cout << endl;
REASONING ABOUT LOOPS: INVARIANTS
Invariants

• Invariants help to ...
  – Define how variables must be initialized before a loop
  – Define the necessary condition to reach the post-condition
  – Define the body of the loop
  – Detect whether a loop terminates

• It is crucial, but not always easy, to choose a good invariant.

• Recommendation:
  – Use invariant-based reasoning for all loops (possibly in an informal way)
  – Use formal invariant-based reasoning for non-trivial loops
General reasoning for loops

Initialization;

// Invariant: a proposition that holds
// * at the beginning of the loop
// * at the beginning of each iteration
// * at the end of the loop

// Invariant

while (condition) {
   // Invariant ∧ condition
   Body of the loop;
   // Invariant

} // Invariant ∧ ¬ condition
Example with invariants

• Given $n \geq 0$, calculate $n!$

• Definition of factorial:

\[ n! = 1 \times 2 \times 3 \times \ldots \times (n-1) \times n \]

(particular case: $0! = 1$)

• Let’s pick an invariant:
  – At each iteration we will calculate $f = i!$
  – We also know that $i \leq n$ at all iterations
Calculating n!

// Pre: n ≥ 0
// It writes n!
int main() {
    int n;
    cin >> n;
    int i = 0;
    int f = 1;
    // Invariant: f = i! and i ≤ n
    while (i < n) {
        // f = i! and i < n
        i = i + 1;
        f = f*i;
        // f = i! and i ≤ n
    }
    // f = i! and i ≤ n and i ≥ n
    // f = n!
    cout << f << endl;
}

Introduction to Programming © Dept. CS, UPC
Reversing digits

• Write a program that reverses the digits of a number (representation in base 10)

• Examples:

  35276 → 67253
  19 → 91
  3 → 3
  0 → 0
Reversing digits

// Pre: n ≥ 0
// Post: It writes n with reversed digits (base 10)

```cpp
int main() {
 int n;
 cin >> n;
 int r;

 r = 0;
 // Invariant (graphical): →
 while (n > 0) {
 r = 10*r + n%10;
 n = n/10;
 }

 cout << r << endl;
}
```
Calculating $\pi$

- $\pi$ can be calculated using the following series:

\[
\frac{\pi}{2} = 1 + \frac{1}{3} + \frac{1 \cdot 2}{3 \cdot 5} + \frac{1 \cdot 2 \cdot 3}{3 \cdot 5 \cdot 7} + \cdots
\]

- Since an infinite sum cannot be computed, it may often be sufficient to compute the sum with a finite number of terms.
Calculating $\pi$

// Pre: nterms > 0
// It writes an estimation of $\pi$ using nterms terms
// of the series

int main() {
    int nterms;
    cin >> nterms;
    double sum = 1;       // Approximation of $\pi/2$
    double term = 1;      // Current term of the sum

    // Inv: sum is an approximation of $\pi/2$ with k terms,
    //      term is the k-th term of the series.
    for (int k = 1; k < nterms; ++k) {
        term = term*k/(2.0*k + 1.0);
        sum = sum + term;
    }
    cout << 2*sum << endl;
}
Calculating \( \pi \)

- \( \pi = 3.14159265358979323846264338327950288\ldots \)
- The series approximation:

<table>
<thead>
<tr>
<th>nterms</th>
<th>( \text{Pi(nterms)} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.000000</td>
</tr>
<tr>
<td>5</td>
<td>3.098413</td>
</tr>
<tr>
<td>10</td>
<td>3.140578</td>
</tr>
<tr>
<td>15</td>
<td>3.141566</td>
</tr>
<tr>
<td>20</td>
<td>3.141592</td>
</tr>
<tr>
<td>25</td>
<td>3.141593</td>
</tr>
</tbody>
</table>