
Initial Self-Assessment Lab Test

1. If I want to run a single-file program program.cc, do I need to first compile and
generate the object program.o with g++ -c program.cc, and then link to produce
the executable with g++ program.o?

Solution:

One could do that, but in this case it can all be done in a single line:

g++ program.cc

2. If I want to use any of the features of the C++ 2011 standard in my program
program.cc, how should I compile it with g++?

Solution:

g++ -std=c++11 program.cc

Note that std stands for “standard”.

3. How can I tell g++ to warn me against everything that is found suspicious during
compilation?

Solution:

g++ -Wall program.cc

Note that Wall stands for “Warning all”. It is wise to always use the -Wall flag.

4. How can I tell g++ to optimize the generated code?

Solution:

For instance, with

g++ -O2 program.cc

nearly all supported optimizations not involving a space-speed tradeoff are performed.

Note that O stands for “Optimization”.

5. I have an executable a.out and want to read data from a file sample.inp rather than
from the keyboard, and write the output on a new file sample.out instead of to the
screen. How can I do that?

Solution:

./a.out < sample.inp > sample.out

6. How can I find the differences between two files sample.out and sample.cor?

Solution:

For example: diff sample.out sample.cor



7. In C++, how can I create a bidimensional matrix matrix of ints with n rows and m
columns, all of them initialized to 1?

Solution:

The standard library of C++ does not have a built-in type “matrix”. A way to create
the matrix is by creating a vector of n rows, each of which is a vector of m integers
initialized to 1. By using the standard template class vector<T> and the constructor
vector<T>(size, init) (which creates a vector of size copies of init ):

vector<int> row(m, 1);
vector<vector<int>> matrix(n, row);

Equivalently (and better) in a single line:

vector<vector<int>> matrix(n, vector<int>(m, 1));

8. I have to sort a vector v of ints increasingly. Should I write my own sorting procedure?

Solution:

No (unless there is another reason for doing so). Use the sort procedure of the standard
C++ library:

#include <algorithm>
//...
sort(v.begin (), v.end());

9. And what if I have to sort decreasingly?

Solution:

The sort procedure admits a third parameter: the sorting criterion. It is a function or
a function object that takes as parameters two objects of the container (in this case,
two ints) and returns true when the first argument should come before the second
one. For instance, in this case:

bool before(int a, int b) { return a > b;}
// ...
sort(v.begin (), v.end(), before );

Function objects of class greater<int>, available in the standard library, behave es-
sentially the same as the aforementioned function before , and give an elegant solution:

sort(v.begin (), v.end(), greater<int>());

Another example of function before , now defined over structs :

// first small surnames, in case of tie big names, in case of tie the younger one
bool before(const Info& a, const Info& b) {

if (a.surname 6= b.surname) return a.surname < b.surname;
if (a.name 6= b.name) return a.name > b.name;
return a.age < b.age;

}



10. Let s be a stack<pair<int,int>>. Can the following code be written more compactly?
(assuming that aux is not used any more)

pair<int,int> aux;
aux. first = 1;
aux.second = 2;
s .push(aux);

Solution:

One can make the compiler generate the adequate temporary object by calling a
constructor of pair<int,int>. For example, any of the following would do:

s .push(pair<int,int>(1, 2));
s .push(make pair(1, 2));
s .push({1, 2}); // This is C++11

11. When I compile my program program.cc I get the output below. Where is the error?

user@machine:$ g++ program.cc

program.cc: In function ‘int main()’:

program.cc:10:8: error: no match for ‘operator<<’ (operand types are ‘std::ostream

{aka std::basic_ostream<char>}’ and ‘std::vector<int>’)

cout << v << endl;

^

In file included from /usr/include/c++/5/iostream:39:0,

from program.cc:1:

/usr/include/c++/5/ostream:108:7: note: candidate: std::basic_ostream<_CharT,

_Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(std::basic_ostream<_CharT,

_Traits>::__ostream_type& (*)(std::basic_ostream<_CharT, _Traits>::__ostream_type&))

[with _CharT = char; _Traits = std::char_traits<char>; std::basic_ostream<_CharT,

_Traits>::__ostream_type = std::basic_ostream<char>]

operator<<(__ostream_type& (*__pf)(__ostream_type&))

^

/usr/include/c++/5/ostream:108:7: note: no known conversion for argument

1 from ‘std::vector<int>’ to ‘std::basic_ostream<char>::__ostream_type&

(*)(std::basic_ostream<char>::__ostream_type&) {aka std::basic_ostream<char>&

(*)(std::basic_ostream<char>&)}’

/usr/include/c++/5/ostream:117:7: note: candidate: std::basic_ostream<_CharT,

_Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(std::basic_ostream<_CharT,

_Traits>::__ios_type& (*)(std::basic_ostream<_CharT, _Traits>::__ios_type&))

[with _CharT = char; _Traits = std::char_traits<char>; std::basic_ostream<_CharT,

_Traits>::__ostream_type = std::basic_ostream<char>; std::basic_ostream<_CharT,

_Traits>::__ios_type = std::basic_ios<char>]

operator<<(__ios_type& (*__pf)(__ios_type&))

^

/usr/include/c++/5/ostream:117:7: note: no known conversion for argument

1 from ‘std::vector<int>’ to ‘std::basic_ostream<char>::__ios_type& (*)(std::basic_ostream<char>::__ios_type&)

{aka std::basic_ios<char>& (*)(std::basic_ios<char>&)}’

/usr/include/c++/5/ostream:127:7: note: candidate: std::basic_ostream<_CharT,

_Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(std::ios_base&

(*)(std::ios_base&)) [with _CharT = char; _Traits = std::char_traits<char>;

std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream<char>]

operator<<(ios_base& (*__pf) (ios_base&))

^



/usr/include/c++/5/ostream:127:7: note: no known conversion for argument

1 from ‘std::vector<int>’ to ‘std::ios_base& (*)(std::ios_base&)’

/usr/include/c++/5/ostream:166:7: note: candidate: std::basic_ostream<_CharT,

_Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(long

int) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_ostream<_CharT,

_Traits>::__ostream_type = std::basic_ostream<char>]

operator<<(long __n)

^

/usr/include/c++/5/ostream:166:7: note: no known conversion for argument

1 from ‘std::vector<int>’ to ‘long int’

...

Solution:

Do not get overwhelmed by lengthy error reports. Focus on the (very) first lines. Here

program.cc:10:8: error: no match for ‘operator<<’ (operand types are ‘std::ostream

{aka std::basic_ostream<char>}’ and ‘std::vector<int>’)

cout << v << endl;

^

is telling us that at line 10, column 8, the operator << is misused.


