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These notes are meant as an introduction of the most important aspects of the multivariate Gaussian
distribution. Understanding this distribution is critical in the context of machine learning since many methods
relie and are built on top of this distribution. Apart from this, this distribution is notoriously important
both in theory but also in practice because of the central limit theorem.

First we will see the univariate case, and then we will introduce the multivariate general case.

Much of this material is based on the excellent video series starting here. For full proofs and derivations of
most of the results presented in this document, you can look at Section 2.3 of Bishop’s book.

1. Univariate Gaussian distribution

Let X be a real scalar random variable. Then, we say that X is normally distributed, or X is distributed
according to a Gaussian distribution with mean µ ∈ R and variance σ2 ∈ R+ (and denote this X ∼ N (µ, σ2)
if its probability density function is

p(x;µ, σ2) = 1√
2πσ2

exp
{
− 1

2σ2 (x− µ)2
}

Here,
√

2πσ2 acts as a normalization constant (independent of x) to guarantee that
∫
x
p(x;µ, σ2) = 1. The

only dependence of x in p(x;µ, σ2) is through the exponent of the exponential function, − 1
2σ2 (x−µ)2. Notice

that this exponent is quadratic on x.

The following image shows different normal distributions with a fixed µ but different σ:
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σ = 0.5
σ = 1
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We observe that the pdf is symmetric around its mean; this can be directly observed from the fact that the
exponent depends on x via (x− µ)2. Also, σ determines the spread of plausible values, namely its variance.

An important fact is that

• E[X] = µ, and
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• V ar[X] = σ2.

Standard normal

A particularly famous case of Gaussian distribution is the standard normal univariate distribution given
by µ = 0 and σ2 = 1. Often such standardized random variable is given the name Z. From the general
probability density function in the univariate case, we can easily derive the pdf for Z ∼ N (0, 1):

p(z;µ = 0, σ2 = 1) = 1√
2π

exp
{
−1

2z
2
}

A well-known fact is:

X ∼ N (µ, σ2) if and only if X = Zσ + µ and Z ∼ N (0, 1)

Therefore, if we have a normal X ∼ N (µ, σ2), then Z def= X−µ
σ is a standard normal, that is X−µ

σ ∼ N (0, 1).
Equivalently, if we have a standard normal Z ∼ N (0, 1), then X

def= Zσ + µ is distributed according to
X ∼ N (µ, σ2).

This fact gives us a way to sample from a general X ∼ N (µ, σ2) if we have a mechanism to sample from a
standard normal (and most programming languages do). All we need to do is:

1. Sample z1, . . . , zn from Z ∼ N (0, 1)
2. Produce samples x1, . . . , xn for X ∼ N (µ, σ2) given by xi = σzi + µ for i = 1, . . . , n.

2. Multivariate Gaussian distribution

There are several equivalent definitions for the multivariate Gaussian distribution. Here, we will introduce
two, and then present the pdf for the multivariate Gaussian.

Definition of the multivariate Gaussian distribution

A random vector X = (X1, X2, . . . , Xd) ∈ Rd is said to have a multivariate Gaussian distribution if any of
the following equivalent statements are true:

• Any linear combination Y = aTX = a1X1 + a2X2 + · · ·+ adXd with a ∈ Rd is a (univariate) Gaussian.

• There exists a random vector Z = (Z1, . . . , Zm) with independent standard normal distributed Zi, there
exists a vector µ = (µ1, . . . , µd) ∈ Rd and a rectangular matrix A ∈ Rd×m such that X = AZ + µ.

We denote this with the usual X ∼ N (µ,Σ), where µ ∈ Rd = (µ1, . . . , µd)T such that E[Xi] = µi and
Σ ∈ Rd×d is the covariance matrix, that is, Σij

def= Cov[Xi, Xj ]. These two parameters uniquely determine
the Gaussian distribution.

By construction Σ is symmetric and positive semidefinite (PSD). In order for the pdf to be defined (to avoid
degenerate cases) we also assume that Σ is non-singular, thus invertible. This makes Σ positive definite
(PD). Throughout these notes, covariance matrices are assumed to be positive definite. This means that
they are diagonizable, and all of their eigenvectors λ1, . . . , λd are strictly positive.

In fact, we will make use of its spectral decomposition which will give us a nice geometric intuition of the
distribution:

Σ = UΛUT
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where U ’s columns are Σs eigenvectors and Λ is the diagonal matrix containing all of its eigenvalues. This
factorization is useful for inverting it:

Σ−1 = UΛ−1UT

Additionally, it allows us to factorize covariance matrices in the following way:

Σ = UΛUT = UΛ1/2Λ1/2UT = (UΛ1/2)(UΛ1/2)T = AAT

Namely, we can always find a matrix A such that Σ = AAT .

Examples of Gaussians

In order to start building some understanding and intuition for the multivariate Gaussian, let us show a way
of creating multivariate Gaussians from univariate Gaussians. For this, the following result is very useful:

Fact 1. Let X1, . . . , Xd be independent univariate Gaussians such that Xi ∼ N (µi, σ2
i ). Then, X =

(X1, . . . , Xd) ∼ N (µ,Σ) where µ = (µ1, . . . , µk) and Σ = diag(σ2
1 , . . . , σ

2
d) =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
...

... . . . ...
0 0 . . . σ2

d

.

You can see an example of such a multivariate gaussian with two variables when X1 ∼ N (0, 1) and
X2 ∼ N (1, 0.5):

Note that the joint probability being Gaussian is guaranteed by the fact that all Xi are independent. If
this is not so, then the joint distribution may not be Gaussian, as the following counterexample shows:

Let X ∼ N (0, 1) and define Y := X if |X| ≤ 1 and Y := −X if |X| > 1. Clearly, X,Y are not independent
however each is a univariate Gaussian. The following picture shows independent and joint distributions.
Clearly, the joint distribution (red) is not Gaussian.
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Finally the following is another useful fact:

Fact 2. If X ∈ Rd is Gaussian, then Xi, Xj are independent iff Cov[Xi, Xj ] = 0.

This need not hold for non-Gaussian distributions.

Probability density function of the multivariate Gaussian

Finally we give the pdf for the multivariate Gaussian for a random variable X ∈ Rd with mean µ and (positive
definite) covariance matrix Σ:

p(x;µ,Σ) = 1
|2πΣ|1/2 exp

{
−1

2(x− µ)TΣ−1(x− µ)
}

where |2πΣ| = det(2πΣ) = (2π)d det Σ.

Again, the only dependence of x is through the exponent so |2πΣ| is a normalization constant to guarantee
that

∫
x p(x;µ,Σ)) = 1.

Note that the univariate case is indeed a special case where we have Σ = (σ2) and so the exponent
− 1

2 (x − µ)TΣ−1(x − µ) becomes − 1
2 (x − µ) 1

σ2 (x − µ) which is indeed equivalent to the expression of the
univariate pdf that we gave in the beginning of this document.

The exponent is a quadratic form on x which turns out to be useful for visualization, since this means that
(in general) when A is positive definite, solutions x s.t. xTAx = c for some constant c ∈ R form ellipsoids.
This means that equal-density contours for the multivariate Gaussian are also ellipsoids, which in 2D we can
visualize as ellipses. It is useful to think of the gaussian density as

pdf ∝ exp {−quadratic form}

Thus, we can visualize bivariate normals with contour plots of equal density given by ellipses centered at µ.
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Alternative parameterization

In some cases it is prefered to use a different parameterization of the Gaussian distribution. In particular, in
the context of Bayesian learning, it may be beneficial to work with precision instead of covariances. The
precision matrix is simply the inverse of the covariance matrix. For a univariate Gaussian, the precision is
thus the reciprocal of the variance.

Thus, using this alternative parameterization, we have that a univariate Gaussian is represented by mean µ
and precision a, and its pdf is:

p(x;µ, a−1) =
√

a

2π exp
{
−a2 (x− µ)2

}
∝ exp

{
−a2 (x− µ)2

}
For the multivariate case, we use the precision matrix Q = Σ−1, and so Q−1 = Σ.1 Thus, the multivariate
pdf is:

p(x;µ,Q−1) =

√
|Q|

(2π)d exp
{
−1

2(x− µ)TQ(x− µ)
}
∝ exp

{
−1

2(x− µ)TQ(x− µ)
}

Affine property of the multivariate Gaussian

Fact 3. If X ∈ Rd ∼ N (µ,Σ), then AX + b ∼ N (Aµ + b, AΣAT ), where µ ∈ Rd, Σ ∈ Rd×d is positive
definite, A ∈ Rk×d and b ∈ Rk.

This is an extremely useful fact that allows us to construct a multivariate Gaussian distribution with mean µ
and covariance Σ from univariate standard normal ones in the following way:

1. Let Xi ∼ N (0, 1) for i = 1, . . . , d be independent univariate standard normals.
2. Then, X = (X1, . . . , Xd) ∼ N (0, I) where I ∈ Rd×d is the identity matrix. (using Fact 1)
3. Let A = UΛ1/2 so that Σ = AAT (remember U is the matrix with eigenvectors as columns, and Λ is

diagonal containing eigenvalues)
4. Finally AX + µ ∼ N (µ,Σ) (using Fact 3)

In the particular case of a bivariate distribution we can visualize what these linear transformations are doing
to the distributions we obtain step-by-step (taken from this video):

1It is common to use the greek letter Λ for the precision matrix however to avoid confusion with the diagonal matrix with
eigenvalues that we used in the spectral decomposition we are using Q instead.
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We can also perform the inverse operation and “standardize” any Gaussian in the following way:

1. Let X ∼ N (µ,Σ)
2. Construct Z = A−1(X − µ) so that Z ∼ N (0, I) where Σ = AAT and A−1 = Λ−1/2UT .

Marginal distribution

Let us start with the intuition in the bivariate case:

Fact 4. If X = (X1, X2) is a bivariate Gaussian, then the marginals X1 and X2 are also Gaussian.

Proof: Assume X ∼ N (µ,Σ) with µ = (µ1, µ2)T and Σ =
(
σ2

1 σ12
σ21 σ2

2

)
. We use Fact 3 with A = (1 0) and

b = 0 so that AX + b ∼ N (Aµ+ b, AΣAT ). Since AX + b = X1, Aµ+ b = µ1 and AΣAT = σ2
1 , we obtain

X1 ∼ N (µ1, σ
2
1). With A = (01) we obtain similarly that X1 ∼ N (µ2, σ

2
2).

This fact generalizes to marginalizing over any subsets of variables for d-dimensional X = (X1, . . . , Xd).

Fact 5. Let X = (X1, . . . , Xd) be a multivariate Gaussian with mean µ and covariance matrix Σ. We
partition the variables into two sets (first p, last q = d− p) so that

• X = (Xa, Xb)T with Xa = (X1, . . . , Xp)T and Xb = (Xp+1, . . . , Xk)T
• µ = (µa, µb)T with µa = (µ1, . . . , µp)T and µb = (µp+1, . . . , µk)T

• Σ =
(

Σaa Σab
Σba Σbb

)
with Σaa =


σ2

1 σ12 . . . σ1p
σ21 σ2

2 . . . σ2p
...

... . . . ...
σp1 σp2 . . . σ2

p


Then: Xa ∼ N (µa,Σaa)

To prove this, we essentially follow the same strategy but using A =
(
I 0

)
, where A ∈ Rp×d whose first p

columns contain the indentity matrix and the rest are all 0.

Conditional distribution

Now we look at the distribution that we obtain when we condition on a particular value for a subset of the
variables of a multivariate Gaussian. This corresponds to “slicing” through the pdf:
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Fact 6. Let X,µ,Σ be like in Fact 5. Then

(Xa|Xb = xb) ∼ N (m,S)

where

• m = µa + ΣabΣ−1
bb (xb − µb), and

• S = Caa − CabC−1
bb Cba

This result is going to be very useful for deriving results in the context of Bayesian linear regression. We do
not show it here as the proof requires a fair amount of linear algebra. For a full development of this result
you can consult Section 2.3 of Bishop’s book, or Section 4.3.4 of Murphy’s book.

As a particular case, suppose we have two random variables X,Y that are jointly Gaussian:

p(x, y;µ,Σ) = 1
|2πΣ|−1/2 exp

{
−1

2(x− µX , y − µY )Σ−1
(
x− µX
y − µY

)}
with

• µ =
(
µX
µY

)
and Σ =

(
σ2
X σXY

σY X σ2
Y

)
.

Then,

µY |X = µY + σXY
σ2
X

(x− µX)

σY |X = σ2
Y −

σ2
XY

σ2
X

Other useful properties

Fact 7. If X ∼ N (µX ,ΣX and Y ∼ N (µY ,ΣY ) are two independent multivariate Gaussians, then

X + Y ∼ N (µX + µY ,ΣX + ΣY ).

To show this, let us look at the univariate case. In this case, since X,Y are independent, Fact 1 guarantees
that (X,Y ) is bivariate Gaussian. And now by definition any linear combination of X,Y , for example, X + Y
is a univariate Gaussian.

For the general case in d dimensions, we need to show that for any vector a ∈ Rd it is the case that aT (X+Y )
is Gaussian. So aT (X + Y ) = aTX + aTY and since aTX and aTY are univariate independent Gaussians,
from the previous result so is their sum aT (X + Y ).

Finally, to show that the paramaters of X+Y are the ones given it is enough to verify that E[X+Y ]+µX+µY
and Cov[X + Y ] = Cov[X] + Cov[Y ] since X,Y are independent.
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3. Maximum likelihood estimation of µ and Σ

Finally we give the maximum likelihood estimates of the parameters of a multivariate Gaussian given a iid
data sample D = {x1,x2, . . . ,xn}. Each xi ∈ Rd is a sample from a Gaussian with unknown mean and
covariance and our task is to estimate them from the observed sample D via maximization of the log-likelihood
function.

So let us first write down the log-likelihood function:

l(µ,Σ) = log
∏
i

1
|2πΣ|1/2 exp

{
−1

2(xi − µ)TΣ−1(xi − µ)
}

=
∑
i

log 1
|2πΣ|1/2 −

1
2
∑
i

(xi − µ)TΣ−1(xi − µ)

= n

2 log |2πΣ| − 1
2
∑
i

(xi − µ)TΣ−1(xi − µ)

To derive the ML estimate for µ and Σ we need to take partial derivatives and equate to 0. To do this for
µ is quite simple however to derive the estimate for Σ is more involved. It requires taking derivatives of
determinants (for the left term of the log-likelihood) and traces for the quadratic form (right term of the
log-likelihood). We skip this here and directly list the ML estimates for both parameters:

µ̂ML = 1
n

∑
i

xi

Σ̂ML = 1
n

∑
i

(xi − µ̂ML)(xi − µ̂ML)T

4. Mahalanobis distance

The Mahalanobis distance (or “generalized squared interpoint distance”) is a dissimilarity measure between
two random vectors X ∈ Rd and Y ∈ Rd with the same distribution with mean µ and covariance matrix Σ
given by:

d(x,y) =
√

(x− y)TΣ−1(x− y)

Notice that Σ is PSD and so Σ−1 has to be as well. Thus (x− y)TΣ−1(x− y) ≥ 0 and so d(x,y) ≥ 0.

The similarity to the density for multivariate Gaussians is obvious. In fact, the Mahalanobis distance d(x, µ)
uniquely determines the density of x for a multivariate normal N (µ,Σ). This is clear when we notice that
the only dependence of the density on x is through the exponent − 1

2 (x− µ)TΣ−1(x− µ) ∝ d(x, µ)2

The Mahalanobis distance is a multi-dimensional generalization of the idea of measuring how many standard
deviations away x is from the mean µ. But unlike Euclidean distance, it takes into account the correlations
represented by the covariance matrix.
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Special cases

If the covariance matrix is the identity matrix, the Mahalanobis distance reduces to the Euclidean distance.
If the covariance matrix is diagonal, then the resulting distance measure is called a standardized Euclidean
distance:

d(x,y) =
√∑

i

(xi − yi)2

σ2
i

where σ2
i is the variance of Xi (or Yi). Notice that each 1

σ2
i
is acting as a weight for each dimension i in the

weighted sum.
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