Artificial Neural Networks
Multi Layer Perceptrons

Slides from Javier Bejar

CS-FIB-UPC @®®©

Introduction

The brain and the neurons

© Neurons are the building blocks of the brain

© Their interconnectivity defines the programming that allows us to solve all our
everyday tasks

© They are able to perform parallel and fault tolerant computation

© Theoretical models of how the neurons in the brain work and how they learn have
been developed since the beginning of Artificial Intelligence

© Many of these models are really simple (yet powerful) and have a slim
resemblance to real brain neurons

A neuron model

© The task that a single neuron performs is very simple

o Given a set of inputs, compute an output using their combined value and a possibly
non-linear transformation

—J Bias
X0~ Weight
M
B ——
w ..
X %
Ouput Links
7 o) d
T
) Input Activation Output
Input Links Function Function

A neuron model

© A neuron has a bias input () with value 1
© The weights of the neuron (w;) are the parameters of the model
© The input is computed as a weighted sum of the inputs (linear combination)

© The output ¢ is obtained by applying the activation function g(x) to the input

g=flz,w)=g (Z%%)

Feed Forward Networks

© Feed forward networks are organized in layers, each fully connected to the next,
forming a DAG (no cycles)

o Single layer neural networks (perceptron networks): input layer, output layer
o Multiple layer neural networks (MLP): input layer, hidden layers, output layer
© The input layer has as many units as inputs in the problem
© The output layer has as many units as needed for the task
© Each hidden layer has several units (possibly a different number per layer)

© The input of each unit is all the outputs of the units from the previous layer

Feed Forward Networks

Output
Layer

soeoe i

Hidden Layers 6

Single Layer Neural Networks

The perceptron

© A single output unit perceptron can be used for classification when we have two
classes (several units can be used together for more classes) and for regression

© The model with one unit and linear output for classification is a linear discriminant
function that divides the examples in two classes (a linear function of the inputs)

© We can use different activation functions in the output layer for classification

o Linear output = Linear discriminant (the sign is the class)

o Sigmoid or hyperbolic tangent output &~ Logistic regression (probability of the class)

The perceptron

Preceptron unit for two inputs

+1
XUO
I w1
xQ—w’ g(wo + x1 - w1 + x2 - w2)
2

g(z)

The perceptron model

X
N
~ X X X
N
~ X
N
@) ~ X X
N
N
o O\\X
N
N
O oO N
O N

10

The delta rule

© To learn a linear discriminant with the perceptron we use as labels the values
yn € {—1,+1}

© We minimize the squared error loss function to minimize the square distance from
the missclassified instances to the linear discriminant function that defines the
perceptron weights

© We want to minimize:

E(yna Qn) -3 (yn - gn)Q

DN | —
] =

n=1
where y,, is the label of example z,, and g, is the output obtained by the
perceptron f(z,,w) = w'x + wy

11

The delta rule

X
X X X
X
? X _X__ _
- - - _O_ 1 _O_ &
(@) o ©
(@)

12

The delta rule

©

We can obtain the linear discriminant using a gradient descent algorithm

In order to obtain the update for the gradient descent algorithm we have to obtain
the derivative of the error respect to the parameters V/(x, w)

The update rule will be:

w 4 w+ Aw
where Aw = —aV/{(w) (steepest descent)
This update is repeated several times until convergence (each iteration is called
epoch)
Depending on how the optimization is performed, each iteration uses the average
of the gradient of several examples as the direction to move

13

Derivation of the delta rule

14

Gradient Descent Linear Perceptron

© Now the update rule:

N
= Q- E yn Lni
n=1

© The space of parameters for linear units is formed by a hyperparaboloid surface
(quadratic function), this means that a global minimum exists

© The parameter « (learning factor) has to be small enough, so we do not miss the
minimum, but not too small so it takes forever to reach it

© Usually this parameter « is decreased with the iterations (decay)

15

Gradient Descent

Gradient Descent Linear Perceptron

Algorithm: Gradient Descent Linear Perceptron

Input : (X,Y) = {(x1,11), (x2,42), ..., (xn,yn)} (training set, with binary labels
v € {+1,-1})
Output: w (vector of weights)
<0
w(t) < random weights
repeat
Aw(t) = a5 3 nexUn = In)tn
w(t+1) =w(t) + Aw(t)
t++
until no change in w

17

Stochastic Grandient Descent

© If we have a large dataset, to compute the update with all the data can be costly
© The learning can be performed on-line, updating the weights using one example at
a time, this is known as Stochastic Gradient Descent

© The examples are shuffled randomly each iteration (this prevents cycles)

Data S
—>» L 3
O Q
epoch1 0 I W £ 3
Epoch2 | IR o n
Epoch 3 --
<

18

Mini Batch Stochastic Grandient Descent

© To use only one example could mean to have large variance on the gradient
updates

© A compromise is to group the examples in random subsamples and average their
gradients, this is known as Mini Batch Stochastic Gradient Descent

© The idea is that each example's gradient is a random variable that has as
expectancy the true gradient, so to use only a few random examples is a good
estimate

19

Limitations of linear perceptrons

© With linear perceptrons we can only classify correctly linearly separable problems,

they do not converge otherwise
© The hypothesis space is not powerful enough for real problems

© Example, the XOR function:

N N Ty o | f(x)
R K 0 0] 1
AN \\ 0 1|0
K . 1 0/ 0
AN . 1 1] 1
Do N ©

20

Multiple Layer Neural Networks

Multilayer Perceptron

© Perceptron units can be organized in layers forming feed forward networks

© Each layer performs a transformation that is passed to the next layer as input
© The combination of linear units only allows to learn linear functions

© To learn non linear functions we have to use non linear activation functions

© The most used are: sigmoid, tanh, Rectified Linear Unit (ReLU)

3 Sigmoid 3 tanh ; Rell
2 2 4 2
1 14 1
0 / 01 f 01
-1 -1 -1
-2 -2 -2
-3 : : : -3 : : : -3 . . :
-2 0 2 -2 0 2 -2 0 2

22

Multilayer Perceptron

© We are using non linear transformations that are tuned during the learning

M

filfi(z,wy), wi) = gi(wio + Z Wim [5(, Wjm)))

m=1

i is a perceptron unit in the current layer, f; is the transformation that is obtained
from all the previous layers, that are the input of ¢

© The basis functions are not fixed as we assumed with the previous methods, we
learn the basis functions ¢

© We have functions that are non-linear respect to the parameters

23

Function approximation

© Networks with several layers allow to approximate any function given enough units
in a layer and enough layers (Universal Approximator functions)

o Any boolean function can be represented as a two layer MLP (including XOR)
(number of hidden units grows exponentially with the number of inputs)

o Any continuous function can be approximated by a two layer network (sigmoid
hidden units, linear output units)

o Any arbitrary function can be approximated by a three layer network (sigmoid
hidden units, linear output units)

© The architecture of the network defines the functions that can be approximated

© But it is difficult to characterize for a particular network structure what functions

can be represented and what functions can not

24

MLP Classification/Regression

© The output of a MLP determines its task:

o Univariate Regression: one output neuron with a linear activation function

o Multivariate Regression: as many output neurons as output functions with linear

activation function
o Binary Classification: one output neuron with a sigmoid activation function
o Multi Class Classification: as many outputs as classes with a softmax activation

© Regression tasks normally use the squared loss and classification tasks the cross
entropy loss, but other losses can also be used depending on the application

25

Learning Multilayer Networks

© For single layer networks when we have multiple outputs, we can learn each output

separately

© In the multilayer case, we have a set of parameters for each unit of the layer and
each layer is fully connected to the next layer

© This means that the outputs of the network are all interconnected by the
interdependence generated by the hidden layers

© The upgrade of the weights from one output affect the connections with other

outputs

26

Learning Multilayer Networks

27

Backpropagation

© Any neural network is basically a directed acyclic graph (DAG) and the
computations for training must follow that graph

© The algorithm used for training is called Backpropagation

© This is a dynamic programming algorithm that uses the topological sort of the
graph to compute the gradients of the function given a set of examples

28

Backpropagation - Dynamic programming

© The dynamic programming is needed to avoid repeated computation given that
some operations are shared by several paths in the graph

© The parameters of each layer are computed and updated at the same time

© It combines two steps

1. The forward pass evaluates the function for the examples for computing the error

2. The backward pass computes the gradient of the function and the update of the
weights

29

Backpropagation - Algorithm

1. Propagate the examples through the network to obtain the output (forward
propagation)
o For each layer, each unit computes the linear combinations of the inputs and the
weights
o Each unit computes the activation functions and passes the output to all the units
of the next layer

2. Propagate the output error layer by layer updating the weights of the neurons
(back propagation)
o Each unit computes the difference between the estimated value obtained by the
next layer and the actual value of the unit
o The difference is propagated to each unit of the previous layer proportionally to
their weight and the weights are updated

30

Backpropagation - Intuitively

© The error of the single layer perceptron links directly the transformation of the
input in the output

© In the case of multiple layers each layer has its own error
© The error of the output layer is directly the error computed from the true values

© The error for the hidden layers is more difficult to define

31

Backpropagation - Intuitively

© The idea is to use the error of the next layer to influence the weights of the
previous layer

© We are propagating backwards the output error, hence the name of
backpropagation

© The error of the units in the output layer is distributed to the previous layer
proportionally to the weights of the connections, the process is repeated until the
input layer is reached

32

Backpropagation - Intuitively

Input Hidden Ouput
Layer Layer Layer

a D)

'« Weights Update 4/

X2

33

Backpropagation - Intuitively

34

Backpropagation - Forward pass

© An MLP computes in a unit the function:
CL]’ = Z ’w]'iOi
i

where o, is the output computed by the unit i from the previous layer and w; is
the weight of the connection between the unit i and unit j

© The output of unit j is computed as:

0 = g(ay)

where ¢ is an activation function

© The Forward pass computes in order all this values until it reaches the output as
Un = f(x,,w) so the error of the output layer can be computed
35

Backpropagation - Backward pass

© In order to recompute the weights w;; we need to obtain derivative of the error
respect to the weights for each example

Ol(xy,, w)
(9wji

© The error depends on the weights only on the summation in a;, so applying the

chain rule:
Oy, w) Ol(xn,w) Oaj
aw]'i N 8aj awﬂ
where 9,
= Zi
8wj,~

36

Backpropagation - Backward pass

© The derivative of the error respect to the unit j is called the error term

5 — 0l(xy,, w)
I Gaj
© This term depends on the error function that we are using

© So the derivative of the error respect to the weights can be expressed as:

Oz, w)

7~
awﬁ

37

Backpropagation - Backward pass

© If we use as loss function the squared loss as we saw with the delta rule (see slide
14) we have that the error can be computed as:

(xn, w) O (yn — a;)? B
8aj a 86Lj - _(yn B aj)
oz, w) da;

© If we assume a network with only one layer and the identity function as activation
function (a; = wj;x,,;) we obtain the delta rule

o (xp, w)

= —\Un — Q;)Tnp;

38

Backpropagation - Backward pass - output layer

© The error only depends on the actual output as there is no link with other units

© The gradient depends on the derivative of the activation function of the output
and the error function

© This is what we are optimizing in the linear methods

39

Backpropagation - Backward pass - hidden layers

© For the units of the hidden layers, each unit accumulates the derivatives of the
units is connected to, applying the chain rule:

(2, w) Oz, w) Day,
5 = o) Iy T) PTk
J 8aj Z 8(Zk (9aj
we sum over all the units & from the next layer that j is connected with
© We obtain
ow dg(a;
b= 20 = 3 " = (0

J

So we just propagate backwards the ¢, from the next layer proportionally to the

connection weights
40

Backpropagation - Backward pass

0; kj
: wji C
Z; Zj

41

Gradient descent

© With the gradients for each variable we can recompute the weights using gradient
descent (all/stochastic/minibatch stochastic)

© For the output layer:

1t s
Wi = wi; — ;2

© For the hidden layers
wﬁl =wj; —a | g'(a) Z W0k | 2i
k

© For instance, using sigmoid activation functions so g(a;) = 0,= o(a;):!

1t , ,
Wi = wj; — <oj(1 —0j) E wkjék) 2
k

1Remember that o/(z) = o(2)(1 — o(x))

42

Backpropagation in modern Neural Networks Frameworks

© Currently, Neural networks are defined directly as computational graphs

© A neural network can have in its nodes many kinds of computations
interconnected with other nodes, each one needs a derivative and a way of
computing the forward and backward pass

© All these computations are defined programmatically and combined on run time
using automatic differentiation

© The Neural network definition language/runtime is in charge of building the
computation graph and generating the forward and backward passes

43

Gradient Descent - Convergence

© For multilayer neural networks the hypothesis space is the set of all possible
weights values that the units can have

© The surface determined by these parameters and the error function can have
several local optima

© This means that the solution can change depending on the initialization

© Convergence can be also very slow for certain problems

44

Gradient Descent - Momentum

© One improvement introduced to obtain faster convergence is the use of the
method called momentum

© This method alters the update of the weights including a weighted part of the
previous update ij-i_l:

wﬁl — w; + aij.Z- + qu§;1 with 0 < p <1

© The effect is to maintain the exploration in the same direction, allowing to skip
local minima and performing longer steps, helping to faster convergence

45

Gradient Descent - Regularization

© The more obvious condition for terminating the backpropagation algorithm is
when the error can not be reduced any more, usually this leads to overfitting

© This overfitting occurs during the latest iterations of the algorithm

© At this point the weights try to minimize the error fitting specific characteristics of
the data (usually the noise)

© One possibility is to use regularization, for instance Ly or Ly (weight decay)

© Other possibility is to limit the number of iterations of the algorithm, this is called
early termination

© This adds more hyperparameters to the model

47

Practical Issues

© To optimize a neural network is not an easy task

o Decide the number of layers

@]

Decide the units per layer
Decide the error function

@]

0]

Decide the activation function (per layer)

(e]

Decide optimization algorithm and its parameters

(0]

Use early termination?
Momentum?

(0]

o

Regularization?

© The computational cost makes difficult to use cross validation

© The size of the dataset matters (many parameters to tune)

48

3 class MLP logistic vs ReLU

3-Class classification MLP - act=logistic - neu = 100 3-Class classification MLP - act=relu - neu = 100

4.0

35

30

25

20

49

3 class MLP 10 units vs 1000 units

3-Class classification MLP - act=relu - neu = 10 3-Class classification MLP - act=relu - neu = 1000

4.0

35

30

25

20

50

3 class MLP 2 layers - 4 layers

3-Class classification MLP - act=relu - neu = (50, 50 3-Class classification MLP - act=relu - neu = (100, 50, 20, 5)

40

L |
35
30 o0

L] L]

L]
25
20 !

51

	Introduction
	Single Layer Neural Networks
	Multiple Layer Neural Networks
	Interpretability/Explainability
	Deep learning

