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Perceptron Revisited: Linear Separators

Binary classification can be viewed as the task of
separating classes in feature space:

wix+ H=0

wix+ H<0

Ax) =sign(w™ + D)
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Perceptron Revisited: Linear Separators

There are infinite linear separators. Are all them
equally good?
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What is a good Decision Boundary?

m Consider a two-class, linearly N

separable classification problem
= Many decision boundaries! o O Class2

= The Perceptron algorithm can be = o
used to find such a boundary O

= Different algorithms have been . o
proposed N N

= Are all decision boundaries N O
equally good? Class 1 '
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Examples of Bad Decision Boundaries
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Examples of Bad Decision Boundaries
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Classification Margin

 Distance from example x; to the separatoris r= HV\I'H

« Examples closest to the hyperplane are support vectors.

« Margin p of the separator is the distance between support
vectors.
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Large-margin Decision Boundary

« The decision boundary should be as far away from the data of both

classes as possible
* We should maximize the margin, m
* Distance between the origin and the line w'x=k is k/| |w]| |

2

m =
W]

Mario Martin (CS-UPC) Support Vector Machines - DM 10/05/2022



Maximum Margin Classification

« Maximizing the margin is good according to intuition and PAC

theory.
« Implies that only support vectors matter; other training

examples are ignorable.
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Finding the Decision Boundary

mlet {x,, ..., X} be our data set and let y, € {1,-1} be the class
label of x.

= The decision boundary should classify all points correctly

yi(wlix; +b) > 1, Vi

= The decision boundary can be found by solving the following

constrained optimization problem

1
Minimize EHWHQ

subject to y;(w!x; +b) > 1 Vi

m This is a constrained optimization problem. Solving it requires
some new tools

= Feel free to ignore the following several slides; what is important
is the constrained optimization problem above
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[Recap of Constrained Optimization]

= Suppose we want to: minimize f(x) subject to g(x) =0
= A necessary condition for x, to be a solution:

f

o (£ () + ag(0))

g(x) =0

= o.: the Lagrange multiplier

=0

X=XD

= For multiple constraints g(x) =0, i=1, ..., m, we need a
Lagrange multiplier o, for each of the constraints

f

|50 + Tl i) =0

X=X0

gi(x) =0 fori=1,....m
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[Recap of Constrained Optimization]

= The case for inequality constraint g,(x)<0 is similar, except
that the Lagrange multiplier o, should be positive

= If X, is a solution to the constrained optimization problem

mXin f(x) subjectto g¢g;(x)<0 fori=1,...,m

m There must exist a.>0 for i=1, ..., m such that x, satisfy

ra%(f(x) + 2 aigi(x)) - =0
X=7IQ

gi(x) <0 fori=1,...,m

N

= The function f(x) +»_ gi(x) isalso known as the
Lagrangrian; we want'to set its gradientto O
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[Back to the Original Problem]

1
Minimize §||w||2

subject to 1—y;(w!x;4b) <O fori=1,....n
m The Lagrangian is
L < T
EZEW W—I—Zaz—(l—yi(w Xz—l—b))

1=1
= Note that | |w]||2=w'w

= Setting the gradient of £ w.r.t. wand b to zero, we have

7L T
w4 D) a(-y)x, =0 = W= ) oyX;

(1
d oy =0
i=1
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[The Dual problem]

= If we substitute w = > oux; ,we have £

=1
1 n n
L= ) Z aiiniT Z A5Y45X4 + Z ¢y (1 — y;( Z ajijj X; + b))
1=1 j=1 7=1
1 n n T T
=5 2. 2L @iagyiyX; X+ Z aj — Z iy Z oYX X — b Y agy;
i=1j=1 i—1 ‘ i—1
1 n T T n
=3 DD aoyiyX X+ D
i=1j=1 i=1

= Note that Zl a;y; =0

= This is a function of o, only
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The Dual problem

= The new objective function is in terms of o, only

= |t is known as the dual problem: if we know w, we know all o;
if we know all a;, we know w

m The original problem is known as the primal problem

= The objective function of the dual problem needs to be
maximized!

= The dual problem is therefore:
max. W(Oﬁ) = Z Qo — 5 Z QGO YY Xy X
i=1 i=1,j=1

T
subject to a; > 0, > oy; =0
i=1

. Vay,

Properties of o, when we introduce The result when we differentiate the
the Lagrange multipliers original Lagrangian w.r.t. b
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The Dual problem

n 1 n
max. W(a) = Z Q; — 5 Z aiajyiijng
1 =1 1=1,7=1

n
subject to a; > 0, Y ay; =0
i=1

= This is a quadratic programming (QP) problem

= A global maximum of o, can always be found
n
=W cah be recovered b — P
Y oow = Z QY Xy
1=1
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A Geometrical interpretation
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Characteristics of the Solution

= Many of the @, are zero
= W is a linear combination of a small number of data points

= This “sparse” representation can be viewed as data compression
as in the construction of knn classifier

= X. with non-zero a, are called support vectors (SV)
= The decision boundary is determined only by the SV
= Let t; (j=1, ..., s) be the indices of the s support vectors. We can
Write. W : Zj:l atjytjxtj
m For testing with a new data z
= Compute wl'z + b = Z§:1 ot Yt (X;}l;.z) + b classify z as
class 1 if the sum is positive, and class 2 otherwise

= Note: w need not be formed explicitly
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The Quadratic Programming Problem

= Many approaches have been proposed
= Logo, cplex, etc. (see http://www.numerical.rl.ac.uk/qp/qp.html)

= Most are “interior-point” methods
= Start with an initial solution that can violate the constraints

= Improve this solution by optimizing the objective function and/or
reducing the amount of constraint violation

= For SVM, sequential minimal optimization (SMO) seems to be
the most popular
= A QP with two variables is trivial to solve

= Each iteration of SMO picks a pair of (o;,0) and solve the QP with
these two variables; repeat until convergence

= In practice, we can just regard the QP solver as a “black-box”
without bothering how it works
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Non-Separable Sets

e Sometimes, data sets are not linearly separable.

v
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Non-Separable Sets

e Sometimes, we do not want to separate perfectly.

This is too
close!

Maybe this
point is not
so important. o

o OO o

v
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Non-Separable Sets

e Sometimes, we do not want to separate perfectly.

If we ignore
this point

The hyperplane
is nicer!
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Soft Margin Classification

= Slack variables §; can be added to allow misclassification of
difficult or noisy examples, resulting margin called soft.
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Soft Margin Classification

=We allow “error” &, in classification; it is based on the output
of the discriminant function w'x+b

= ; different from O for misclassified samples

WTX—I—b=O

“WTX +rb = —1
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Soft Margin Classification

= If we minimize 2., & can be computed by
wixj+b>1-&  yi=1

wix,+b<-14¢ y=-1
& >0 Vi

o

= &; are “slack variables” in optimization
= Note that £=0 if there is no error for x.
= &, is an upper bound of the number of errors

= We want to minimize %HW||2 +C > 1&

= C : tradeoff parameter between error and margin
= The optimization problem becomes
c e 1
Minimize 5||w||? + C Y, &
subject to y;(wix; +b)>1—-¢;, & >0
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The Optimization Problem

= The dual of this new constrained optimization problem is

Mmax. W(Oé) == Z oy — 5 Z Q05 YY Xy X
1=1 1=1,5=1

T
subject to C > «; > 0, > ayy; =0
i=1

w is recovered as — V5 Ut X+
. w j=1 %t;Yt; Xt

m This is very similar to the optimization problem in the linear
separable case, except that there is an upper bound C on a.,
now

= Once again, a QP solver can be used to find a.,
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A Geometrical interpretation

C=1.0

WTx—I—bZO
wlix+b= -1
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Importance of support set

= Supports are points in the frontier between classes
(supports + errors)

sSolution can be reconstructed from only supports
n S
W = Z atjytjxtj — Z atjytjxtj
= Number of supports is usually smaller than the input
dimension

s Number of supports is upper bound of Leave-one-out
error

FEroo < ||S]]

... because using non-support points for testing will not change the boundary and it will
be correctly classified
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Extension to Non-linear Decision Boundary

= So far, we have only considered large-margin classifier with a
linear decision boundary

= How to generalize it to become nonlinear?
= Key idea: transform x. to a higher dimensional space to “make
life easier”
= Input space: the space the point x. are located
= Feature space: the space of ¢(x.) after transformation
= Why transform?

= Linear operation in the feature space is equivalent to non-linear
operation in input space

= Classification can become easier with a proper transformation. In
the XOR problem, for example, adding a new feature of x,x,
make the problem linearly separable
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Moving data to higher dimensional space

m General idea: the original feature space can be mapped to
some higher-dimensional feature space where the training
set is separable:

v

Input space Feature space

Note: feature space is of higher dimension
than the input space in practice
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Moving data to higher dimensional space
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= Computation in the feature space can be costly because it is high
dimensional (feature space can be even infinite-dimensional!)

= The kernel trick comes to rescue
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The Kernel Trick

= Recall the SVM optimization problem
T 1 T
max. W(a) = Z &= 5 Z oz,,;oejyiy
i=1 i=1,j=1
mn
subject to C > ; > 0, Y ay; =0
i=1

= The data points only appear as inner product

= As long as we can calculate the inner product in the feature
space, we do not need the mapping explicitly

= Define the kernel function K by

K(x;,%;) = ¢(x;)" o(x;)
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The Kernel Trick

= Recall the SVM optimization problem

n 1 n
maxX. W(O{) = Z ai—E Z oz,iozjyiyj,
1=1 1=1,7=1

T
subject to C > ; > 0, Y ay; =0

=1

m Classification
|
h(x) = sign (Z Y -+ bj
i=1
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Example: Polynomial kernel
= Suppose ¢(.) is given as follows
s(| 33 ) = (1,V221,V20,2%, 23, V22172)

= The inner product in the feature space is

(o( ),éb([z%])) = (1,V2z1, V2w, 2%, 25, V2r129) 1 (1, V2y1, V240, 4%, 43, V2y112)

£
L2

= (1 + 2191 + 22y0)?

= So, if we define the kernel function as follows, there is no need
to carry out ¢(.) explicitly

K(x,y) = (1 + z1y1 + 20y2)?

= This use of kernel function to avoid carrying out ¢(.) explicitly
is known as the kernel trick
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Popular kernels

mPolynomial kernel with degree d
K(x,y) = (x'y +1)¢

mRadial basis function kernel with width
K(x,y) = exp(—||x — y[|?/(252))

= The feature space is infinite-dimensional

= The projection function is unknown
?
[
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Kernel conditions

= All kernels has the following form
K(x;, %)) = ¢(x;)" p(x;) = N'N

= Any matrix that can be decomposed as NN is called
as symmetric, positive definite matrix (sdp)

= Any function K(x,z) that creates a symmetric,
positive definite matrix is a valid kernel (= an inner
product in some space)

= ...even when we don’t know projection function ¢(.)

m This is the case of the RBF function
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Choosing the Kernel Function

= Probably the most tricky part of using SVM.

= The kernel function is important because it creates the
kernel matrix, which summarizes all the data

= Many principles have been proposed (diffusion kernel,
Fisher kernel, string kernel, ...)

= Since the training of the SVM only needs the value of
K(x; x;) there is no constrains about how the examples are
represented

aln practice, a low degree polynomial kernel or RBF kernel
with a reasonable width is a good initial try
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Summary: Steps for Classification

= Prepare the data matrix [numeric+normalization]
m Select the kernel function to use

m Select the parameter of the kernel function and the
value of C

= You can use the values suggested by the SVM software, or
you can set apart a validation set to determine the values
of the parameter

= Execute the training algorithm and obtain the o,

= Unseen data can be classified using the o, and the
support vectors
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Strengths and Weaknesses of SVM

m Strengths
= Training is relatively easy

= No local optimal, unlike in neural networks
= It scales relatively well to high dimensional data

= Tradeoff between classifier complexity and error can be
controlled explicitly

= Non-traditional data like strings and trees can be used as input to
SVM, instead of feature vectors

= Weaknesses
= Need to choose a “good” kernel function.
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Other Types of Kernel Methods

mA lesson learnt in SVM: a linear algorithm in the
feature space is equivalent to a non-linear algorithm
in the input space

mStandard linear algorithms can be generalized to its
non-linear version by going to the feature space

= Kernel principal component analysis, kernel independent
component analysis, kernel canonical correlation analysis,
kernel k-means, 1-class SVM are some examples
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Conclusion

sSVM state of the art classification algorithms

sTwo key concepts of SVM: maximize the margin and
the kernel trick

sMany SVM implementations are available on the web
for you to try on your data set!

mlet’s play!

= www.csie.ntu.edu.tw/~cjlin/libsvm
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