Machine Learning

Learning with kernels

Lluis A. Belanche

belanche@cs.upc.edu

FACULTAT
Soft Computing Research Group gg'g&:ﬁéﬂ

Soft Computing Research Group
Dept. de Ciencies de la Computacio (Computer Science)

Universitat Politécnica de Catalunya

Marta Arias

Learning with kernels (I): The SVM

Linear regression revisited

= Problem: We wish to find a function y(x) = w'x + b which best
models a data set D = {(x1,t1),...,(xN,tn)} CRE X R

= Then we minimize the regularized (aka penalized) empirical error:

N 5 d
Bamp() = Y (tn —y(@n))” + A Y wf = ||t — Xw|? + Aw]?

n=1 1=1

The parameter A > 0 defines a trade-off between the fit to the data
and the complexity of the vector w

(p. 1)

Learning with kernels (I): The SVM

Linear regression revisited

8Eé\mp(y)

Setting IT

= 0, we obtain the (regularized) normal equations:

22X T(t— Xw)+ 22w =0

with solution

w=(X"X+N) X"t

and therefore

yx) =w

(p. 2)

Learning with kernels (I): The SVM

Linear regression revisited

It turns out that the regularized solution can be written as:

w1
N i
’[b p— Z Oénmn, ’{D p— :2
n=1 R
wq
(@8
N - ozl
y(x) = Z an(xn), 1 :2
n=1 '
N

The new vector of parameters is given by a = (XX T 4+ X))~ 1t

(p. 3)

Learning with kernels (I): The SVM

Linear regression revisited

So we have the primal and the dual forms for y(x):

N
y(x) = @'z and y(x) = Z an(wn—rw)

n=1

The dual form is usually more convenient when d > N:

» the primal requires the computation & inversion of X T X + A,
requiring O(Nd? + d3) operations

m the dual requires the computation & inversion of xXxT + A,
requiring O(dN?2 + N3) operations

(p. 4)

Learning with kernels (I): The SVM

Key aspects of kernel methods
How can we achieve non-linear regression?

A feature map is a function ¢ : R — RM:

(@) = ($1(2), 62(2), -, dpr(@))
s o(x) is called the feature vector

» {#(x) : x € RY} is the feature space (FS), and typically M > d.

(p. 5)

Learning with kernels (I): The SVM

Key aspects of kernel methods

s Define &y the matrix of the ¢(xy,) as

¢nm:¢m<wn),n:1,...,N7m:1,...,M.

m Suppose we perform ridge regression on the & matrix

m [he new regression function has the primal representation:

y(xz) = @' (x)

Note the primal now (explicitly) operates in feature space

(p. 6)

Learning with kernels (I): The SVM

Key aspects of kernel methods

Given a feature map ¢ : R — RM we define its associated kernel
function k : R% x R — R as:

k(u,v) = ¢(u) ' ¢(v), u,veR?
m [he feature space where k implicitly operates is RM

s For some feature maps, computing k(u,v) is independent of M

(p. 7)

Learning with kernels (I): The SVM

Key aspects of kernel methods

N

Since w = Y. apd(xyn), the new regression function has the dual
n=1

representation:

N N

y(x) = Z an(gb(a}n)TqS(w)) — Z ank(xn, x)

n=1 n=1

The new vector of parameters is given by

a = (K+ My)" M, where K = (k(zn, zm))

(p. 8)

Learning with kernels (I): The SVM

Key aspects of kernel methods

Many (classical and new) learning algorithms can be “kernelized” :

s The Support Vector Machine (SVM) and the Relevance Vector
Machine (RVM)

m Fisher Discriminant Analysis (KFDA), Principal Components
Analysis (KPCA), Canonical Correlation Analysis (KCCA), ...

s Kernel (regularized) linear regression
m Kernel k-means, kernel KNN

m (less known or very recent): PLS, Parzen Windows, logistic
regression, statistical tests, ...

(p. 12)

Learning with kernels (I): The SVM

Key aspects of kernel methods

Kernel-based methods consist of two ingredients:

1. The kernel function (this is non-trivial)

2. The algorithm taking kernels as input
m Data items are embedded into a vector space (feature space FS)
m Linear relations are sought among the elements of the FS
m T he coordinates of these images are not needed: only their pairwise inner products

m T hese inner products can sometimes be computed efficiently and implicitly in the
input space (kernel function)

m [he solution vector is expressed as a linear combination of the kernel centered at
the data

(p. 11)

Learning with kernels (II): Kernel functions

A kernel function implicitly defines a map ¢ : X — H from an input space
of objects X into some Hilbert space H (called the feature space). The
“kernel trick” consists in performing the mapping and the inner product
simultaneously by defining its associated kernel function:

|
| . SR
’
4
4

IC(’U,,’U) — <¢(’U,),¢(’0)>H, u,v € Xa

(p. 1)

Learning with kernels (II): Kernel functions

T he Kernel Trick

Suppose we take k(u,v) = (u,v)? (a simple choice).

What is the underlying mapping ¢ here?

—— Answer: this choice of kernel corresponds to a map ¢ leading into the space
spanned by all products of exactly d dimensions of R".

m Therefore, ¢

Let us take, for instance, u,v € R?, and take d = 2:

s = = [((2).()]

= (u1v1 + upv2)? = (u1v1)? + 2uiviugvs + (u2v2)?

= ufv; 4+ (V2u1u2) (V20102) + ubv3

u? v?
= <(\/iuiluz >, (\/5”011@2)> = (¢(u), d(v))
us (%5}

R?2 — R3 with ¢(x) = (22,v2z122,23)7

(p. 2)

Kernel-Based Learning

Key aspects of kernel methods

m A feature map is of the general form ¢ : X — H. The associated
kernel function k: X x X = R is k(u,v) = (¢(u),¢(v))y, u,v € X

m X can be any space, H is any Hilbert space:

e An abstract complete vector space possessing the structure of an
inner product

e Examples would be RM or the [> space of square-summable
sequences

In our previous discussion, X = RY and ‘H = RM

(p. 10)

Learning with kernels (II): Kernel functions

Characterization of Kernels

Definition: A symmetric function k is called positive semi-definite in
X if:

for every N € N, and every choice z1,--- ,xy € X,

the matrix K = (k;;), where k;; = k(x;, x;) is positive semi-definite.

Theorem: k£ admits the existence of a map ¢ : X — H s.t.

H is a Hilbert space and k(u,v) = (¢(u), (v))y

if and only if k is a positive semi-definite symmetric function in X.

(p. 3)

Learning with kernels (II): Kernel functions

On positive semi-definiteness

There are many equivalent characterizations of the psd (positive
semi-definite) property for real symmetric matrices. Here are some:

1. Agxq is psd if and only if all of its eigenvalues are non-negative.

2. Agxgq is psd if and only if the determinants of all of its leading
principal minors are non-negative.

3. Ag.g is psd if and only if there is a psd matrix B such that BBT = A
(this matrix B is unique and called the square root of A).

4. Agy.q is psd if and only if, Ve € R, ¢f'Ac > 0.

(p. 4)

Learning with kernels (II): Kernel functions

General linear kernel

If Aj.4is a psd matrix, then the function k : R% x R¢ — R given by
k(u,v) = ul Av is a kernel.

Proof. Since A is psd we can write it in the form A = BB!. For every
N €N, and every choice z1,--- ,zy € R?, we form the matrix K = (k;;),
where k;; = k(z;, ;) = ! Az;. Then for every c € RYV:

N N
Z Z ciciki; Z Z czc]a:TAaz‘7 Z Z CZC](BT)T(BT:B])
1=19=1 1=19=1 1=19=1

2
> 0. Note that ¢(x) = B'z

N
S (BT)

1=1

(p. 5)

Learning with kernels (II): Kernel functions

Summary of kernel properties

If k, k' are kernels on R%, k" is a kernel on RY, a,b >0, and ¢ : R? — RV,
then the following functions are kernels on RY:

1. k(u,v) + k'(u,v)
2. ak(u,v) +b
3. k(u,v)K' (u,v)

4. K'(¢(u), ¢(v))

(p. 6)

Learning with kernels (II): Kernel functions

Normalization
If k£ is a kernel, then so is:

kE(u,v)

s, 0) = \/k(u, u)\/k(v, v)

Moreover,

[kn(u,v)| <1
kn(u,u) =1

(p. 7)

Learning with kernels (II): Kernel functions

Polynomial combinations

1. If £ is a kernel and p is a polynomial of degree m with positive
coefficients, then the function

kp(u,v) = p(k(u,v))

is also a kernel.

2. The special case where k is linear and p(z) = (az + 1)™ leads to the
so-called polynomial kernel

(p. 8)

Learning with kernels (II): Kernel functions

Polynomial combinations

Consider the kernel family:

{ki(u,v) = a;((u,v) + ai)ﬁi / Bi €N,a; > 0,a; >0}

For any q > 0 € N,

q
Z kz(ua ’U)
1=0

IS a kernel.

(p. 9)

Learning with kernels (II): Kernel functions

Polynomial combinations

Consider the particular case a; = 0,8, =1 and o; = ‘;‘—,Z for some real
a > 0, and take the limit ¢ — oo.

The obtained series is convergent for all o and the resulting kernel is:

o0 1

> S ((u,v)) =)
i=0
Assume that u,v € R; then exp(auv) = (¢(u), p(v)) with
. o0
o(z) = < Q‘—Zzi> , and therefore we have designed a feature space of

7!
o . 1=0
infinite dimension!

(p. 10)

Learning with kernels (II): Kernel functions

Translation invariant and radial kernels

We say that a kernel k& : R? x RY — R is:

Translation invariant if it has the form k(u,v) = T(u — v), where
T :RY - R is a differentiable function.

Radial if it has the form k(u,v) = t(|]u — v||), where t : [0,00) — [0, 0) iS

a differentiable function.

Radial kernels fulfill k(u,u) = t(0).

(p. 11)

Learning with kernels (II): Kernel functions

T he Gaussian kernel

Consider the function t(z) = exp(—~2z2),~ > 0. The resulting radial
kernel is known as the Gaussian RBF kernel:

k(u,v) = exp(—v[lu — v||*)

Note that some people call it the RBF kernel par excellence!

You can also find it as:

252

k(u,v) = exp <_||u _ v|]2>

(p. 12)

Learning with kernels (II): Kernel functions

Popular choices for the Kernel

Polynomial kernels (relation to GLDSs)

k(u,v) = ((u,v) +1)%, deN

Gaussian RBF kernels (relation to RBFNNS)

k(u,v) = exp (—|lu — ’v||2) v>0€R

Laplacian RBF kernels (relation to 777)

k(u,v) =exp(—yllu—v|) v>0€R

Sigmoidal kernels (relation to MLPs)

k(u,v) = g(a(u,v) + B)

with g a sigmoidal (e.g., logistic, tanh, ...) and particular choices for «, S.

(p. 17)

Learning with kernels (II): Kernel functions

Euclidean space R¢, but not only
Kernels on sets/bitstrings
Graph kernels
Generative kernels (on probability distributions)
Convolution kernels (on combinatorial structures)
Tree kernels

String kernels (text)

. and many others (functional data, categorical data, ...)
(p. 13)

Learning with kernels (II): Kernel functions

A Kkernel for set comparison

Given two sets A, B, consider

k(AaB) — Z Z kbase(aa b)

acEAbEB

If kpase IS the overlap kernel:

1 if a =29,
k(a,b) = { 0 otherwise.
AN B| .
we get k(A, B) = |AnN B|. Remarkably, k(A, B) = AUB| is also a kernel.

(p. 14)

Learning with kernels (II): Kernel functions

Kernels for/from graphs (I)

m Consider a graph G = (V, E), where the set of vertices (nodes) V are the data
points and E is the set of edges. Call N = |V|, the number of nodes

m The idea is to compute a (base) matrix Byxy Whose entries are the weights of the
edges and consider B2 = BB (B need not be symmetric)

= Typical use: connectivity matrix of G: the (i,5) element of B? is the number of
paths of length exactly 2 between ¢ and j

Examples:
1. protein-protein interactions

2. people-to-people interactions

In 2, the (4,5) element of B? is the number of common friends between data
points 7 and j (it can be thought of as a measure of their similarity)

(p. 15)

Learning with kernels (II): Kernel functions

Kernels for/from graphs (II)

Notes:

1. The entries of B may be real-valued numbers (e.g., symmetric bounded
similarities)

2. Higher powers of B measure higher-order similarities
3. Only the even powers are guaranteed to be PSD

Consider, for a given X € (0,1):

=1
Z EA’CB’“ = exp(\B)
k=0 """

If B is symmetric, then B = UAUT is its spectral decomposition, so
B? = (UNUT)(UNUT) = UN?UT. In general, we have B* = UAN*UT and therefore:
K = exp(AB) = U exp(AAN)U?T

is an example of a diffusion kernel (the name comes from the heat equation in
physics)

(p. 16)

Learning with kernels (II): Kernel functions

Afterthoughts

. Importance of designing kernels that do not constitute explicit inner
products between objects, and therefore fully exploit the kernel trick.

. Possibility of learning the kernel function (or the kernel matrix) from
the training data.

. Need more research for handling special situations —like missing,
imprecise or not-applicable (NA) values.

. Theoretical analyses on the implications of the kernel choice for the
success of kernel-based methods.

(p. 18)

