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Universitat Politècnica de Catalunya

Learning with kernels

Marta Arias



Learning with kernels (I): The SVM

Linear regression revisited

Problem: We wish to find a function y(x) = w
>
x + b which best

models a data set D = {(x1, t1), . . . , (xN , tN)} ⇢ R
d ⇥ R

Then we minimize the regularized (aka penalized) empirical error:

E�
emp(y) =

N
X

n=1

⇣

tn � y(xn)
⌘2

+ �
d
X

i=1

w2
i = kt�Xwk2 + �kwk2

The parameter � > 0 defines a trade-off between the fit to the data

and the complexity of the vector w

(p. 1)



Learning with kernels (I): The SVM

Linear regression revisited

Setting
@E�

emp(y)
@w

= 0, we obtain the (regularized) normal equations:

�2XT(t�Xw) + 2�w = 0

with solution

ŵ = (XTX + �Id)
�1XT

t

and therefore

y(x) = ŵ
>
x

(p. 2)



Learning with kernels (I): The SVM

Linear regression revisited

It turns out that the regularized solution can be written as:
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N
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x), α =
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The new vector of parameters is given by α = (XXT + �IN)�1
t

(p. 3)



Learning with kernels (I): The SVM

Linear regression revisited

So we have the primal and the dual forms for y(x):

y(x) = ŵ
>
x and y(x) =

N
X

n=1

↵n(xn
>
x)

The dual form is usually more convenient when d � N :

the primal requires the computation & inversion of XTX + �Id,

requiring O(Nd2 + d3) operations

the dual requires the computation & inversion of XXT + �IN ,

requiring O(dN2 +N3) operations

(p. 4)



Learning with kernels (I): The SVM

Key aspects of kernel methods

How can we achieve non-linear regression?

A feature map is a function � : Rd ! R
M :

�(x) =
⇣

�1(x),�2(x), · · · ,�M(x)
⌘T

�(x) is called the feature vector

{�(x) : x 2 R
d} is the feature space (FS), and typically M � d.

(p. 5)



Learning with kernels (I): The SVM

Key aspects of kernel methods

Define ΦN⇥M the matrix of the �(xn) as

�nm = �m(xn), n = 1, . . . , N,m = 1, . . . ,M .

Suppose we perform ridge regression on the Φ matrix

The new regression function has the primal representation:

y(x) = ŵ
>�(x)

Note the primal now (explicitly) operates in feature space

(p. 6)



Learning with kernels (I): The SVM

Key aspects of kernel methods

Given a feature map � : Rd ! R
M , we define its associated kernel

function k : Rd ⇥ R
d ! R as:

k(u, v) = �(u)>�(v), u, v 2 R
d

The feature space where k implicitly operates is R
M

For some feature maps, computing k(u, v) is independent of M

(p. 7)



Learning with kernels (I): The SVM

Key aspects of kernel methods

Since ŵ =
N
P

n=1
↵n�(xn), the new regression function has the dual

representation:

y(x) =
N
X

n=1

↵n(�(xn)
>�(x)) =

N
X

n=1

↵nk(xn,x)

The new vector of parameters is given by

α = (K+ �IN)�1
t, where K =

⇣

k(xn,xm)
⌘

(p. 8)



Learning with kernels (I): The SVM

Key aspects of kernel methods

Many (classical and new) learning algorithms can be “kernelized”:

The Support Vector Machine (SVM) and the Relevance Vector
Machine (RVM)

Fisher Discriminant Analysis (KFDA), Principal Components
Analysis (KPCA), Canonical Correlation Analysis (KCCA), ...

Kernel (regularized) linear regression

Kernel k-means, kernel kNN

(less known or very recent): PLS, Parzen Windows, logistic
regression, statistical tests, ...

(p. 12)



Learning with kernels (I): The SVM

Key aspects of kernel methods

Kernel-based methods consist of two ingredients:

1. The kernel function (this is non-trivial)

2. The algorithm taking kernels as input

Data items are embedded into a vector space (feature space FS)

Linear relations are sought among the elements of the FS

The coordinates of these images are not needed: only their pairwise inner products

These inner products can sometimes be computed efficiently and implicitly in the
input space (kernel function)

The solution vector is expressed as a linear combination of the kernel centered at
the data

(p. 11)



Learning with kernels (II): Kernel functions

A kernel function implicitly defines a map � : X ! H from an input space

of objects X into some Hilbert space H (called the feature space). The

“kernel trick” consists in performing the mapping and the inner product

simultaneously by defining its associated kernel function:

k(u, v) = h�(u),�(v)iH , u, v 2 X ,

(p. 1)



Learning with kernels (II): Kernel functions

The Kernel Trick

Suppose we take k(u, v) = hu, vid (a simple choice).

What is the underlying mapping � here?

=) Answer: this choice of kernel corresponds to a map � leading into the space
spanned by all products of exactly d dimensions of R

n.

Let us take, for instance, u, v 2 R
2, and take d = 2:

k(u, v) = hu, vi2 =

⌧✓

u1

u2

◆

,

✓

v1
v2

◆��2

= (u1v1 + u2v2)
2 = (u1v1)

2 +2u1v1u2v2 + (u2v2)
2

= u2
1v

2
1 + (

p
2u1u2)(

p
2v1v2) + u2

2v
2
2

=
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0

@
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2
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A,

0

@

v21p
2v1v2
v22

1

A

+

= h�(u),�(v)i

Therefore, � : R2 �! R
3 with �(x) = (x2

1,
p
2x1x2, x2

2)
T

(p. 2)



Kernel-Based Learning

Key aspects of kernel methods

A feature map is of the general form � : X ! H. The associated

kernel function k : X ⇥ X ! R is k(u, v) = h�(u),�(v)iH , u, v 2 X

X can be any space, H is any Hilbert space:

• An abstract complete vector space possessing the structure of an

inner product

• Examples would be R
M or the l2 space of square-summable

sequences

In our previous discussion, X = R
d and H = R

M

(p. 10)



Learning with kernels (II): Kernel functions

Characterization of Kernels

Definition: A symmetric function k is called positive semi-definite in

X if:

for every N 2 N, and every choice x1, · · · ,xN 2 X ,

the matrix K = (kij), where kij = k(xi,xj) is positive semi-definite.

Theorem: k admits the existence of a map � : X ! H s.t.

H is a Hilbert space and k(u, v) = h�(u),�(v)iH

if and only if k is a positive semi-definite symmetric function in X .

(p. 3)



Learning with kernels (II): Kernel functions

On positive semi-definiteness

There are many equivalent characterizations of the psd (positive

semi-definite) property for real symmetric matrices. Here are some:

1. Ad⇥d is psd if and only if all of its eigenvalues are non-negative.

2. Ad⇥d is psd if and only if the determinants of all of its leading

principal minors are non-negative.

3. Ad⇥d is psd if and only if there is a psd matrix B such that BBT = A

(this matrix B is unique and called the square root of A).

4. Ad⇥d is psd if and only if, 8c 2 R
d, c

TAc � 0.

(p. 4)



Learning with kernels (II): Kernel functions

General linear kernel

If Ad⇥d is a psd matrix, then the function k : Rd ⇥ R
d ! R given by

k(u, v) = u
TAv is a kernel.

Proof. Since A is psd we can write it in the form A = BBT . For every

N 2 N, and every choice x1, · · · ,xN 2 R
d, we form the matrix K = (kij),

where kij = k(xi,xj) = x
T
i Axj. Then for every c 2 R

N :

N
X

i=1

N
X

j=1

cicjkij =
N
X

i=1

N
X

j=1

cicjx
T
i Axj =

N
X

i=1

N
X

j=1

cicj(B
T
xi)

T (BT
xj)

=

�

�

�

�

�

�

N
X

i=1

ci(B
T
xi)

�

�

�

�

�

�

2

� 0. Note that �(x) = BT
x
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Learning with kernels (II): Kernel functions

Summary of kernel properties

If k, k0 are kernels on R
d, k00 is a kernel on R

N , a, b � 0, and � : Rd ! R
N ,

then the following functions are kernels on R
d:

1. k(u, v) + k0(u, v)

2. ak(u, v) + b

3. k(u, v)k0(u, v)

4. k00(�(u),�(v))

(p. 6)



Learning with kernels (II): Kernel functions

Normalization

If k is a kernel, then so is:

kn(u, v) :=
k(u, v)

q

k(u,u)
q

k(v, v)

Moreover,

|kn(u, v)|  1

kn(u,u) = 1

(p. 7)



Learning with kernels (II): Kernel functions

Polynomial combinations

1. If k is a kernel and p is a polynomial of degree m with positive

coefficients, then the function

kp(u, v) = p(k(u, v))

is also a kernel.

2. The special case where k is linear and p(z) = (az +1)m leads to the

so-called polynomial kernel

(p. 8)



Learning with kernels (II): Kernel functions

Polynomial combinations

Consider the kernel family:

n

ki(u, v) = ↵i

⇣

hu, vi+ ai
⌘�i

/ �i 2 N,↵i > 0, ai � 0
o

For any q > 0 2 N,

q
X

i=0

ki(u, v)

is a kernel.

(p. 9)



Learning with kernels (II): Kernel functions

Polynomial combinations

Consider the particular case ai = 0,�i = i and ↵i =
↵i

i! , for some real

↵ > 0, and take the limit q ! 1.

The obtained series is convergent for all ↵ and the resulting kernel is:

1
X

i=0

↵i

i!
(hu, vi)i = e↵hu,vi

Assume that u, v 2 R; then exp(↵uv) = h�(u),�(v)i with

�(z) =

 
r

↵i

i! z
i

!1

i=0

, and therefore we have designed a feature space of

infinite dimension!

(p. 10)



Learning with kernels (II): Kernel functions

Translation invariant and radial kernels

We say that a kernel k : Rd ⇥ R
d ! R is:

Translation invariant if it has the form k(u, v) = T (u� v), where

T : Rd ! R is a differentiable function.

Radial if it has the form k(u, v) = t(ku� vk), where t : [0,1) ! [0,1) is

a differentiable function.

Radial kernels fulfill k(u,u) = t(0).

(p. 11)



Learning with kernels (II): Kernel functions

The Gaussian kernel

Consider the function t(z) = exp(��z2), � > 0. The resulting radial

kernel is known as the Gaussian RBF kernel:

k(u, v) = exp(��ku� vk2)

Note that some people call it the RBF kernel par excellence!

You can also find it as:

k(u, v) = exp

 

�ku� vk2
2�2

!

(p. 12)



Learning with kernels (II): Kernel functions

Popular choices for the Kernel

Polynomial kernels (relation to GLDs)

k(u, v) = (hu, vi+1)d, d 2 N

Gaussian RBF kernels (relation to RBFNNs)

k(u, v) = exp
�

��ku� vk2
�

� > 0 2 R

Laplacian RBF kernels (relation to ???)

k(u, v) = exp (��ku� vk) � > 0 2 R

Sigmoidal kernels (relation to MLPs)

k(u, v) = g(↵ hu, vi+ �)

with g a sigmoidal (e.g., logistic, tanh, ...) and particular choices for ↵,�.

(p. 17)



Learning with kernels (II): Kernel functions

Euclidean space R
d, but not only

Kernels on sets/bitstrings

Graph kernels

Generative kernels (on probability distributions)

Convolution kernels (on combinatorial structures)

Tree kernels

String kernels (text)

... and many others (functional data, categorical data, ...)

(p. 13)



Learning with kernels (II): Kernel functions

A kernel for set comparison

Given two sets A,B, consider

k(A,B) =
X

a2A

X

b2B
kbase(a, b)

If kbase is the overlap kernel:

k(a, b) =

(

1 if a = b;
0 otherwise.

we get k(A,B) = |A \B|. Remarkably, k(A,B) =
|A \B|

|A [B|
is also a kernel.

(p. 14)



Learning with kernels (II): Kernel functions

Kernels for/from graphs (I)

Consider a graph G = (V,E), where the set of vertices (nodes) V are the data
points and E is the set of edges. Call N = |V |, the number of nodes

The idea is to compute a (base) matrix BN⇥N whose entries are the weights of the
edges and consider B2 = BB (B need not be symmetric)

Typical use: connectivity matrix of G: the (i, j) element of B2 is the number of
paths of length exactly 2 between i and j

Examples:

1. protein-protein interactions

2. people-to-people interactions

In 2, the (i, j) element of B2 is the number of common friends between data
points i and j (it can be thought of as a measure of their similarity)

(p. 15)



Learning with kernels (II): Kernel functions

Kernels for/from graphs (II)
Notes:

1. The entries of B may be real-valued numbers (e.g., symmetric bounded
similarities)

2. Higher powers of B measure higher-order similarities

3. Only the even powers are guaranteed to be PSD

Consider, for a given � 2 (0,1):

1
X

k=0

1

k!
�kBk = exp(�B)

If B is symmetric, then B = UΛUT is its spectral decomposition, so
B2 = (UΛUT)(UΛUT) = UΛ

2UT . In general, we have Bk = UΛ
kUT and therefore:

K = exp(�B) = U exp(�Λ)UT

is an example of a diffusion kernel (the name comes from the heat equation in
physics)

(p. 16)



Learning with kernels (II): Kernel functions

Afterthoughts

1. Importance of designing kernels that do not constitute explicit inner

products between objects, and therefore fully exploit the kernel trick.

2. Possibility of learning the kernel function (or the kernel matrix) from

the training data.

3. Need more research for handling special situations –like missing,

imprecise or not-applicable (NA) values.

4. Theoretical analyses on the implications of the kernel choice for the

success of kernel-based methods.

(p. 18)




