
Meta Learning methods

Mario Martin

UPC - Computer Science Dept.



Outline

Introduction
Definition

Voting schemes
Stacking
Weighted majority
Bagging and Random Forests
Boosting



Outline

Introduction
Definition

Voting schemes
Stacking
Weighted majority
Bagging and Random Forests
Boosting



Multiclassifiers, Meta-learners, Ensemble Learners

I Combining several weak learners to give a strong learner

I A kind of multiclassifier systems and meta-learners

I Ensemble typically applied to a single type of weak learner
I All built by same algorithm, with different data or parameters

I Lots of what I say applies to multiclassifier systems in general



Why?

1. They achieve higher accuracy in practice
I We trade computation time for classifier weakness

I Netflix competition (2009) won by a combination of 107
hybrid classifiers

I More: Most of the top teams were multi-classifiers

2. Combine strengths of different classifier builders
I And we can incorporate domain knowledge into different

learners

3. May help avoiding overfitting
I This is paradoxical because more expressive than weak learners!

4. Good option for online learning in evolving realities

More on the Netflix Prize: http://www.netflixprize.com//community/viewtopic.php?id=1537

http://www.netflixprize.com//community/viewtopic.php?id=1537


Why?

1. They achieve higher accuracy in practice
I We trade computation time for classifier weakness
I Netflix competition (2009) won by a combination of 107

hybrid classifiers
I More: Most of the top teams were multi-classifiers

2. Combine strengths of different classifier builders
I And we can incorporate domain knowledge into different

learners

3. May help avoiding overfitting
I This is paradoxical because more expressive than weak learners!

4. Good option for online learning in evolving realities

More on the Netflix Prize: http://www.netflixprize.com//community/viewtopic.php?id=1537

http://www.netflixprize.com//community/viewtopic.php?id=1537


Why?

1. They achieve higher accuracy in practice
I We trade computation time for classifier weakness
I Netflix competition (2009) won by a combination of 107

hybrid classifiers
I More: Most of the top teams were multi-classifiers

2. Combine strengths of different classifier builders
I And we can incorporate domain knowledge into different

learners

3. May help avoiding overfitting
I This is paradoxical because more expressive than weak learners!

4. Good option for online learning in evolving realities

More on the Netflix Prize: http://www.netflixprize.com//community/viewtopic.php?id=1537

http://www.netflixprize.com//community/viewtopic.php?id=1537


Why?

1. They achieve higher accuracy in practice
I We trade computation time for classifier weakness
I Netflix competition (2009) won by a combination of 107

hybrid classifiers
I More: Most of the top teams were multi-classifiers

2. Combine strengths of different classifier builders
I And we can incorporate domain knowledge into different

learners

3. May help avoiding overfitting
I This is paradoxical because more expressive than weak learners!

4. Good option for online learning in evolving realities

More on the Netflix Prize: http://www.netflixprize.com//community/viewtopic.php?id=1537

http://www.netflixprize.com//community/viewtopic.php?id=1537


Condorcet’s jury theorem

I Condorcet’s jury theorem states that when independent
predictors with probability p of successful output (p > 0.5),
combining the outputs using majority vote have probability of
success pmv such that pmv > p.

I Example: 3 classifiers c1, c2, c3 with p = 0.7

I Example: 3 classifiers c1, c2, c3 with p1 = 0.7, p2 = 0.8 and
p3 = 0.75

http://shorturl.at/cuKRU


Condorcet’s jury theorem

I Condorcet’s jury theorem states that when independent
predictors with probability p of successful output (p > 0.5),
combining the outputs using majority vote have probability of
success pmv such that pmv > p.

I Example: 3 classifiers c1, c2, c3 with p = 0.7

I Example: 3 classifiers c1, c2, c3 with p1 = 0.7, p2 = 0.8 and
p3 = 0.75

http://shorturl.at/cuKRU


Combining weak learners

I Voting
I Each weak learner votes, and votes are combined

I Experts that abstain
I A weak learner only counts when it’s expert on this kind of

instances
I Otherwise it abstains (or goes to sleep)



Outline

Introduction
Definition

Voting schemes
Stacking
Weighted majority
Bagging and Random Forests
Boosting



Voting

How to combine votes?

I Simple majority vote

I Weights depend on errors (1− ei? 1/ei? exp(−ei )? . . . )

I Weights depend on confidences

I Maximizing diversity



Voting

How to combine votes?

I Simple majority vote

I Weights depend on errors (1− ei? 1/ei? exp(−ei )? . . . )

I Weights depend on confidences

I Maximizing diversity



Voting

How to combine votes?

I Simple majority vote

I Weights depend on errors (1− ei? 1/ei? exp(−ei )? . . . )

I Weights depend on confidences

I Maximizing diversity



Voting

How to combine votes?

I Simple majority vote

I Weights depend on errors (1− ei? 1/ei? exp(−ei )? . . . )

I Weights depend on confidences

I Maximizing diversity



Outline

Introduction
Definition

Voting schemes
Stacking
Weighted majority
Bagging and Random Forests
Boosting



Stacking (Wolpert 92)

A meta-learner that learns to weight its weak learner

I Dataset with instances (x,y)

I Transform dataset to have instances (x,c1(x),...cN(x),y)

I Train metaclassifier M with enriched dataset

Often, x not given to M, just the votes
Often, just linear classifier
Can simulate most other voting schemes



Stacking (Wolpert 92)

A meta-learner that learns to weight its weak learner

I Dataset with instances (x,y)

I Transform dataset to have instances (x,c1(x),...cN(x),y)

I Train metaclassifier M with enriched dataset

Often, x not given to M, just the votes
Often, just linear classifier
Can simulate most other voting schemes



Outline

Introduction
Definition

Voting schemes
Stacking
Weighted majority
Bagging and Random Forests
Boosting



Weighted majority (Littlestone-Warmuth 92)

initialize classifiers c1...cN with weight wi = 1/N each;

for each example x in sequence do

collect predictions c1(x)...cN(x);

prediction(x) = sign[ w1*c1(x)+...+wN*cN(x))-1/2 ]

get true label y for x;

for each i=1..N,

if (ci(x) != y) then wi = wi/2;

renormalize weights to sum 1;

I Weights depend exponentially on error

I At least as good as best weak learner in time O(logN)

I Often much better; more when classifiers are uncorrelated

I Good for online prediction and when many classifiers

I E.g. when 1 classifier = 1 feature



Weighted majority (Littlestone-Warmuth 92)

initialize classifiers c1...cN with weight wi = 1/N each;

for each example x in sequence do

collect predictions c1(x)...cN(x);

prediction(x) = sign[ w1*c1(x)+...+wN*cN(x))-1/2 ]

get true label y for x;

for each i=1..N,

if (ci(x) != y) then wi = wi/2;

renormalize weights to sum 1;

I Weights depend exponentially on error

I At least as good as best weak learner in time O(logN)

I Often much better; more when classifiers are uncorrelated

I Good for online prediction and when many classifiers

I E.g. when 1 classifier = 1 feature



Weighted majority (Littlestone-Warmuth 92)

initialize classifiers c1...cN with weight wi = 1/N each;

for each example x in sequence do

collect predictions c1(x)...cN(x);

prediction(x) = sign[ w1*c1(x)+...+wN*cN(x))-1/2 ]

get true label y for x;

for each i=1..N,

if (ci(x) != y) then wi = wi/2;

renormalize weights to sum 1;

I Weights depend exponentially on error

I At least as good as best weak learner in time O(logN)

I Often much better; more when classifiers are uncorrelated

I Good for online prediction and when many classifiers

I E.g. when 1 classifier = 1 feature



Weighted majority (Littlestone-Warmuth 92)

initialize classifiers c1...cN with weight wi = 1/N each;

for each example x in sequence do

collect predictions c1(x)...cN(x);

prediction(x) = sign[ w1*c1(x)+...+wN*cN(x))-1/2 ]

get true label y for x;

for each i=1..N,

if (ci(x) != y) then wi = wi/2;

renormalize weights to sum 1;

I Weights depend exponentially on error

I At least as good as best weak learner in time O(logN)

I Often much better; more when classifiers are uncorrelated

I Good for online prediction and when many classifiers

I E.g. when 1 classifier = 1 feature



Weighted majority (Littlestone-Warmuth 92)

initialize classifiers c1...cN with weight wi = 1/N each;

for each example x in sequence do

collect predictions c1(x)...cN(x);

prediction(x) = sign[ w1*c1(x)+...+wN*cN(x))-1/2 ]

get true label y for x;

for each i=1..N,

if (ci(x) != y) then wi = wi/2;

renormalize weights to sum 1;

I Weights depend exponentially on error

I At least as good as best weak learner in time O(logN)

I Often much better; more when classifiers are uncorrelated

I Good for online prediction and when many classifiers

I E.g. when 1 classifier = 1 feature



Weighted majority (Littlestone-Warmuth 92)

initialize classifiers c1...cN with weight wi = 1/N each;

for each example x in sequence do

collect predictions c1(x)...cN(x);

prediction(x) = sign[ w1*c1(x)+...+wN*cN(x))-1/2 ]

get true label y for x;

for each i=1..N,

if (ci(x) != y) then wi = wi/2;

renormalize weights to sum 1;

I Weights depend exponentially on error

I At least as good as best weak learner in time O(logN)

I Often much better; more when classifiers are uncorrelated

I Good for online prediction and when many classifiers

I E.g. when 1 classifier = 1 feature



Weighted majority (Littlestone-Warmuth 92)

initialize classifiers c1...cN with weight wi = 1/N each;

for each example x in sequence do

collect predictions c1(x)...cN(x);

prediction(x) = sign[ w1*c1(x)+...+wN*cN(x))-1/2 ]

get true label y for x;

for each i=1..N,

if (ci(x) != y) then wi = wi/2;

renormalize weights to sum 1;

I Weights depend exponentially on error

I At least as good as best weak learner in time O(logN)

I Often much better; more when classifiers are uncorrelated

I Good for online prediction and when many classifiers

I E.g. when 1 classifier = 1 feature



Weighted majority (Littlestone-Warmuth 92)

initialize classifiers c1...cN with weight wi = 1/N each;

for each example x in sequence do

collect predictions c1(x)...cN(x);

prediction(x) = sign[ w1*c1(x)+...+wN*cN(x))-1/2 ]

get true label y for x;

for each i=1..N,

if (ci(x) != y) then wi = wi/2;

renormalize weights to sum 1;

I Weights depend exponentially on error

I At least as good as best weak learner in time O(logN)

I Often much better; more when classifiers are uncorrelated

I Good for online prediction and when many classifiers

I E.g. when 1 classifier = 1 feature



Weighted majority (Littlestone-Warmuth 92)

initialize classifiers c1...cN with weight wi = 1/N each;

for each example x in sequence do

collect predictions c1(x)...cN(x);

prediction(x) = sign[ w1*c1(x)+...+wN*cN(x))-1/2 ]

get true label y for x;

for each i=1..N,

if (ci(x) != y) then wi = wi/2;

renormalize weights to sum 1;

I Weights depend exponentially on error

I At least as good as best weak learner in time O(logN)

I Often much better; more when classifiers are uncorrelated

I Good for online prediction and when many classifiers

I E.g. when 1 classifier = 1 feature



Weighted majority (Littlestone-Warmuth 92)

initialize classifiers c1...cN with weight wi = 1/N each;

for each example x in sequence do

collect predictions c1(x)...cN(x);

prediction(x) = sign[ w1*c1(x)+...+wN*cN(x))-1/2 ]

get true label y for x;

for each i=1..N,

if (ci(x) != y) then wi = wi/2;

renormalize weights to sum 1;

I Weights depend exponentially on error

I At least as good as best weak learner in time O(logN)

I Often much better; more when classifiers are uncorrelated

I Good for online prediction and when many classifiers

I E.g. when 1 classifier = 1 feature



Weighted majority (Littlestone-Warmuth 92)

initialize classifiers c1...cN with weight wi = 1/N each;

for each example x in sequence do

collect predictions c1(x)...cN(x);

prediction(x) = sign[ w1*c1(x)+...+wN*cN(x))-1/2 ]

get true label y for x;

for each i=1..N,

if (ci(x) != y) then wi = wi/2;

renormalize weights to sum 1;

I Weights depend exponentially on error

I At least as good as best weak learner in time O(logN)

I Often much better; more when classifiers are uncorrelated

I Good for online prediction and when many classifiers

I E.g. when 1 classifier = 1 feature



Outline

Introduction
Definition

Voting schemes
Stacking
Weighted majority
Bagging and Random Forests
Boosting



Bagging I

I To reduce the variance of an estimator, it is helpful to average
estimates from independent draws from the data

I Assuming each Yb is an unbiased estimate of target value y :

E
[
(y − Yb)2

]
= Var [Yb]

E

(y − 1

B

∑
b

Yb

)2
 =

1

B2

∑
b

Var [Yb] (if all Yb are independent)

=
1

B
Var [Yb] (if all Yb have same variance)



Bagging I

I So, the idea of bagging is to combine the predictions of a
high-variance predictor trained on independent bootstrap
samples from the same dataset, to make the combined
predictions more robust (i.e. with lower variance) and,
therefore, more accurate.

I Trees typically suffer from high variance (= overfitting) so it is
specially useful in Decision trees (high variance or sensibility
to training data set)



Bagging (Breiman 96)

1. Get a dataset S of N labeled examples on A attributes;

2. Build N bagging replicas of S : S1, . . . , SN ;
I Si = draw N samples from S with replacement;

3. Use the N replicas to build N weak learners C1, . . . , CN ;

4. Predict using majority vote of the Ci ’s



Bagging I

Example of building training sets:

Original: 1 2 3 4 5 6 7 8
Training Set1: 2 7 8 3 7 6 3 1
Training Set2: 7 8 5 6 4 2 7 1
Training Set3: 3 6 2 7 5 6 2 2
Training Set4: 4 5 1 4 6 4 3 8

Any samples that are not chosen for the bootstrapped dataset are
placed in a separate dataset called the out-of-bag dataset (OOB).



Bagging (Breiman 96)

1. Get a dataset S of N labeled examples on A attributes;

2. Build N bagging replicas of S : S1, . . . , SN ;
I Si = draw N samples from S with replacement;

3. Use the N replicas to build N weak learners C1, . . . , CN ;

4. Predict using majority vote of the Ci ’s



Out-of-bag (OOB) error

I The OOB error is an estimation of generalization error that
can be used as validation error to select appropriate values for
the hyperparameters; as a direct consequence, there is no
need for cross-validation for model selection
(hyperparameter tuning).

I For each case in the OOB dataset compute the oob error:

1. Find all models that are not trained by the OOB instance.
2. Obtain prediction for each model
3. Average all these predictions (regression) or take the majority

vote (classification) to compute the oob error for each
example, and

I Average OOB error across examples



Random Forests (Breiman 01, Ho 98)

1. Parameters k and a;

2. Get a dataset S of N labeled examples on A attributes;

3. Build k bagging replicas of S : S1, . . . , Sk ;

4. Use the k replicas to build k random trees T1, . . . , Tk ;
I At each node split, randomly select a ≤ A attributes, and

choose best of these a;
I Grow each tree as deep as possible: not pruning!!

5. Predict using majority vote of the Ti ’s



Random Forests II

Weak learner strength vs. weak learner variance

I More attributes a increases strength, overfits more

I More trees k decreases variance, overfits less

Can be shown to be similar to weighted k-NN
Top performer in many tasks



Random Forests II

Weak learner strength vs. weak learner variance

I More attributes a increases strength, overfits more

I More trees k decreases variance, overfits less

Can be shown to be similar to weighted k-NN
Top performer in many tasks



Random forests
Variable importance

If a random forest contains many trees, it can be difficult to comprehend
what the model is doing (not interpretable by a person).

I Variable importance plot add interpretability to the model

1. Gini-based variable importance

Add gini impurity gains for variables in splits in each tree in the forest,
sort variables by their sum.

2. Permutation-based variable importance

For each variable, permute values and compute difference in OOB error
metrics before and after permutation. If variable is important, then
accuracy in the permuted copy should decrease. Sort variables by this
difference.

Permutation-based more reliable, but slower; gini-based is biased towards
categorical variables with many splits.2

2If interested, you can read this article.

https://link.springer.com/article/10.1186/1471-2105-8-25


Outline

Introduction
Definition

Voting schemes
Stacking
Weighted majority
Bagging and Random Forests
Boosting



Boosting I

I Bagging tries to reduce variance of base classifiers by building
different bootstrapping datasets

I Boosting tries to actively improve accuracy of weak classifiers

I How? By training a sequence of specialized classified based on
previous errors



Boosting I (Schapire 92)

Adaptively, sequentially, creating classifiers

Classifiers and instances have varying weights

Increase weight of incorrectly classified instances



Boosting II

I Works on top of any weak learner. A weak learner is defined
as any learning mechanism that works better than chance
(accuracy > 0.5 when two equally probable clases)

I Adaptively, sequentially, creating classiers

I Classifiers and instances have varying weights

I Increase weight of incorrectly classied instances

I Final label as weighting voting of sequence of classifiers



Boosting II

I Works on top of any weak learner. A weak learner is defined
as any learning mechanism that works better than chance
(accuracy > 0.5 when two equally probable clases)

I Adaptively, sequentially, creating classiers

I Classifiers and instances have varying weights

I Increase weight of incorrectly classied instances

I Final label as weighting voting of sequence of classifiers



Boosting II

I Works on top of any weak learner. A weak learner is defined
as any learning mechanism that works better than chance
(accuracy > 0.5 when two equally probable clases)

I Adaptively, sequentially, creating classiers

I Classifiers and instances have varying weights

I Increase weight of incorrectly classied instances

I Final label as weighting voting of sequence of classifiers



Boosting II

I Works on top of any weak learner. A weak learner is defined
as any learning mechanism that works better than chance
(accuracy > 0.5 when two equally probable clases)

I Adaptively, sequentially, creating classiers

I Classifiers and instances have varying weights

I Increase weight of incorrectly classied instances

I Final label as weighting voting of sequence of classifiers



Boosting II

I Works on top of any weak learner. A weak learner is defined
as any learning mechanism that works better than chance
(accuracy > 0.5 when two equally probable clases)

I Adaptively, sequentially, creating classiers

I Classifiers and instances have varying weights

I Increase weight of incorrectly classied instances

I Final label as weighting voting of sequence of classifiers



Preliminars

I Only two classes

I Output: y ∈ {−1, 1}
I Exemples: X

I Weak Classifier: G(X)

I Error de training (errtrain)

errtrain =
1

N

N∑
i=1

I (yi 6= G (xi ))



Preliminars



Adaboost algorithm

Set weigth of all examples to 1/n

For t=1:L

St = training set using weights for each example

Learn Gt(St)
Compute errt for Gt

Compute αm = 1
2 ln ( 1− e r rt

errt
)

Compute new weigths wi ← wi
Zt
· e− [αt · yi ·Gt(xi )]

Return classifier: G (x) = signe

(
L∑

t=1
αm Gt(x)

)



Adaboost algorithm

Set weigth of all examples to 1/n
For t=1:L

St = training set using weights for each example

Learn Gt(St)
Compute errt for Gt

Compute αm = 1
2 ln ( 1− e r rt

errt
)

Compute new weigths wi ← wi
Zt
· e− [αt · yi ·Gt(xi )]

Return classifier: G (x) = signe

(
L∑

t=1
αm Gt(x)

)



Adaboost algorithm

Set weigth of all examples to 1/n
For t=1:L

St = training set using weights for each example

Learn Gt(St)
Compute errt for Gt

Compute αm = 1
2 ln ( 1− e r rt

errt
)

Compute new weigths wi ← wi
Zt
· e− [αt · yi ·Gt(xi )]

Return classifier: G (x) = signe

(
L∑

t=1
αm Gt(x)

)



Adaboost algorithm

Set weigth of all examples to 1/n
For t=1:L

St = training set using weights for each example

Learn Gt(St)

Compute errt for Gt

Compute αm = 1
2 ln ( 1− e r rt

errt
)

Compute new weigths wi ← wi
Zt
· e− [αt · yi ·Gt(xi )]

Return classifier: G (x) = signe

(
L∑

t=1
αm Gt(x)

)



Adaboost algorithm

Set weigth of all examples to 1/n
For t=1:L

St = training set using weights for each example

Learn Gt(St)
Compute errt for Gt

Compute αm = 1
2 ln ( 1− e r rt

errt
)

Compute new weigths wi ← wi
Zt
· e− [αt · yi ·Gt(xi )]

Return classifier: G (x) = signe

(
L∑

t=1
αm Gt(x)

)



Adaboost algorithm

Set weigth of all examples to 1/n
For t=1:L

St = training set using weights for each example

Learn Gt(St)
Compute errt for Gt

Compute αm = 1
2 ln ( 1− e r rt

errt
)

Compute new weigths wi ← wi
Zt
· e− [αt · yi ·Gt(xi )]

Return classifier: G (x) = signe

(
L∑

t=1
αm Gt(x)

)



Adaboost algorithm

Set weigth of all examples to 1/n
For t=1:L

St = training set using weights for each example

Learn Gt(St)
Compute errt for Gt

Compute αm = 1
2 ln ( 1− e r rt

errt
)

Compute new weigths wi ← wi
Zt
· e− [αt · yi ·Gt(xi )]

Return classifier: G (x) = signe

(
L∑

t=1
αm Gt(x)

)



Adaboost algorithm

Set weigth of all examples to 1/n
For t=1:L

St = training set using weights for each example

Learn Gt(St)
Compute errt for Gt

Compute αm = 1
2 ln ( 1− e r rt

errt
)

Compute new weigths wi ← wi
Zt
· e− [αt · yi ·Gt(xi )]

Return classifier: G (x) = signe

(
L∑

t=1
αm Gt(x)

)



Adaboost algorithm

αm =
1

2
ln (

1 − e r rm
errm

) > 0

wi ←
wi

Zm
· e− [αm · yi ·G(xi )]

G (x) = sign

(
L∑

m=1

αm Gm(x)

)



Adaboost algorithm

αm =
1

2
ln (

1 − e r rm
errm

) > 0

wi ←
wi

Zm
·
{

e−αt if yi = Gt(xi )
eαt if yi 6= Gt(xi )

G (x) = sign

(
L∑

m=1

αm Gm(x)

)



Simple example

We will use Decision stumps as the weak learner

Decision stumps are decision trees pruned to only one level. Good
candadates to weak learners: above 0.5 accuracy and high variance.

Two examples of decision stumps.



Simple example



Simple example



Simple example



Simple example



Simple example



Simple example



AdaBoost III

Theorem. Suppose that the error of classifier ht is 1/2− γt ,
t = 1..T. Then the error of the combination H of h1,. . . hT is at
most

exp

(
−

T∑
t=1

γ2
t

)

Note: It tends to 0 if we can guarantee γi ≥ γ for fixed γ



Boosting vs. Bagging

I Fruitful investigation on how and why they differ

I On average, Boosting provides a larger increase in accuracy
than Bagging

I But Boosting fails sometimes (particularly in noisy data)

I while bagging consistently gives an improvement



Reasons why this works

1. Statistical reasons: We do not rely on one classifier, so we
reduce variance

2. Computational reasons: A weak classifier can be stuck in local
minima. When starting from different training data sets, we
can find better solution

3. Representational reasons: Combination of classifiers return
solutions outside the initial set of hypothesis, so they adapt
better to the problem



Reasons why this works

All the previous reasons seem to drive us to an overfitting on the
training data set.

However, in practice this is not the case. Not well understood
theoretical reasons.

In practice, they work very well, sometimes better than SVMs.



Reasons why this works

All the previous reasons seem to drive us to an overfitting on the
training data set.

However, in practice this is not the case. Not well understood
theoretical reasons.

In practice, they work very well, sometimes better than SVMs.



Reasons why this works

All the previous reasons seem to drive us to an overfitting on the
training data set.

However, in practice this is not the case. Not well understood
theoretical reasons.

In practice, they work very well, sometimes better than SVMs.


	Introduction
	Definition

	Voting schemes
	Stacking
	Weighted majority
	Bagging and Random Forests
	Boosting




