
Multi-layer perceptron

1. The model

Neural networks are used to solve supervised machine learning problems. Here, we use the convention of
having data as a collection of pairs (x, y) where the x ∈ Rd is a vector characterizing input objects, with y
being its associated target value. Neural networks can be used for classification or regression problems.1

In this document, we start describing a single artificial neuron, then we show how to put them in layers and
finally how to build multi-layered network.

1.1 Artificial neuron

We start by looking at a single neuron. On the right, you see a computational device, known as an artificial
neuron, inspired in its origin by biological brain neurons (on the left)2.

The artificial neuron takes a vector of input values x1, .., xd and combines it with some weights that are local
to the neuron (w0, w1, .., wd) to compute a net input w0 + ∑d

i=1 wi ∗ xi. To compute its output, it then passes
the net input through a possibly non-linear univariate activation function g(·). We will see in a bit common
choices for activation function g. Note the special weight w0 also known as bias. In order to treat all weights
equally, we use the trick of creating an extra input variable x0 with value always equal to 1, and so the
function computed by a single artificial neuron (parameterized by its weights w) is:

y(x) = g

(
w0 +

d

∑
i=1

wi xi

)
= g

(
d

∑
i=0

wi xi

)
= g(wTx)

So, a single artificial neuron is used to model functions Rd 7→ R. The weights w0, w1, .., wd are the parameters
of the model. Different values will compute different functions. As usual, the learning task is to find suitable
weights that allow neurons to model the data as accurately as possible.

1.2 Activation functions

Activation functions can be seen as a sort of non-linear filters that are applied to the net inputs of the neuron,
that is, to the weighted linear combination of neuron inputs. Common choices are sigmoidal functions,

1We will also mention in a future session autoencoders which perform dimensionality reduction, a form of unsupervised learning.
2Note that in the picture the weights are depicted by greek letter θ however we use the convention of denoting weights with w

1



which are differentiable (and this is important for learning as we will see in future lectures), and have
horizontal asymptotes in ±∞. Other choices such as the rectified linear function have become popular in the
last years with the boom of deep learning.

The most popular choice (at least in the context of classical multi-layer perceptrons) is the sigmoid function.
In this case, an artificial neuron is basically equivalent to a logistic regression model. In fact, if we use
the identity as activation function we end up with a linear regression model. In a way, an artificial neuron
implements a generalized linear model.

1.3 One layer (stacking neurons in parallel)

We now generalize one artificial neuron in a straightforward way. What if we want to model functions with
multivariate outputs? Well, we will just use a single neuron for each component in our output. Hence, we
obtain a layer of neurons all working on the same input but each with its own set of separate weights.

Technically, a layer consists of a set of neurons sharing a common input vector but are not connected to each
other. Typically, neurons in the same layer all use the same activation function.

So if our data consists now of pairs (x, y) where x ∈ Rd and y ∈ Rm, we are going to use m neurons, each
with its own set of weights wk for k = 1, .., m. Remember, we follow the convention that x0 = 1. And neurons
will compute for each k = 1, .., m:

yk(x) = g

(
d

∑
i=0

wki xi

)
= g(wT

k x)

We extend the notation for activation function g[·] to denote that g is applied to each component. For

example, g
[(

5
2

)]
=

(
g(5)
g(2)

)
. With this notation, we can describe a layer of neurons in compact form using

matrix notation as follows:

y(x) = g
[
WTx

]
where W is the matrix of size (d + 1)×m containing the weights of all the neurons in the layer.

The following is an example with a 2-neuron layer on a three-dimensional input vector:

2



Notice that this continues to be a (generalized) linear model.

1.4 Multinomial logistic regression

In the context of a multiclass classification problem with K > 2 classes, a popular model is multinomial
logistic regression which we can achieve by having one neuron for each class and using the outputs from
each neuron as scores that tell us how likely it is that the example belongs to each class.

In this scenario of multiclass classification it is very common to apply the softmax function in order to obtain
normalized probabilities accross each class.

The softmax function applied to input z = (z1, . . . , zK) is defined as:

softmax(z)k =
ezk

∑k′ ezk′

The use of the softmax makes it unnecessary to use any activation function after each linear combination
wT

k x.

3

https://en.wikipedia.org/wiki/Multinomial_logistic_regression
https://en.wikipedia.org/wiki/Multinomial_logistic_regression
https://en.wikipedia.org/wiki/Softmax_function


So the function computed by this single-layered network is:

y(x) = softmax(WTx)

with yk(x) =
exp{wT

k x}
∑k′ exp{wT

k′ x}
.

1.5 Multi-layer perceptrons (putting layers together in sequence)

So let us make our so-far linear model a little more powerful. In the context of linear regression, we already
did this by replacing inputs x by non-linear functions of the inputs which we called basis functions and
denoted them with φi(x). We saw, for example, that by using polinomials over the input variables as basis
functions, we could go beyond linear modelling.

So let us do the same, but instead of using a predefined set of basis functions (which could be seen as a
sort of fixed pre-processing of the data), we are going to use neurons as basis functions themselves. Their
paramters will need to be adjusted as well, so in a way, we are letting the network do the pre-processing or
feature engineering in a data-driven way, as part of the learning process. So, we are going to have several
layers of neurons, each feeding their outputs as inputs to the next layers’ neurons.

If we focus on one neuron in some layer, let us say neuron k, its output is now given by:

yk(x) = g

(
h

∑
i=0

wki φi(x)

)

where φi(x) is the output of the i’th neuron in the previous layer. Note also that the sum goes from i = 0 up
to i = h, where h is now the size of the previous layer of neurons (as usual, we fix the first φ0(x) = 1)).

So, MLP networks look like this:

4



In order to build a multi-layer network we are going to place layers in sequence, one layer’s outputs being
fed as inputs to the next one. The terminology regarding this is: the first (left-most) layer is the input layer,
then the in-between layers come, known as hidden layers; finally the right-most layer is the output layer.

Of course, other architectures exist. In general, neural networks are directed graphs whose nodes are neurons.
If the network has no cycles, then it is called a feed-forward network. Otherwise, it is called a recurrent network.
Feed-forward networks represent functions, however recurrent networks represent dynamic systems and
are therefore much more complex to study. MLPs are a special case of feed-forward networks, where the
three following conditions hold:

• neurons are arranged in layers,
• there is at least one hidden layer,
• every layer is fully-connected to the next one, and
• no connections are allowed within layers.

The output layers’ neurons are building a linear model on top of complex non-linear functions of the original
input vector x. This gives neural networks incredible flexibility and modelling strength3. By putting several
neurons in sequence, we are injecting non-linearity into the model (as long as we use non-linear activation
functions!).

1.6 Error functions

Regression. Let us start with a typical regression problem, having as input a collection of pairs
{(xn, yn)}n=1,..,N with xn ∈ Rd and yn ∈ R. As in ordinary least squares regression, we are going to penalize
networks using empirical mean square error. In the following, we denote with w all the parameters used in the
network we are evaluating. As you know, the weights used are grouped into one matrix for each layer,
however we simplify the notation here and we put all weights from all layers into a vector w. If we want to
do regression with one single target variable, then our network will have one single neuron in its output
layer, giving the prediction for a given input which we denote with ŷw(x) (of course, it could have many
hidden layers with many neurons each). The error of the network is computed as usual:

E(w) =
1
2

N

∑
n=1

(yn − ŷw(xn))
2

and so the problem of learning will amount to chosing weights that minimize this function. Note that we
could also minimize regularized versions of this error function, and this tends to help with overfitting, which
is a serious problem given the flexibility of neural networks.

3This flexibility comes at a cost, as we will see, training neural networks is hard and the process can get stuck at bad solutions.

5



Binary classification. Assume now that the target values are of the form yn ∈ {0, 1} such that if yn = 1,
then x is classified as c1 and if yn = 0, then x is classified as c2. We model

P(y|x) =
{

ŷw(x), if x is in c1

1− ŷw(x), if x is in c2

which for y ∈ {0, 1} is compactly expressed as:

P(y|x) = ŷw(x)y(1− ŷw(x))(1−y)

Assuming input examples are i.i.d. then the likelihood function is:

L =
N

∏
n=1

ŷw(xn)
yn(1− ŷw(xn))

(1−yn)

And so the negative log-likelihood gives us an error to minimize (known as cross-entropy):

E(w) = − lnL = −
N

∑
n=1

ynŷw(xn) + (1− yn)(1− ŷw(xn))

Multi-class classification The case with K > 2 classes (multi-class) is modeled with a neural network with
K neurons in the output layer. Each output neuron computes ŷk(x) as the probability of x belonging to the
k-th class4. In this case, target values are of the form y ∈ {0, 1}K with the restriction that only one entry
of y is set to 1, and all other are 0. So now y is a one-hot bit-vector indicating what class x belongs to. In
this case, using the same log-likelihood argument as in the binary case, we end up with the generalized
cross-entropy error function:

E(w) = −
N

∑
n=1

K

∑
k=1

yn,k ŷk(xn)

As a final remark, we note that these error functions, in all three cases (regression, binary and multi-class
classification) have very complex shapes – the deeper the networks, the more complex – and therefore
finding weights minimizing the error becomes difficult. In most cases, some form of gradient descent is
used and so a major concern is to compute gradients efficiently. This is the topic of the following chapter,
where we cover the famous backpropagation algorithm for computing gradients.

4Notice that we have dropped the w subscript from the output neurons’ predictions to avoid too much clutter in the notation.

6



2. Training the Multilayer Perceptron (backprop)

In this chapter we introduce the algorithm of backpropagation which allows us to compute gradients
efficiently in the context of neural networks. In fact, this is more general algorithm which works for
any computational graph. Feed-forward neural networks are indeed computational graphs, and so the
Multilayer perceptron is one as well.

In this document we describe backprop incrementally by using a simple example to illustrate the main ideas.
Then, we describe backprop for the particular case of MLPs. The generalization to any directed graph whose
nodes are differentiable is straightforward.

Backprop’s two main characteristics are (1) its extensive use of the chain rule for computing derivatives,
and (2) its efficiency achieved by storing intermediate results in a dynamic programming fashion.

2.1 Derivatives

But let us start with the definition of derivative of a real-valued function f at a given location a. As you may
recall from your schooldays, this is

f ′(a) = lim
h→0

f (a + h)− f (a)
h

What this means is, if we were to change a slightly, how much (and how) will f change. In the case of
multivariate f , we have a partial derivative for each input variable. Namely, the partial derivative of a
function f (x1, .., xm) in the direction xi at the point (a1, ..., am) is defined as:

∂ f
∂xi

(a1, .., am) = lim
h→0

f (a1, .., ai + h, .., am)

h
.

So we can define the gradient of a multi-variate function f at location (a1, .., am) as the following vector:

∇ f (a1, .., am) =

(
∂ f
∂x1

(a1, .., am), ..,
∂ f

∂xm
(a1, .., am)

)
What does backprop do? Well, it computes the gradient ∇E(w) efficiently, where E(w) is the error incurred
by the network with weights w. This is then used by gradient-based optimization techniques to update the
current weights, e.g. w = w− α∇E(w) if we were using gradient descent with learning rate α. Since we
have to compute ∇E(w) in each iteration of the optimization procedure, doing so efficiently is crucial, and
this is why backprop has such importance in the context of neural networks.

2.2 The chain rule for taking derivatives of function compositions

Backprop uses the following two forms of the chain rule for real-valued functions:

1. Its simplest form, where we want to take the derivative of a composition of two functions:

f (g(x))′ = f ′(g(x))g′(x)

Some of you may be more familiar with the notation (equivalent if z = f (y) and y = g(x)):

dz
dx

=
dz
dy

dy
dx

2. When the dependence is through more than one intermediate function (want to compute the derivative
of f (g1(x), ..gm(x)) w.r.t. x): (so z = f (y1, ..., ym) and yi = gi(x)), then:

dz
dx

=
m

∑
i=1

∂z
∂yi

dyi
dx

7



These two situations correspond to the following computational graphs (or corresponding function composi-
tions):

Chain rule 1 Chain rule 2

dz
dx = dz

dy
dy
dx

dz
dx = ∑m

i=1
∂z
∂yi

dyi
dx

Simple example

In this first example, we will show how to apply the two chain rules in the context of a very simple example.
We will start at the right-most node and work our way upwards “propagating” the gradient upstream
making use of one of the two chain rules node by node.

We will apply these two rules to the following example taken from Wikipedia:

Given u(x, y) = x2 + 2y where x(r, t) = r sin(t) and y(r, t) = sin2(t), determine the value of ∂u
∂r and ∂u

∂t

8

https://en.wikipedia.org/wiki/Chain_rule


• ∂u
∂r = ∂u

∂x
∂x
∂r +

∂u
∂y

∂y
∂r since u depends on r through x and y, so ∂u

∂r = (2x)(sin(t)) + (2)(0) = 2r sin2(t)

• ∂u
∂t = ∂u

∂x
∂x
∂t +

∂u
∂y

∂y
∂t since u depends on t through x and y, so ∂u

∂t = (2x)(r cos(t)) + (2)(2 sin(t) cos(t)) =
... = (r2 + 2) sin(2t)

One important thing to note in the example is that both partial derivatives need to compute ∂u
∂x and ∂u

∂y , and
so storing these values once computed will save doing it twice.

Now, if we use the computational graph corresponding to the function u defined, we have:

There are a couple of things worth noting from this example:

1. We are able to avoid unnecessary computations by storing at each node both forward values, local
derivatives, and backward gradients as we follow the computation graph topology. This is a key factor,
crucial for making neural network learning computationally feasible.

2. In this example we computed the gradient symbolically, namely, we do not have concrete values for
the inputs, so we are computing the gradient in the whole input space. Since we did this for general t
and r, there is no forward pass in this example.

3. All we have done is apply one form of chain rule at each node. Namely, we applied chain rule 1 to
every node except node t; since t is connected to more than one node downstream, we had to make
use of chain rule 2 in this case. This comes down to adding the gradients that are flowing back into t
from every connection it has to other nodes downstream.

2.3 Introducing backprop through examples with incremental architecture complexity

2.3.1 Example with no hidden layers

So hopefully by now you get the general idea of the computation that we are performing. Another im-
provement comes from the fact that we will optimize parameters for neurons in the same layers “in parallel”
by vectorizing computations. If your computer can perform such vectorized computations efficiently, you

9



should notice a huge improvement in performance. This is the reason for the high demand of GPUs when
working with deep networks.

The network for this section is:

On the left, our graph in our usual “node-level” or “neuron level” notation. In the middle, you can see
vectorized notation. Here, we have put together into vectors those parameters that correspond to each
neuron. Thus, vector w1 is the column vector containing all paramters that are local to z1 (neuron 1), and
likewise with the second output neuron z2:

w1 =


w10
w11
· · ·
w1n

w2 =


w20
w21
· · ·
w2n


So, in this case the output value for neuron zk (for k = 1, 2) is computed by performing a dot product between
(local) weights wk and input data x (and then applying the activation function g):

zk = g(wT
k x)

On the right, we go one step further and put all weights into a single matrix W which contains all local
neuron’s weight vectors as columns. Namely: W =

(
w1w2

)
. And so the output values can be computed as a

matrix-vector multiplication, and then applying the component-wise activation function g[·] to the resulting
vecotr. Thus:

z = g[WTx] = g
[(

wT
1

wT
2

)
x
]
= g

[(
wT

1 x
wT

2 x

)]
=

(
g(wT

1 x)
g(wT

2 x)

)
=

(
z1
z2

)
Input nodes are shaded in grey, this is to signify that they are constant and therefore remain fixed throughout
computation of gradients (for a given input vector x).

This network contains n + 1 input nodes and 2 output nodes. In general, if we had m nodes in the output
layer, the computation done in each output node would be zk = g (∑n

i=0 wkixi), and W would be of size

10



((n + 1)×m), and z would be of size (m× 1). Let us assume from now on that, in fact, we have m nodes at
the output, and do the computations in this general case.

So, our aim is to compute gradient of the output of this network w.r.t. its weights W, namely ∂z
∂W , at location

W and on input data x. So, the first thing is to compute intermediate values of the network on a forward
pass. All we do here, is to do the matrix multiplication as noted above. To make things easier, we introduce
new variables ak = wT

k x for each output neuron k; and so:

• ak := wT
k x = ∑n

i=0 wkixi
• a = WTx
• zk = g(ak)
• z = g[a]

These intermediate values ak (before applying the activation) help us in the backward pass to make things
one step at a time, and are sometimes known as the net input values of a neuron zk.

So once we have done the forward pass, we have all intermediate values a = WTx and z = g[a]. Now, let us
compute gradients as we backwards in the network (backward pass).

Since each neuron zk is built from a sequential computation (first compute ak = wT
k x, then apply activation

function zk = g(ak)) we look at what happens with an individual neuron:

So, we are going to compute ∂zk
∂wk

. In fact, weights in the k-th column of W only affect the computation of
neuron zk (these are local parameters), so the gradients w.r.t. this k-th column only come from zk. We need
local gradients first. In the case of zk = g(ak) its local gradient is simply

• ∂zk
∂ak

= g′(ak), where g′(ak) denotes the derivative of g w.r.t. ak. Since we use differentiable activation
functions this derivative always exists

The local gradient of the ak node w.r.t. its i-th weight wki is: ∂ak
∂wki

=
∂ ∑i′ wki′ xi′

∂wki
= xi. We can express this local

gradient compactly for all its local weights wk as:

• ∂ak
∂wk

= x

11



And finally, using the chain rule we have that:

∂zk
∂wk

=
∂zk
∂ak

∂ak
∂wk

= g′(ak) x

Since there is no interaction between output values zk and local weights wj from another neuron zj with
j 6= k, we can concatenate all gradients into a gradient matrix as follows:

∂z
∂W

= x g′[a]T

The following image shows this:

2.3.2 Regression example: neural network for single output regression using mean squared error

Notice that in the previous example there was no notion of quality of prediction, this next step will introduce
an error in the context of regression. We will use a very simple model, equivalent to linear regression with
one single prediction value. The picture now is:

12



Now the picture is slightly simpler than in the previous example because we only have one neuron at the
output, but we have included a neuron downstream that computes the squared error of the output produced
by the single neuron in the output layer. With only one neuron producing an output, our weight matrix

contains a single column and it is thus a column vector w =


w0
w1
· · ·
wn

.

So, the final gradient is a column vector of partial derivatives (because we have a column vector of weights

13



as our parameters) and is given by:

∇E =


x0g′(a)(z− y)
x1g′(a)(z− y)

· · ·
xng′(a)(z− y)

 = xg′(a)(z− y)

Notice the similarity with the previous example, where we multiplied x by g′[a]T to obtain the gradient. In
our current example, this follows the same shape, but since we only have one output neuron we multiply x
by the scalar value g′(a) and also take into account the error E measuring accuracy of prediction z.

This gradient gives now an extremely simple algorithm using batch gradient descent (with small enough
learning rate α) for linear regression. The previous example shows how to compute the gradient of the error
for a single input example (x, y), in general we have a set of such examples. But since the error is the sum of
individual errors (for each input example pair), we just repeat the procedure for all examples and sum the
individual gradients. That is why in the following code you see gw, this is the accumulator of individual
example error gradients.

1. start with random weights w
2. for a certain number of iterations or until convergence (i.e. w does not change):

• set vector gw to all zeros //gw accumulates error gradients over all examples
• for each input example pair (x, y):

– compute forward values a, z (that depend on x, y, and w)
– set gw = gw + xg′(a)(z− y)

• update weights w = w− αgw

2.3.3 Regression example: neural network with one hidden layer and multiple outputs

This example uses a network to model functions Rn 7→ Rm. That is, we have n real-valued inputs and m
real-valued inputs. Therefore our network contains m neurons in its output layer, each modelling one of
the output dimensions of the function we are modelling. The input data pairs are therefore two vectors
(x, y) with x ∈ Rn and y ∈ Rm. The network will use the empirical mean squared error as its error function,
and will also add the contribution to this error from each output component. Also, to make things more
interesting, we include one hidden layer with multiple neurons as the diagram suggests. Notice that this
takes us out from the linear modelling realm, since introducing this non-linear hidden neuron will add
non-linear modelling powers to our network.

14



We introduce some notation. We use the superscript ·(l) to denote layers, and use m(l) to denote the number
of neurons at each layer l. Also, since we have m output neurons, m(2) = m in this case. Typically we say
that a MLP has c hidden layers, so 1 ≤ l ≤ c + 1 (the output layer is layer c + 1). In this example, c = 1. For
weights:

• w(l)
ki refers to the i-th weight of neuron zk of layer l. In this case, 1 ≤ l ≤ 2, 1 ≤ k ≤ m(l), and

0 ≤ i ≤ m(l−1). For notational convenience, we let the inputs be referred to as the 0-th layer, and so:
z(0)i = xi, including z(0)0 = x0. Accordingly, m(0) = n.

• w(l)
k refers to the weight vector local to neuron zk of layer l. Again, l = 1, 2 and 1 ≤ k ≤ m(l)

• W(l) is the concatenation of weight vectors of neurons at layer l; it is of size (m(l−1) + 1)×m(l)

• z(l) is now the vector including all outputs from neurons in layer l, including the extra “1” added
z(l)0 = 1. This is not necessary for the output layer, as downstream nodes do not need a bias.

• a(l) are now the net input values for neurons at layer l, namely we have that z(l) = g
[
a(l)
]

If you feel this is a lot of notation, I completely agree. However, we need to be able to refer to those quantities
and we have many dimensions to consider: l, k, i.

So, we are given an input pair (x, y) and have some current values for all W(l). We use backprop to compute
the gradient ∂E

∂W l for all 1 ≤ l ≤ 2.

First, we perform a forward pass to compute all values of intermediate nodes:

1. compute a(1) = W(1)T
x

2. compute z(1) = g
[
a(1)

]
3. compute a(2) = W(2)T

z(1)

4. compute z(2) = g
[
a(2)

]
5. compute Ek =

1
2 (yk − z(2)k )2 for k = 1, .., m

6. compute E = ∑k Ek as the total error

15



The error computation can be done using vectors as: E = 1
2

(y− z(2))2 ∗

1
...
1


 where the substraction and

squaring is done component-wise. The final multiplication by the all ones vector is to sum its components
(step 6 in previous pseudocode).

If we had more layers, this forward pass would require looping from l = 1 up to l = c + 1 to compute a(l)

and z(l). The error computation would then proceed as in this example using z(c+1) values (from layer c + 1,
i.e., the output layer).

Once we have all the output values, its time to to the backward pass. Let us start by computing:

• ∂E
∂z(2)k

=
∂ ∑j Ej

∂z(2)k

= ∂Ek

∂z(2)k

=
∂ 1

2 (yk−z(2)k )2

∂z(2)k

= (z(2)k − yk).

• ∂E
∂z(2)

= (z(2) − y)

We have the gradients at the outputs of the output layer, let us see the scenario to continue advancing
backwards:

We focus on output neuron k and we open it up in order to make computations more explicit. We define a
convenience variable δ

(2)
k := ∂E

∂a(2)k

. Notice the similarity with a previous example where we have already

computed this (with the only difference that in that example, instead of hidden layer’s outputs we had the
input x), therefore:

Local gradients are:

∂zk
∂ak

= g′(ak)
∂ak
∂wk

= z(1)
∂ak

∂z(1)
= w(2)

k

So:

16



δ
(2)
k :=

∂E

∂a(2)k

=
∂E

∂z(2)k

∂z(2)k

∂a(2)k

= g′(a(2)k )(z(2)k − yk)

∂E

∂w(2)
k

= z(1)δ(2)k

Notice that we can vectorize this computation by noting that

δ(2) =


δ
(2)
1

δ
(2)
2
...

δ
(2)
m

 =


g′(a(2)1 )(z(2)1 − y1)

g′(a(2)2 )(z(2)2 − y2)
...

g′(a(2)m )(z(2)m − ym)

 = g′
[
a(2)

]
� (z(2) − y)

where � stands for the component-wise or Hadamard product (this is not a dot product).

Since all the contribution of the gradient to neuron’s k’s weights is through a(2)k , this means that the gradient
of the error w.r.t. W(2) is given by concatenating all gradient columns from all neurons:

∂E
∂W(2)

=


z(1)0
z(1)1

...
z(1)

m(1)


(

δ
(2)
1 δ

(2)
2 · · · δ

(2)
m

)
=
(

z(1)δ(2)1 z(1)δ(2)2 · · · z(1)δ(2)m

)
= z(1) δ(2)T

where now we are performing an outer product between z(1) (of size (m(1) + 1)× 1) and δ(2) (of size m× 1).
So this operation returns a matrix of size (m(1) + 1)×m which is precisely the size of W(2).

Notice that there is another interesting quantity that we can easily compute from δ
(2)
k , which is the gradient

that neuron k sends to neurons in the previous layer, which can be computed as w(2)
k δ

(2)
k . Notice that this is a

vector of size (m(1) + 1)× 1 so the sizes coincide as well.

Now, we need to go one layer to the left in order to compute the missing gradient ∂E
∂W(1) . Now the situation

is:

17

https://en.wikipedia.org/wiki/Hadamard_product_(matrices)


This is very similar to our previous output layer, however now the k-th neuron from layer 1 is receiving
gradient from all neurons in the following layer, and se we will have to sum these gradients up to account
for the total gradient coming into z(1)k . As before, an important quantity to compute is δ

(1)
k := ∂E

∂a(1)k

. So now:

δ
(1)
k = g′(a(1)k )

m(2)

∑
j=1

w(2)
jk δ

(2)
j

This expression can be vectorized by noting that the sum is computing a dot product between the deltas from
the previous layer and the k-th row from the weight matrix W(2). Since wk is taken as the k-th column of the
matrix we are going to use W(2)

k? to denote its k-th row. Therefore, δ
(1)
k = g′(a(1)k )W(2)

k? δ(2). Now to compute
the full δ(1) vector:

δ(1) =


δ
(1)
1

δ
(1)
2
...

δ
(1)
m(1)

 =


g′(a(1)1 )W(2)

1? δ(2)

g′(a(1)2 )W(2)
2? δ(2)

...
g′(a(1)m )W(2)

m(1)?
δ(2)

 = g′
[
a(1)

]
� (W̃(2)δ(2))

where W̃(2) stands for the matrix W(2) without the first row of biases.

Now that we have the deltas for this layer, we can compute the gradient of the error w.r.t. weight matrix W(1)

as an outer product:

∂E
∂W(1)

=


x0
x1
...

xn

(δ
(1)
1 δ

(1)
2 · · · δ

(1)
m(1)

)
= x δ(1)T

At this point, we have finished and have all the required gradients.

18



2.3.4 Regression example: general MLP with multiple hidden layers

The previous example was complete in the sense that it shows the mechanisms for computing the gradient
from layer l to previous layer l − 1, so by some sort of induction we can introduce the pseudocode for the
backpropagation algorithm. We use the vectorized representation to keep things compact.

We depart from any general MLP with c ≥ 0 hidden layers. Each layer l contains m(l) neurons and we use
the convention of making our input layer be the 0-th layer. Again, we use the network for regression of
multiple outputs. Each layer has its local weight matrix W(l) of size (m(l−1) + 1)×m(l), W̃(l) stands for the

19



local weight matrix at layer l without the first row corresponding to biases. At the output we have m(c+1)

neurons.

1. forward pass
• for layers l = 1 up to l = c + 1:

– a(l) = W(l)T
z(l−1), and

– z(l) = g
[
a(l)
]

2. backward pass
• δ(c+1) = g′

[
a(c+1)

]
� (z(c+1) − y)

• ∂E
∂W(c+1) = z(c) δ(c+1)T

• for l = c down to l = 1:
– δ(l) = g′

[
a(l)
]
� (W̃(l+1)δ(l+1))

– ∂E
∂W(l) = z(l−1) δ(l)T

It should be straightforward to convert this pseudocode into code in any language that supports matrix and
vector operations. Before doing that, we should specify of course which activation functions we want to use,
so that we can substitute g and g′ by the suitable expressions. The following and last section covers two
options for g.

2.4 Differentiation of activation function g

In previous examples whenever we needed to differentiate g, we left it as g′. Namely: ∂zi
∂ai

= ∂g(ai)
∂ai

= g′(ai).

Logistic g(x) = σ(x) Let us instantiate now g with the logistic function σ(x) = 1
1+e−x

dσ(x)
dx

=
d

dx
(1 + e−x)−1

= (−1)(1 + e−x)−2e−x(−1)

=
e−x

(1 + e−x)2

= · · ·

=
1

1 + e−x

(
1− 1

1 + e−x

)
= σ(x) (1− σ(x))

In our context, typically z(l)i = g(a(l)i ). Therefore, g′(a(l)i ) = g(a(l)i )
(

1− g(a(l)i )
)
= z(l)i (1− z(l)i ).

Hyperbolic tangent g(x) = tanh(x) Since (tanh(x))′ = 1− (tanh(x))2, in this case

g′(a(l)i ) = 1−
(

g(a(l)i )
)2

= 1−
(

z(l)i

)2
.

20


	1. The model
	1.1 Artificial neuron
	1.2 Activation functions
	1.3 One layer (stacking neurons in parallel)
	1.4 Multinomial logistic regression
	1.5 Multi-layer perceptrons (putting layers together in sequence)
	1.6 Error functions

	2. Training the Multilayer Perceptron (backprop)
	2.1 Derivatives
	2.2 The chain rule for taking derivatives of function compositions
	Simple example

	2.3 Introducing backprop through examples with incremental architecture complexity
	2.3.1 Example with no hidden layers
	2.3.2 Regression example: neural network for single output regression using mean squared error
	2.3.3 Regression example: neural network with one hidden layer and multiple outputs
	2.3.4 Regression example: general MLP with multiple hidden layers

	2.4 Differentiation of activation function g


