
Machine Learning

FIB, Master in Innovation and Research in Informatics

Marta Arias, Computer Science @ UPC

Topic 5: Nearest neighbor prediction

Nearest neighbor prediction

The nearest neighbor predictor uses the local neighborhood to compute a
prediction

I 1-NN predicts using same target as the closest training example
I k-NN predicts using combination of targets from k closest training

examples

Nearest neighbor pseudocode

I Training:
1. store all examples

I Prediction: given new example x:
1. Compute distance/similarity with all examples in training set
2. Locate k closest
3. Emit prediction by combining labels of k closest

There are three things to decide when applying k-NN:

1. Distance/similarity function
2. How many neighbors k to choose
3. How to combine labels of k neighbors to emit final prediction

Locality: similarities and distances
What does “closest” neighbor mean?

A crucial aspect of nearest neighbor prediction is the notion of
distance/similarity since it affects very directly the predictions made

Let a, b, c be examples in some feature space. Then a distance function
should satisfy:

1. d(a, b) ≥ 0
2. d(a, b) = 0 iff a = b
3. d(a, b) = d(b, a) (symmetry)
4. d(a, b) ≤ d(a, c) + d(c, b) (triangle inequality)

If using a similarty function, it should satisfy:

1. −1 ≥ s(a, b) ≥ 1 or 0 ≥ s(a, b) ≥ 1
2. s(a, b) = 1 iff a = b
3. s(a, b) = s(b, a) (symmetry)

Examples of distance functions for continuous data in Rd

I The most common is the Minkownski distance family; typically
Euclidean (p = 2) or Manhattan (p = 1):

d(a,b) = ‖a − b‖p =

(
d∑

j=1

|aj − bj |p
) 1

p

I Another choice is to use the Mahalanobis distance if we want to take
into account covariances Σ among features:

d(a,b) = (a − b)T Σ−1(a − b)

Examples of similarity functions for continuous data in Rd

I Cosine similarity

s(a,b) = aT b
‖a‖2‖b‖2

I The Pearson correlation measure is similar to cosine similarity but
centers data (µ is the mean of all training points):

s(a,b) = (a − µ)T (b− µ)
‖a − µ‖2‖b− µ‖2

Examples of similarities for binary data

I Hamming distance: proportion of common “bits”
I Jaccard coefficient

s(a,b) =
∑

j
[aj = bj = 1]∑

j
[aj = 1 or bj = 1]

Example:

a = +−−+−−−−+ +−−−−
b = + +−−−−−+ +−−−−+

Here, sJaccard(a,b) = 2
5 = 0.4 and sHamming(a,b) = 8

14 = 0.57.

Choosing k

Nearest neighbor is very sensitive to different values of k
I if k is too low, then we can easilily overfit
I if k is too large, then we can underfit

So, it is important to select an appropriate k, which will depend on the
dataset. Typically we use cross-validation or other resampling methods.

k can be seen as a hyper-parameter that trades-off bias and variance of the
resulting classifier.

On combining labels to make predictions

For classification:
I Majority vote (ties broken randomly)
I Distance-weighted vote: choose weights that are higher for closer points

I e.g. inverse of the distance or inverse of the squared distance

For regression:
I Use the average of targets of k nearest neighbors
I Use weighted average of targets of k nearest neighbors

I e.g. use inverse distance as weight, or squared of inverse distance
I kernel smoothing

Once we use weights for the prediction, we can relax the constraint of using
only k examples and use the whole training set instead.

Decision boundaries for nearest neighbors classifier

In 1-nearest neighbor, the decision regions correspond to the union of each
example’s Voronoi cell, with appropriate “class”

The decision boundaries and regions are highly non-linear, but get smoother
as we increase k

Considerations with k-NN

I Making prediction can be slow especially if we have a large training set
I data structures like kd trees used to speed up neighbor retrieval, only

good for moderate nr. of features
I use prototypes
I use approximate neighbors; e.g. with locality sensitive hashing

I Prone to overfitting
I remove “noisy” examples from training (e.g. examples with nearest

neighbor of different class)
I use prototypes
I set k to appropriate value

I Suffers from curse of dimensionality: as dimensionality increases,
everything seems to be close

I Suffers from presence of irrelevant features

I Standarization of features is crucial to avoid domination of features
with larger (absolute) values

