
Machine Learning

FIB, Master in Innovation and Research in Informatics

Marta Arias, Computer Science @ UPC

Topic 4: Linear classifiers

Classifiers (linear or otherwise)

Classification setup
Decision theory for supervised learning

We depart from a finite labelled dataset D = {(x1, y1), . . . , (xn, yn)} where
xi ∈ Rd and yi ∈ Y with Y = {ci, . . . , cK}. The set Y is the set of possible
labels that examples x are associated with.

I In binary classification we have that |Y| = 2, for example:
I classify an email as spam/non-spam
I classify an image as a cat/non-cat
I predict tomorrow’s weather as rainy/sunny
I classify movie review as positive/negative
I . . .

I In multi-class classification we have that |Y| > 2, for example:
I classify news article as sports/politics/science/entertainment
I predict tomorrow’s weather as rainy/cloudy/sunny
I . . .

The aim of a good classifier is to predict the correct label for future unknown
examples x.

Useful terminology

I The decision regions are those regions of feature space where all
points are assigned the same label

I The decision boundaries are those points in the frontier between
decision regions

I Linear classifiers have decision boundaries represented by
d− 1-dimensional hyperplanes

Probabilistic classifiers, binary case

Many useful classifiers apart from predicting an input example’s class, also
provide a probabilistic prediction of how likely it is they belong to a certain
class.

This is very useful since it allows to express uncertainty around a prediction

In binary classification, the target values Y are encoded as y ∈ {0, 1} and
predictions are given as a continuous value in the [0, 1] range, i.e. ŷ ∈ [0, 1]:

I ŷ = 0.9 means that the probability that the example is of class “1” is
0.9, and of class “0” is 0.1

Probabilistic classifiers, multi-class case

In classification with K > 2 classes, it is common to use one-hot encoding,
and so y ∈ {0, 1}K

I y = (0, 0, 1, 0) means that the example belongs to the third class
I y = (1, 0, 0, 0) means that the example belongs to the first class

Predictions in this case are typically members of the (K − 1)-simplex:

ŷ = (ŷ1, . . . , ŷK)

with 0 ≤ ŷk ≤ 1 for all k s.t. 1 ≤ k ≤ K, and
∑

k
ŷk = 1.

E.g. ŷ = (0.6, 0.1, 0, 0.3) means that the classifier thinks the example belongs
to class “1” with prob. 0.6, etc.

Decision boundary in probabilistic models

We assume that there is an unknown distribution over examples and target
values (classes) that governs the datasets that we obtain. This is the joint
distribution of examples and labels p(x, y) where x ∈ Rd and y ∈ Y.

On building a classifier we want to “minimize an expected loss”, in the same
way we did for regression (there, we used squared error as the measure of
loss). Here, loss is slightly different since we have different types of targets
(discrete classes). So a natural way of looking at this concept is through loss
or cost matrices.

Using an example in the context of a medical screening test for cancer:

is healthy (y = 0) has cancer (y = 1)

predicted healthy (ŷ = 0) 0 50
predicted sick (ŷ = 1) 10 0

In this context, it is worse to leave a sick patient undetected (because the
patient cannot undergo therapy) than scaring someone off unnecessarily (bad,
too, but further tests can correct the wrong early diagnosis).

Decision boundary in probabilistic models, cont.

In this course we will focus however in the “0-1” loss mostly (wrong guess
costs “1”, right guess costs “0”).

Now suppose you are given a new example x that we have to classify into
one of Y classes. What we want is a “rule” that tells us how to choose a
good ŷ ∈ Y for x.

In general, we have r.v. X and Y with joint distribution p(X,Y), where X is
multi-dimensional input example and Y ∈ Y a label. We use the conditional
distribution p(Y |x) := p(Y |X = x) in the following derivation. Here, we are
computing the expected loss of assigning x to class label c ∈ Y:

EY [L(Y, c)] =
∑
y∈Y

L(y, c)p(Y = y|x)

=
∑
y 6=c

p(Y = y|x)

= 1− p(Y = c|x)

Decision boundary in probabilistic models, cont.

To minimize expected loss we want to predict a class ŷ for which EY [L(Y, ŷ)]
is minimized, so we want

ŷ = arg min
y

EY [L(Y, y)]

= arg min
y

1− p(y|x)

= arg max
y

p(y|x)

This is called the Bayes classifier, and it is optimal under 0-1 loss. Its
error is given by the sum over all possible x, and it is called the Bayes
error rate:

Bayes error rate = 1− EX [p(ŷ|x)] = 1−
∫

x
p(ŷ|x)p(x)dx

= 1−
∫

x
p(x|ŷ)p(ŷ)dx

where ŷ = arg maxy p(y|x)

Decision boundary in probabilistic models, cont.

If we use the Bayes classifier to partition the input feature space into regions
Rc where c ∈ Y, then we can write the above error as follows:

Bayes error rate = 1−
∑
c

∫
x∈Rc

p(x|c)p(c)dx

Decision boundary in probabilistic models, cont.

The Bayes classifier is optimal, however in practice of course we do not know
what p(y,x) is, so we cannot implement it exactly. Typically, Bayesian
classifiers will estimate/learn p(y|x) from data and will use these estimations
instead, incurring in additional error.

But first . . . two different ways of learning p(y|x) . . .

Discriminative vs. generative classifiers1

In Bayesian classifiers, the rule to classify a new example x is
ŷ := arg maxy p(y|x). We do not know the exact distribution and therefore
the classifier’s job is to learn it from a finite dataset.

There are two approaches for learning p(y|x):
1. Discriminative:

I directly learn p(y|x)
2. Generative:

I learn p(y|x) through Bayes rule
p(y|x) ∝ p(x|y)p(y)

1See this nice video explanation by Yoav Freund.

https://youtu.be/oTtow2Ui8vg?list=PLD0F06AA0D2E8FFBA
https://www.youtube.com/watch?v=gwV7spVO5Z0

Generative classifiers

LDA/QDA/RDA and Naive Bayes

Discriminant analysis

Discriminant analysis si the result of implementing Bayes classifier under the
assumption that class-conditional distributions p(x|y) are gaussian. If
Y = {c1, . . . , cK}, then for all 1 ≤ k ≤ K:

p(x|y = ck) ∼ N (µk,Σk)

If we further assume that the prior distributions are p(y = ck) = πk for all k,
with

∑
k
πk = 1, then we define the discriminant functions

gk(x) = log(P (y = ck)P (x|y = ck)

= log πk − log(|2πΣk|
1
2)− 1

2(x− µk)TΣ−1
k (x− µk)

= log πk −
1
2
(
log |Σk|+ (x− µk)TΣ−1

k (x− µk)
)

+ const

The function gk(x) is called a quadratic discriminant function, and the
corresponding classifier is implemented by predict class ŷ = arg maxk gk(x)
which corresponds to choosing the label with maximum probability a
posteriori.

Discriminant analysis, the general case
QDA

The decision boundaries for this classifier are those regions such that
gk(x) = gk′(x); they correspond to hyper-quadrics in feature space, and so
this is a quadratic (non-linear) method.

Picture taken from Duda et al. book Pattern Classification. In fact,
Chapter~2.6 contains the full details on this method.

https://www.researchgate.net/publication/228058014_Pattern_Classification

Discriminant analysis with same covariance matrices
LDA

If we assume that the class-conditional densities share the same covariance
matrix Σ, then we can simplify the corresponding discriminant functions to:

gk(x) = log πk + µTk Σ−1x− 1
2µ

T
k Σ−1µk

These functions are linear discriminant functions; the decision
boundaries for the resulting Bayesian classifier correspond to hyperplanes
in feature space, and so this is a linear method.

Discriminant analysis, further assumptions

I If we further assume that Σ = diag(σ2
1 , . . . , σ

2
d) is diagonal (so input

features are independent from each other), then:

gk(x) = log πk −
1
2

d∑
j=1

(µkj − xj)2

σ2
j

I If Σ is an isotropic Gaussian, that is, Σ = σ2I, then

gk(x) = log πk −
1

2σ2 ‖µk − x‖2

I Finally, if all priors are equal, that is, πk = 1
K
, then

gk(x) = −1
2‖µk − x‖2

Discriminant analysis, distance-based learning

In all cases, we have a minimum-distance classifier in Rd:
I In the general QDA case (each class with its own covariance matrix),

the classifier uses a different Mahalanobis distance from x each class
center µk

I In the LDA case where all covariance matrices are equal, the classifier
uses the same Mahalanobis distance from x to each class center

I In the case where all covariance matrices are equal and diagonal, the
classifier uses a weighted Euclidean distance

I In the case where all covariance matrices are equal and proportional to
the identity matrix, the classifier uses the unweighted Euclidean distance

https://en.wikipedia.org/wiki/Mahalanobis_distance

Discriminant analysis, implementation
In order to apply QDA or LDA or its simpler variants, we need to know the
shapes and centers of each Gaussian representing the classes. A natural
choice is to use MLE and estimates these from the available dataset
{(x1, y1), . . . , (xn, yn)}.

In the following, Sk is the subset of examples that belong to class ck,
i.e. Sk = {xi|yi = ck}, and nk = |Sk|.

π̂k = nk
n

µ̂k = 1
nk

∑
x∈Sk

x

In QDA (different covariance matrices):

Σ̂k = 1
nk − 1

∑
x∈Sk

(x− µk)(x− µk)T

In LDA (same covariance matrix):

Σ̂ = 1
n− nk

K∑
k=1

(nk − 1)Σ̂k

Discriminant analysis
Discussion

Bayesian classifiers are optimal when the class-conditional densities and
priors are known; the methods are well-principled, fast and reliable

For Gaussian classes, we get a quadratic classifier - QDA (if all covariance
matrices are equal, a linear classifier - LDA); using a specific distance
function corresponds to certain statistical assumptions:

I If the class-conditional densities are far from the assumptions, the model
will be poor

I Even if the class-conditional densities are Gaussian, the parameters
should be reliably estimated (particularly for QDA)

I Once we use sample statistics instead of population parameters, we loose
optimality!

The question whether these assumptions hold can rarely be answered in
practice; in most cases we are limited to posing and answering the question
“does this classifier give satisfactory predictions or not?”

Regularized discriminant analysis (RDA)

When data is scarce, some problems may arise, e.g.
I If d > nk for some k, then QDA cannot be applied because Σ̂k is

going to be singular.
I If d > n then QDA nor LDA can be applied because each Σ̂k and

Σ̂ are singular.

Regularized discriminant analysis (RDA) computes covariances as:

Σ̂k(α) = αΣ̂k + (1− α)Σ̂

Here, α ∈ [0, 1] allows a continuum between QDA (α = 1) and LDA (α = 0)

Additionally, we may further regularize matrices by:

Σ̂k(α, γ) = (1− γ)Σ̂k(α) + γσ̂2I

where σ̂2 = Tr[Σ̂k(α)]
d

Discriminant analysis, example with iris data

Naive Bayes

The Naive Bayes classifier is a Bayesian classifier that assumes that features
are pair-wise independent in the class-conditional distribution:

p(x|y) =
d∏
j=1

p(xj |y)

This is in general not true, but it can be a good approximation for many
cases. And it is certainly practical since it drastically reduces the amount
of parameters we need to estimate.

To predict a class for input example x we choose as usual the one that
maximizes:

gk(x) = log πk +
d∑
j=1

log p(xj |y = ck)

So all we need to do is:

1. Estimate class priors as sample frequency (πk = nk
n
)

2. Estimate class-conditional densities for each input feature independently

Categorical Naive Bayes

We can model binary features as Bernoulli distributions:

p(x|p) = px(1− p)1−x

where x ∈ {0, 1} and p ∈ [0, 1] is the probability of the event happening.

For a binary feature, we need to estimate K parameters, one for each class,
so:

p(x|y = ck) = pxk(1− pk)1−x

Categorical Naive Bayes, cont.

If all our features are binary, then the discriminant functions become:

gk(x) = log πk +
d∑
j=1

log p(xj |y = ck)

= log πk +
d∑
j=1

[xj log pkj + (1− xj) log(1− pkj)]

where pkj stands for the Bernoulli parameter for the j-th feature and k-th
class. Notice this is a linear function of x.

For categorical features with more than two values, the process is similar
using a Categorical distribution:

gk(x) = log πk +
d∑
j=1

∑
v

[xj = v] log pkjv

where [exp] is 1 if its argument is true and 0 otherwise, and pkjv is the
Categorical parameter for value v for the j-th feature and k-th class.

https://en.wikipedia.org/wiki/Categorical_distribution

Categorical Naive Bayes, cont.

To estimate these parameters, we use their sample frequencies in the data.

When data is scarce, 0-frequencies can be a problem, so Laplace
smoothing is applied:

p̂(v|y = ck) = nkv + p

nk + pV

where p ∈ R+ is some “weight” assigned to the prior distribution of
observing values v (typically is set to 1) and V is the number of modalities of
the feature we are modelling. Here, nk is the number of examples of class ck
in our training data and nkv is the number of examples of class ck that have
v as their value.

Categorical Naive Bayes, example

Outlook Temperature Humidity Wind Play ball
Sunny Hot High Weak No
Sunny Hot High Strong No

Overcast Hot High Weak Yes
Rain Mild High Weak Yes
Rain Cool Normal Weak Yes
Rain Cool Normal Strong No

Overcast Cool Normal Strong Yes
Sunny Mild High Weak No
Sunny Cool Normal Weak Yes
Rain Mild Normal Weak Yes

Sunny Mild Normal Strong Yes
Overcast Mild High Strong Yes
Overcast Hot Normal Weak Yes

Rain Mild High Strong No

Use categorical Naive Bayes to predict the class for
x∗ = (Sunny,Hot,Normal,Weak)T

(Answer should be “Yes” with probability 0.671)

Gaussian Naive Bayes

In case we have numerical features, it is common to assume them to be
(univariate) Gaussian distributed and estimate their mean and variance using
MLE.

If all features are assumed Gaussian, then Gaussian Naive Bayes is like QDA
with diagonal covariance matrices.

Other common approaches to deal with numerical attributes would be:
I Discretize them and proceed as with categorical Naive Bayes, or
I Assume any other distribution and estimate its parameters from the

training data

Note that if we have mixed type of features in our data, we can use a different
distribution for each feature and then just add the log-likelihoods together.

Discriminative classifiers
Perceptron and Logistic regression

The good-old perceptron, an AI pioneer
A discriminative, non-probabilistic learning algorithm for linearly separable data

Figure 1: Rosenblatt’s paper from 1958.

Perceptron model inspired by neurons

y = sign(wTx) =
{

+1 if w01 + w1x1 + · · ·+ wdxd > 0
−1 otherwise

The perceptron algorithm
Geometric interpretation of decision hyperplane

The perceptron algorithm
Finding optimal weights w

The Perceptron algorithm is an on-line algorithm.2 Here, the training
examples are pairs (x, y) with x ∈ Rd and y ∈ {−1, 1}. Also, let’s
automatically scale all examples x to have (Euclidean) length 1, since this
doesn’t affect which side of the plane they are on.

1. Init weight vector w = 0.

2. Given example x, predict positive iff wTx > 0.

3. On a mistake (i.e. y 6= sign(wTx)), update w as follows:
I Mistake on positive: w = w + x
I Mistake on negative: w = w− x

2which means that it receives one training example at a time, and updates its
hypothesis (here, the weight vector w) incrementally with each training example.

The perceptron algorithm, cont.

Let w be the value of the weight vector before and w′ after the update.
I If a mistake on a positive x is made: w′Tx = (w + x)Tx = wTx + 1.
I If a mistake on a negative x is made: w′Tx = (w− x)Tx = wTx− 1.

So, in both cases we move closer (by 1) to the value we wanted.

Theorem. Let D be a sequence of labelled examples that are linearly
separable.3. Assume that all x to have Euclidean length 1 and scale w to
have length 1 as well. Then, the number of mistakes that Perceptron makes
is at most (1

γ
)2, where

γ = min
x∈D

w∗Tx

The proof of the above theorem is described in many places; e.g. here

γ is often called the margin and it dictates how “easy” it is to separate both
classes. More on this when we look at Support Vector Machines.

3Input data is linearly separable if there exists a weight vector w∗ s.t. w∗T x = y for
all (x, y) ∈ D

http://www.cs.columbia.edu/~mcollins/courses/6998-2012/notes/perc.converge.pdf

The perceptron algorithm, example from Bishop’s book

The Perceptron algorithm, remarks

What loss function is the Perceptron optimizing?
I 0-1 loss, tries to fix mistakes (non-differentiable); there is no sense of

big or small mistakes

The use of sign() in a prediction sign(wTx) masks the magnitude of its
input wTx, which gives us a lot of information on “how far” x is from the
separating hyperplane.

A better alternative is to use the sigmoid or logistic function, its “soft”
version:

σ(z) = 1
1 + e−z

I maps R to [0, 1] range so its
output can be interpreted as a
probability

I allows to reflect uncertainty

. . . which leads us to logistic regression

The logistic function

σ(z) = 1
1 + e−z

= ez

ez + 1

I has he following symmetric property:

σ(−z) = 1− σ(z)

I it is differentiable:

σ′(z) = σ(z)(1− σ(z))

I its inverse is the logit function

logit(p) = log(p

1− p)

Logistic regression

Let us start with the case of binary classification. Here, we are given
labelled examples (xi, yi) such that xi ∈ Rd and yi ∈ {0, 1}. We associate
the label yi = 1 with a positive example. In logistic regression we model:

P (y = 1|x) = σ(wTx)

where w are the weights (or coefficients) of a linear combination on features
in x.

Therefore, each yi ∼ Ber(pi) where pi = σ(wTxi).

Notice that there is no assumption on how x is distributed.

Bernoulli distribution

A binary random variable Y ∈ {0, 1} is distributed according to a Bernoulli
distribution with parameter p, then:

I P (Y = 1; p) = p and P (Y = 0; p) = 1− p

So, its probability mass function is:

P (y; p) =
{
p if y = 1
1− p if y = 0

which may be more compactly written as

P (y; p) = py(1− p)1−y

https://en.wikipedia.org/wiki/Bernoulli_distribution
https://en.wikipedia.org/wiki/Bernoulli_distribution

Logistic regression, cont.

Why is logistic regression a linear classifier?

Well, we have determined that predictions are computed as ŷ = σ(wTx), so
0 ≤ ŷ ≤ 1 is taken as the probability of x being positive. A natural threshold
value to use for hard class predictions is 0.5 however we may use any other
fixed value if we want to be more or less conservative.

So, the prediction for x is positive iff σ(wTx) > 0.5 iff wTx > 0 which
corresponds to a linear class boundary.

Logistic regression, cont.

Given an input dataset {(x1, y1), . . . , (xn, yn)} with each (xi, yi) iid
according to a Bernoulli distribution yi ∼ Ber(σ(wTxi)), we can use
maximum likelihood to guide the search for suitable values for w; in the
following derivation our predictions are ŷi = σ(wTxi).

L(w) =
n∏
i=1

P (yi|xi,w)

=
n∏
i=1

Ber(yi|ŷi = σ(wTxi))

=
n∏
i=1

ŷyi
i (1− ŷi)(1−yi)

=
n∏
i=1

σ(wTxi)yi (1− σ(wTxi))(1−yi)

Logistic regression, cont.

As usual, we maximize the log-likelihood although in this case it is more
common to minimize the negative log-likelihood:

E(w) := − logL(w) = −
n∑
i=1

logP (yi|xi,w)

= −
n∑
i=1

yi log ŷi + (1− yi) log(1− ŷi)

This last expression is known as log loss or binary cross-entropy, and it
is a very common error measure used in classification.

Log-loss

Assuming Bernoulli targets in classification leads to log loss, a metric which
makes a lot of sense; the more similar ŷ is to y is, the closer it gets to 0:

ŷ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

y = 0 0.11 0.22 0.36 0.51 0.69 0.92 1.20 1.61 2.30
y = 1 2.30 1.61 1.20 0.92 0.69 0.51 0.36 0.22 0.11

Logistic regression, cont.

Let us find the gradient of E(w) w.r.t. w:

∇E(w) = ∂E(w)
∂w

= −
n∑
i=1

[
∂(yi log ŷi)

∂w + ∂ ((1− yi) log(1− ŷi))
∂w

]
= −

n∑
i=1

[
∂yi log σ(wTxi)

∂w + (1− yi) log(1− σ(wTxi))
∂w

]
= . . .

=
∑
i

(yi − σ(wTxi))xi

=
∑
i

(yi − ŷi)xi

This time it is not possible to find a closed-form solution, and so we resort to
iterative methods to finding a minimum of this function. The simplest is
gradient descent which starts with random values for w and updates them
following the gradient. We are in optimization land now.

Gradient descent

Gradient descent is a general optimization method for finding (local) minima
of a differentiable vector-valued function F (·). The idea is that if we follow
the direction of the negative gradient, F will decrease the fastest (at least
locally).

In general, we start with a random input x0, and using the update rule

xk+1 = xk − γn∇F (xk)

we get a sequence x0,x1, . . . such that F (x0) ≥ F (x1) ≥ . . . for small enough
learning rates γn.

https://en.wikipedia.org/wiki/Gradient_descent

Gradient descent, general considerations

I often we use a single γ throughout the whole execution; it is not
straightforward to choose it appropriately

I if γ is too small then convergence may be slow
I if γ is too large then we may not converge

I lots of learning rate strategies and heuristic exist (beyond scope of this
course)

I feature scaling is important because the same learning rate is used for
all features

Newton’s algorithm, getting rid of learning rate

If we can afford to compute second derivatives (i.e. the Hessian) or H:

H(w) := ∇2F (w) =


∂2F (w)
∂w2

1

∂2F (w)
∂w1∂w2

. . . ∂2F (w)
∂w1∂wd

∂2F (w)
∂w2∂w1

∂2F (w)
∂w2

2
. . . ∂2F (w)

∂w2∂wd

...
...

. . .
...

∂2F (w)
∂wd∂w1

∂2F (w)
∂wd∂w2

. . . ∂2F (w)
∂w2

d


Then we can use Newton’s algorithm which is an algorithm for finding roots
that we apply to the gradient. In our case, the updates are

wk+1 = wk −H(wk)−1∇F (wk)

This update rule is derived by finding the minimum of the second-order
(quadratic) Taylor series approximation for F around wk.

Notice there is no learning rate involved, however, at the expense of
having to compute second-order derivatives (Hessian).

Back to logistic regression, Newton’s algorithm: IRLS

The gradient of the negative log-likelihood for logistic regression is:

∇E(w) =
∑
i

(yi − ŷi)xi = XT (y− σ(Xw))

The Hessian is:

H(w) =
∑
i

ŷi(1− ŷi)xixTi = XT diag(ŷi(1− ŷi))X

which leads to the Iterated Reweighted Least Squares (IRLS)
algorithm.

Logistic regression, multi-class case (K>2)

This case is handled by having one separator w(k) for each class 1 ≤ k ≤ K.
In this case, instead of a Bernoulli distribution for the targets yi one uses a
Categorical distribution. Each target yi is represented with one-hot
encoding yi = [0, . . . , 0, 1, 0, . . . , 0].

The likelihood in this setting is

L(w(1), . . . ,w(K)) =
∏
i

∏
k

ŷ
yik
ik

and the negative log-likelihood is

E(w(1), . . . ,w(K)) = −
∑
i

∑
k

yik log ŷik

which is the cross-entropy loss.

To optimize this loss we do the same as in the binary case (use gradient
descent or Newton’s method).

Regularization

We can add L1 (lasso) or L2 (ridge) regularization on the weights to the
cross-entropy loss to obtain regularized versions of logistic regression.

Elasso(w) = −
∑
i

[yi log ŷi + (1− yi) log(1− ŷi)] + λ

d∑
k=1

|wk|

Eridge(w) = −
∑
i

[yi log ŷi + (1− yi) log(1− ŷi)] + λ

d∑
k=1

w2
k

