
Machine Learning
FIB, Master in Innovation and Research in Informatics

Marta Arias (minor mods. Mario Martin), Computer Science @ UPC

Topic 2: Probabilistic clustering

Outline

1. What is clustering
2. K-means clustering
3. Mixture of Gaussians (MoG)
4. Expectation Maximization for learning MoG

What is clustering

The goal of clustering is to partition a data sample into groups (“clusters”) in
such a way that observations in the same cluster tend to be more similar than
observations in different clusters

Input data is embedded in a d-dimensional space with a similarity/dissimilarity
function defined among elements in the space, which should capture relatedness
among elements in this space :
▶ elements are more related to closer elements than to far away elements
▶ a “cluster” is a compact group that is separated from other groups or elements

outside the cluster

What is clustering

There is no consensus1 on how to measure in a concise way (mathematically) these
ideas, and different algorithms capture them in their own way. Thus, there is a
large variety of clustering algorithms:

▶ Hierarchical bottom-up/top-down: single or average linkage, Ward, . . .
▶ Probabilistic use MoGs (e.g. k-means and E-M)
▶ Possibilistic use fuzzy set memberships (e.g. fuzzy c-means)
▶ Algorithmic greedy/hill-climbing (swapping elements between clusters,

e.g. PAM)
▶ Spectral use the spectrum (eigenvalues/vectors) of the data similarity matrix

to perform dimensionality reduction before clustering in fewer dimensions
▶ Density-based finds connected dense regions in the data space

(e.g. DBSCAN)

1Kleinberg’s paper An Impossibility Theorem for Clustering argues that no consensus can
exist.

https://papers.nips.cc/paper/2002/file/43e4e6a6f341e00671e123714de019a8-Paper.pdf

Clustering is hard

▶ The number of ways one can partition a set of N elements into K groups is
astronomical, it is given by the Stirling number of the second kind:

S(N, K) =
1

K!

K∑
i=1

(−1)i
(K

i

)
(K − i)N

▶ Adding over all possible K = 1, . . . , N , we get that the number of ways to
partition a set of N elements is given by the N -th Bell number:

B(N) =
N∑

K=1

S(N, K)

To get a sense of these numbers:

S(10, 4) = 35.105 S(19, 4) ≈ 1010 B(71) ≈ 4 × 1071

https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
https://en.wikipedia.org/wiki/Bell_number

Many algorithms for many situations..

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html#sphx-glr-auto-examples-cluster-plot-cluster-comparison-py

In this lecture, we’ll cover

▶ K-means clustering
▶ Expectation-Maximization for Gaussian mixture models

Clustering with k-means

K-means

Input:
▶ a dataset D = {x1, . . . , xn} with xi ∈ Rd, and
▶ an integer K > 1 (a hyper-parameter) denoting the number of desired clusters

Main intuition:
▶ each cluster represented by a cluster center µk ∈ Rd for k = 1, . . . , K
▶ each point should be closest to its assigned cluster center

In a “good cluster” all of its points should be close to its assigned cluster center,
and so we would expect ∑

i:xi is assigned
to cluster k

∥xi − µk∥2

to be small, where ∥xi − µk∥2 is the Euclidean distance between xi and cluster
center µk.

K-means
Cost function to optimize

We introduce a set of indicator variables:

rik =
{

1 if xi is assigned to cluster k

0 otherwise

And an objective (cost) function:

J (µ, r) =
K∑

k=1

n∑
i=1

rik∥xi − µk∥2

K-means
Optimizing the cost function J

The goal is to find cluter centers {µk}k and assignments {rik}ik that minimize

J (µ, r) =
K∑

k=1

n∑
i=1

rik∥xi − µk∥2.

Unfortunately, this is an NP-hard problem. So we will use an alternative
procedure to try to minimize it. It is only guaranteed to find local minima.

It is based on the fact that:

a) For fixed cluster centers µk, it is easy to optimize cluster assignments rik

b) For fixed cluster assignments rik, it is easy to optimize cluster centers µk

K-means
Optimizing the cost function J for fixed µk

Assume fixed cluster centers µk for k = 1, . . . , K.

The optimal way to assign points to clusters is by assigning each point to its nearest
cluster center:

rik :=
{

1 if k = arg mink′ ∥xi − µk′ ∥2

0 otherwise

To see this, it is enough to observe that if a point xi is assigned to a cluster center
µj instead of being assigned to its closest µk, then the cost function can be
improved because its contribution to the cost is given by ∥xi − µj∥2 > ∥xi − µk∥2

K-means
Optimizing the cost function J for fixed rik

Assume fixed rik for i = 1, . . . , n and k = 1, . . . , K.

Following usual procedure, we differentiate and equate to 0 in order to find the
minimum.

∂

∂µj
J (µ1, . . . , µK) =

K∑
k=1

n∑
i=1

∂

∂µj
rik∥xi − µk∥2

=
n∑

i=1

rij
∂

∂µj
(xi − µj)T (xi − µj)

=
n∑

i=1

rij
∂

∂µj

{
xT

i xi − 2µT
j xi + µT

j µj

}
=

n∑
i=1

rij {−2xi + 2µj}

= −2
n∑

i=1

rijxi + 2µj

n∑
i=1

rij

K-means
Optimizing the cost function J for fixed rik

∂

∂µj
J (µ1, . . . , µK) = −2

n∑
i=1

rijxi + 2µj

n∑
i=1

rij

Thus, the minimum is obtained when

µj =

∑
i

rijxi∑
i

rij

=
1

nj

∑
i:xi is assigned

to cluster j

xi

where nj =
∑

i
rij is the number of points assigned to cluster j.

The optimal cluster center is given by the centroid (average) of all points assigned
to it.

K-means pseudocode

1. Initialize cluster centers µ1, . . . , µK

2. repeat until convergence
▶ assign each point to the cluster with closest center

rik :=
{

1 if k = arg mink′ ∥xi − µk′ ∥2

0 otherwise

▶ recompute cluster centers for all k = 1, . . . , K

µk :=
1

nk

∑
rik=1

xi

Example simulation K-means

K-means

Pre-processing:
▶ Normalize the data
▶ Remove outliers

Advantages:
▶ easy to implement
▶ fast, can be run many times even on large datasets

Limitations:
▶ converges to local minimum . . .
▶ and very sensitive to initialization

▶ so run it many times,and keep the best (i.e. sum to centers of class lower)
▶ sensitive to outliers and clusters of different sizes and densities
▶ needs number of clusters K as input
▶ hard cluster assignments

K-means

Pre-processing:
▶ Normalize the data
▶ Remove outliers

Advantages:
▶ easy to implement
▶ fast, can be run many times even on large datasets

Limitations:
▶ converges to local minimum . . .
▶ and very sensitive to initialization

▶ so run it many times,and keep the best (i.e. sum to centers of class lower)
▶ sensitive to outliers and clusters of different sizes and densities
▶ needs number of clusters K as input
▶ hard cluster assignments

K-means

Pre-processing:
▶ Normalize the data
▶ Remove outliers

Advantages:
▶ easy to implement
▶ fast, can be run many times even on large datasets

Limitations:
▶ converges to local minimum . . .
▶ and very sensitive to initialization

▶ so run it many times,and keep the best (i.e. sum to centers of class lower)
▶ sensitive to outliers and clusters of different sizes and densities
▶ needs number of clusters K as input
▶ hard cluster assignments

K-means++

k-means++ is a variant of k-means that uses a heuristic for initializing cluster
centers as follows:

1. Choose first center µ1 uniformly at random from all available examples

2. For k = 2, . . . , K

▶ Choose next center µk at random, where a point is chosen with probability
proportional to ∥xi − µl∥, where µl is its closest cluster center picked so far
(among µ1, . . . , µk−1)

3. Proceed with standard k-means

Choosing the number of clusters K

The number of clusters is a hyper-parameter that has to be set by the user;
unfortunately there is no obvious way to choose an optimal K, since oftentimes such
optimal K does not exist, or is not unique, or there is no way to know.

The undelying difficulty is that in clustering there is no true clustering (known or
unknown) so there is nothing we can compare against.

Despite this, there are many reasonable cluster quality criteria that can be used for
selecting K.

These criteria measure a balance between separation of clusters and their
comptactness; there is no measure that works for all datasets, and it is up to the
preferences of the analyst and/or practical considerations of the problem at hand
that one or another is used.

Popular ones are the Calinski-Harabasz index, the silhouette index, or the
Davis-Bouldin score, but many others exist.2

2This paper contains an empirical comparison of many existing indices for cluster evaluation.\

https://medium.com/@haataa/how-to-measure-clustering-performances-when-there-are-no-ground-truth-db027e9a871c
https://en.wikipedia.org/wiki/Silhouette_(clustering)
https://ieeexplore-ieee-org.recursos.biblioteca.upc.edu/document/4766909
https://ccc.inaoep.mx/~ariel/2013/An%20extensive%20comparative%20study%20of%20cluster%20validity%20indices.pdf

The Calinski-Harabasz index

The CH index uses, like k-means, Euclidean distances to measure cluster quality
and so it is very much used together with k-means.

It measures the ratio between separation of cluster centers (sum of distances of
cluster centers to overall mean - in the numerator) and cluster compactness (sum of
distances from each point to its assigned cluster center - in the denominator):

(N − K)
(K − 1)

∑K

k=1 nk∥µk − x̄∥2∑K

k=1

∑n

i=1 rik∥xi − µk∥2

where x̄ is the overall average of points in the dataset, i.e. x̄ = 1
n

∑
i

xi.

The quantities are normalized by (N−K)
(K−1) in order to avoid larger K having better

values.

Typically, we will run k-means for different values of k, and will select the k that
maximizes this index.

The Calinski-Harabasz index
Choosing the number of clusters K

Learning Gaussian mixtures with Expectation Maximization

Mixture of Gaussians
A way of modelling unknown density

When we have data that are clearly not Gaussian, it may be a useful choice to
describe the data given:

Mixture of Gaussians, cont.

A mixture of Gaussians is a distribution that is built using a convex sum of
Gaussians; so it is more flexible than a single Gaussian.

p(x|θ) =
K∑

k=1

πkN (x; µk, Σk)

▶ Each N (µk, Σk) is a component of the mixture (Gaussian, with parameters
µk and Σk)

▶ The πk are the mixing coefficients of each component, such that 0 ≤ πk ≤ 1,
and

∑
k

πk = 1
▶ The parameters of this distribution are θ = {πk, µk, Σk}k=1,...,K

A key assumption of this distribution is that each data point has been
generated from one component however we do not know which one.

Mixture of Gaussians, cont.
1D Example with a mixture of 3 components, varying mixing coefficients

Clustering with a Gaussian mixture4

One cluster == one component of mixture

So, to cluster data D = {x1, . . . , xn} into K clusters:

▶ use EM to estimate mixture, results in π̂k, µ̂k, Σ̂k for each k = 1, . . . , K
▶ find assignments3 of each xi to clusters

3As we will see, these assignments under the new probabilistic model are going to be soft.
More on this when we introduce EM.

4You can find a nice explanation of EM for GMM in these two blog posts part1 and part2.

https://towardsdatascience.com/gaussian-mixture-models-and-expectation-maximization-a-full-explanation-50fa94111ddd
https://biarnes-adrien.medium.com/em-of-gmm-appendix-m-step-full-derivations-4ae95cdd40c9

Mixture of Gaussians, cont.
Generative model perspective

To sample from such a mixture, we can think of the following generative model;
it uses a latent (unobserved) variable z = (z1, . . . , zK) whose components are all 0
except one which denotes the component from which we will sample

1. Pick component k with probability πk (that is, zk = 1 w.p. πk)
2. Generate sample x according to N (µk, Σk)

The probability of generating a sample x using this generative model is

p(x) =
∑

z

p(x, z) =
∑

k

p(x, zk = 1) =
∑

k

p(x|zk = 1)p(zk = 1) =
∑

k

πkN (x; µk, Σk)

The joint distribution of x and z is thus given by (notational trick):

p(x, z) =
∏

k

π
zk
k

N (x; µk, Σk)zk

Mixture of Gaussians, cont.
▶ joint distribution

p(x, z) =
∏

k

π
zk
k

N (x; µk, Σk)zk

▶ marginal distribution over x

p(x) =
∑

k

πkN (x; µk, Σk)

=
∑

z

p(x, z) =
∑

z

∏
k′

π
zk′
k′ N (x; µk′ , Σk′)zk′

▶ marginal distribution over z p(zk = 1) = πk for all k = 1, . . . , K and so:

p(z) =
∏

k

π
zk
k

▶ conditional distribution of x given z

p(x|zk = 1) = N (x; µk, Σk)

Mixture of Gaussians, cont.

Using Bayes, we compute the conditional distribution of z given x:

p(zk = 1|x) =
p(x|zk = 1)p(zk = 1)

p(x)

=
p(x|zk = 1)p(zk = 1)∑

k′ πk′ N (x; µk′ , Σk′)

=
πkN (x; µk, Σk)∑

k′ πk′ N (x; µk′ , Σk′)

=: γk(x)

Mixture of Gaussians, cont.
Soft assignments

The quantity γk(x) := p(zk = 1|x) states how probable it is that a particular data
point x has been generated by mixture component k. Or, in the context of
clustering, how probable it is that x belongs to cluster k.

We use these quantities as soft membership to each cluster. If you want a hard
membership then x should be assigned to k = arg maxk′ γk′ (x). But in many
contexts having soft memberships is desirable and certainly more flexible.

Learning Gaussian mixtures with EM
Maximum likelihood

We are given an iid sample of unlabelled observations D = {x1, . . . , xn} with each
xi ∈ Rd. We want to model this sample as a Gaussian mixture. The unknown
parameters are θ = {πk, µk, Σk}k; K is assumed fixed and given as input.

l(θ) = log L(θ) = log
n∏

i=1

p(x; θ)

= log
∏

i

∑
k

πkN (x; µk, Σk)

=
∑

i

log

{∑
k

πkN (x; µk, Σk)

}
This is hard to optimize; the log-likelihood surface is complex with many local
maxima.

Learning Gaussian mixtures with EM, cont.
Maximum likelihood estimate for µk

l(θ) =
∑

i

log

{∑
k

πkN (x; µk, Σk)

}

=
∑

i

log

{∑
z

∏
k′

π
zk′
k′ N (x; µk′ , Σk′)zk′

}
Nevertheless, we can compute some partial derivatives to see what conditions
should hold in any local maximum.

▶ ∂l(θ)
∂µk

= 0 leads to

µ̂k =

∑
i

γk(xi)xi∑
i

γk(xi)
=

∑
i

P (zk = 1|xi)xi∑
i

P (zk = 1|xi)

which is a weighted average of the points in our data, with weights being the soft
assignments of each point to cluster k.

Problem: we do not know γk(x) without µk, Σk, πk.

Learning Gaussian mixtures with EM, cont.
Maximum likelihood estimate for Σk

l(θ) =
∑

i

log

{∑
k

πkN (x; µk, Σk)

}

▶ ∂l(θ)
∂Σk

= 0 leads to

Σ̂k =

∑
i

γk(xi)(xi − µ̂k)(xi − µ̂k)T∑
i

γk(xi)
=

∑
i

P (zk = 1|xi)(xi − µ̂k)(xi − µ̂k)T∑
i

P (zk = 1|xi)

which is the sample covariance matrix of all xi weighted by the soft
assignments of ech point to cluster k (i.e., weighted by the posterior probability
that component k generated xi)

Problem: we do not know γk(x) without µk, Σk, πk.

Learning Gaussian mixtures with EM, cont.
Maximum likelihood estimate for πk

Now we maximize the Lagrangian l(θ) − λ(
∑

k
πk − 1) since we have an equality

constraint on the πk

▶ ∂l(θ)
∂πk

= 0 and
∑

k
πk = 1 lead to

π̂k =
1
n

∑
i

γk(xi)

which is the average of all soft assignments for all data point xi.

Problem: we do not know γk(x) without µk, Σk, πk.

Learning Gaussian mixtures with EM, cont.

▶ We can estimate πk, Σk, µk if we know γk(·)
▶ We can compute γk(·) from estimates π̂k, Σ̂k, µ̂k

Learning Gaussian mixtures with EM, cont.
Pseudocode

1. Initialize µ̂k, Σ̂k, π̂k

2. repeat until convergence
▶ E-step recompute soft assignments γk(xi)

γk(xi) =
πkN (xi; µk, Σk)∑

k′ πk′ N (xi; µk′ , Σk′)

▶ M-step recompute ML estimates

µ̂k =

∑
i

γk(xi)xi∑
i

γk(xi)

Σ̂k =

∑
i

γk(xi)(xi − µ̂k)(xi − µ̂k)T∑
i

γk(xi)

π̂k =
1
n

∑
i

γk(xi)

Learning Gaussian mixtures with EM, cont.
Initialization

Commonly we initialize µ̂k, Σ̂k, π̂k using the result of k-means:

1. Run k-means with k = K (maybe a few times, pick best)

2. Set µ̂k to k-mean’s cluster centers

3. Set each Σ̂k to the sample covariance of each cluster of k-means

4. Set π̂k as the fraction of examples assigned to cluster k

Model selection

Selection of K in mixture models:
▶ Cannot just choose K that maximizes likelihood because l(θ) is always larger

for larger K

▶ Penalize complexity
▶ f.i. Bayesian information criterion (BIC): BIC = l(θ) − d/2 log n , where d is

parameters
▶ Asymptotically correct under certain assumptions
▶ Often used in practice for mixture models even though assumptions for theory

are not met

Model selection with same K:
▶ Cross validation:

▶ Score different models by log p(Xtest|θ)
▶ split data into train and validate sets
▶ Works well on large data sets
▶ Can be noisy on small data (log L is sensitive to outliers)

Model selection

Selection of K in mixture models:
▶ Cannot just choose K that maximizes likelihood because l(θ) is always larger

for larger K

▶ Penalize complexity
▶ f.i. Bayesian information criterion (BIC): BIC = l(θ) − d/2 log n , where d is

parameters
▶ Asymptotically correct under certain assumptions
▶ Often used in practice for mixture models even though assumptions for theory

are not met

Model selection with same K:
▶ Cross validation:

▶ Score different models by log p(Xtest|θ)
▶ split data into train and validate sets
▶ Works well on large data sets
▶ Can be noisy on small data (log L is sensitive to outliers)

EM, special cases

We can restrict the shape of Gaussians for each component, which results in special
cases of mixtures:
▶ No restriction on Σk; this is the general case (most flexible); each cluster can

have general Gaussian shape
▶ Σk are diagonal; each Gaussian component is forced to have no correlation

among input dimensions (i.e. axis-aligned)
▶ Σk = σ2I are isotropic or spherical; each Gaussian component is forced to

be spherical, so no correlation among input variables and same scaling accross
each input variable.

In fact, k-means is a degenerate case of this scenario: if σ2 → 0, then
γk(xi) → rik

