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Outline

1. Solving least squares linear regression problem by optimization
2. Probabilistic perspective:

▶ maximum likelihood
▶ bias/variance decomposition of MSE
▶ maximum a posteriori, regression

3. Bayesian linear regression



Regression

We have a dataset with data for 20 cities; for each city we have information on:

1. Nr. of inhabitants (in 103)
2. Percentage of families’ incomes below 5000 USD
3. Percentage of unemployed
4. Number of murders per 106 inhabitants per annum

inhabitants income unemployed murders
587 16.50 6.20 11.20
643 20.50 6.40 13.40
635 26.30 9.30 40.70
692 16.50 5.30 5.30

...
...

...
...

...
3353 16.90 6.70 25.70



Let us focus on a single variable (2D example)
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Each point in the plot corresponds to a row of our data, and its coordinates are the
(income, murders) values of that row.

The red line is “the best” linear model for this univariate regression model.



The optimization way



2D example, cont.

For i = 1, .., 20, we have plotted (xi, yi), where xi is the income and yi is the
murders rate for city i.

Want a line that approximates murders as a function of income. The slope θ1 and
intercept θ0 define the shape of the line:

ŷ(xi) = ŷi = θ0 + xiθ1

The least squares linear regression method tells us to choose the line that
minimizes the following error function (a.k.a. objective function, loss function,
cost function, ..):

J(θ0, θ1) =
20∑

i=1

(yi − ŷi)2 =
20∑

i=1

(yi − θ0 − xiθ1)2

This function depends on the parameters θ0, θ1, since data is assumed fixed
(whatever was observed)



2D example, cont.

J(θ0, θ1) =
20∑

i=1

(yi − ŷi)2 =
20∑

i=1

(yi − θ0 − xiθ1)2
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2D example, cont.

To find θ0, θ1 s.t. J(θ0, θ1) is minimized we will compute partial derivatives, set
them to 0 and solve for θ0, θ1.



Least squares regression: multi-variate case

But let us solve the general case, using all three features available. Now we have
that the least squares solution is no longer a line, but a hyperplane in 4D given
by the equation:

ŷ(xi) = θ0 + θ1xi1 + θ2xi2 + θ3xi3 = θ0 +
3∑

j=1

xijθj =
3∑

j=0

xijθj

where we introduce xi0 = 1 for all i



Least squares regression: multi-variate case

For ease of notation, we will use vector and matrix operations for the multi-variate
case

inhabitants income unemployed murders
1 587 16.50 6.20 11.20
2 643 20.50 6.40 13.40
3 635 26.30 9.30 40.70
4 692 16.50 5.30 5.30
...

...
...

...
...

20 3353 16.90 6.70 25.70

is represented as

X =


1 587 16.50 6.20
1 643 20.50 6.40
1 635 26.30 9.30
1 692 16.50 5.30
...

...
...

...
1 3353 16.90 6.70

 y =


11.20
13.40
40.70
5.30

...
25.70





Least squares regression: multi-variate case, cont.

X =


1 587 16.50 6.20
1 643 20.50 6.40
1 635 26.30 9.30
1 692 16.50 5.30
...

...
...

...
1 3353 16.90 6.70

 y =


11.20
13.40
40.70
5.30

...
25.70


placing all coefficients θj into a column vector θ =

[
θ0 θ1 . . . θd

]T
:

ŷ = Xθ

Spelling it out this is:
ŷ1
ŷ2
...

ŷn

 =


1 x11 x12 . . . x1d

1 x21 x22 . . . x2d

...
...

...
...

...
1 xn1 xn2 . . . xnd




θ0
θ1
...

θd





Least squares regression: multi-variate case, cont.

J(θ) =
n∑

i=1

(yi − ŷi)2 = (y − ŷ)T (y − ŷ) = (y − Xθ)T (y − Xθ)

And so the least squares linear regression problem is solved by setting ∂J(θ)
∂θ

= 0
and solving for θ. Here, we will use the following facts: ∂Aθ

∂θ
= AT and

∂θT Bθ
∂θ

= 2Bθ if B symmetric:

∂J(θ)
∂θ

=
∂(y − Xθ)T (y − Xθ)

∂θ

=
∂

∂θ

[
yT y − yT Xθ − θT XT y + θT XT Xθ

]
=

∂

∂θ

[
yT y − 2yT Xθ + θT XT Xθ

]
= 0 − 2XT y + 2XT Xθ

So 2XT Xθ = 2XT y implies

θlse = (XT X)−1XT y



Least squares regression: multi-variate case, cont.

The “best” linear model (defined by the one that minimizes least squares error) is
given by

θlse = (XT X)−1XT y

Now, in order to make predictions on unseen test data x′ =
[
x′

1 x′
2 . . . x′

d

]T
all we

need to do is compute

y′ =
[
1 x′

1 x′
2 . . . x′

d

]
θ0
θ1
...

θd

 = θ0 +
d∑

j=1

x′
jθj

This is the optimization view of learning; (1) set up error function as a fn. of
parameters, (2) optimize it to find suitable values for the parameters, (3) use
values to make predictions.



Computation of least squares solution via the SVD

Let us look closely at the solution for coefficients θ via minimization of the squared
error:

θlse = (XT X)−1XT y

▶ X ∈ Rn×(d+1)

▶ XT X ∈ R(d+1)×(d+1)

▶ If X has independent columns, then XT X is invertible
▶ Inverting this matrix can have numerical problems and so the SVD is used

instead



Singular Value Decomposition of a rectangular matrix A ∈ Rm×n

Any matrix A ∈ Rm×n with m > n can be expressed as

A = UΣV T

where:
▶ U ∈ Rm×n has orthonormal columns (so UT U = I)
▶ Σ ∈ Rn×n is diagonal and contains the singular values in its diagonal
▶ V ∈ Rn×n has orthonormal rows and columns (so V T V = I, V V T = I and

V −1 = V T )

Visually:

A =
[
u1 u2 · · · un

]
σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σn


vT

1
vT

2
· · ·
vT

n



= σ1u1vT
1 + σ2u2vT

2 + ... + σnunvT
n



Computing least squares solution via the SVD

Let X = UΣV T be the SVD decomposition of data matrix X

Then:
θlse = (XT X)−1XT y

= ((UΣV T )T UΣV T )−1(UΣV T )T y

= (V ΣUT UΣV T )−1V ΣUT y

= (V Σ2V T )−1V ΣUT y

= (V T )−1Σ−2V −1V ΣUT y

= V Σ−1UT y

import numpy as np

U, d, Vt = np.linalg.svd(X, full_matrices=False)
D = np.diag(1/d)
theta = Vt.T @ D @ U.T @ y



Things that could go wrong
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Fixing the second problem.. use basis functions!
Linear regression with non-linear input features

What if we could do linear regression on and expanded input? In particular, if the
new inputs are non-linear, we increment the expressive power of our prediction
function. The predictive function is still linear because linearlity is defined with
respect to the parameters of the functions.

In general, the feature mapping is a non-linear transformation of the inputs
ϕ : Rd → Rk. The resulting predictive function is y = ϕ(x)θ.

For example, we could use a polynomial expansion of degree k so that:
▶ ϕ(x) = (1 x x2 . . . xk)
▶ y = ϕ(x)θ = θ0 + xθ1 + x2θ2 + · · · + xkθk

Note that functions start to have more complexity (if k is very high for example), so
complexity control is going to be crucial to avoid overfitting.



Fixing the second problem.. use basis functions!
Linear regression with non-linear input features

The new input data matrix becomes

Φ =


ϕ(x1)
ϕ(x2)

...
ϕ(xn)

 =


ϕ1(x1) ϕ2(x1) . . . ϕk(x1)
ϕ1(x2) ϕ2(x2) . . . ϕk(x2)

...
...

. . .
...

ϕ1(xn) ϕ2(xn) . . . ϕk(xn)


And the optimal solution is:

θmin = arg min
θ

(y − Φθ)T (y − Φθ)

= (ΦT Φ)−1ΦT y



The probabilistic perspective

using probabilities to quantify uncertainty



Least squares regression, from a probabilistic perspective

Now we cast the problem in a probabilistic setting, and use the principle of
maximum likelihood to derive the same linear regression estimates.

A key player is the univariate Gaussian distribution – the normal distribution
– with probability density function:

p(x) =
1

√
2πσ2

e
− 1

2σ2 (x−µ)2
when x ∼ N (µ, σ2)
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Maximum likelihood principle

Out of these two normal densities, we will prefer the one that maximizes the
likelihood

L(µ, σ; {x1, x2, x3}) := P (x1, x2, x2; µ, σ) =
∏

i

p(xi; µ, σ)

µ = 1, σ = 1

−2.5 0.0 2.5 5.0
x

µ = 2.5, σ = 1

−2.5 0.0 2.5 5.0
x

Note that the likelihood is a function of the parameters, assuming the data is
fixed. Additionally, we assume that all xi are independent and identically
distributed according to N (µ, σ2).



Back to regression
In the probabilistic setting of linear regression, we assume that each label yi we
observe is normally distributed with mean µ = xiθ and variance σ2:

yi = xiθ + ϵi, where ϵi ∼ N (0, σ2)



Maximum likelihood for linear regression

Our data is given by a set of n labelled examples (xi, yi) which are assumed to be
iid according to yi ∼ N (xiθ, σ2) for unknown θ and σ.

As usual, it is convenient to place the data into a column vector y of labels and a
data matrix X:

y =


y1
y2
...

yn

 X =


1 x11 x12 . . . x1d

1 x21 x22 . . . x2d

...
...

...
...

...
1 xn1 xn2 . . . xnd


The likelihood of paramter vector θ is given by

L(θ, σ) := P (y|X; θ, σ) =
n∏

i=1

p(yi|xi; θ, σ)



Maximum likelihood for linear regression, cont.

For numerical reasons we will maximize de log-likelihood instead:

l(θ, σ) := ln L(θ, σ) = ln
∏

i

p(yi|xi; θ, σ)

=
∑

i

ln p(yi|xi; θ, σ)

=
∑

i

ln
[ 1

√
2πσ2

e
− 1

2σ2 (yi−xiθ)2
]

=
n∑

i=1

[
ln

1
√

2πσ2
+ ln

(
e

− 1
2σ2 (yi−xiθ)2

)]
= −

n

2
ln(2πσ2) −

1
2σ2

∑
i

(yi − xiθ)2

= −
n

2
ln(2πσ2) −

1
2σ2 (y − Xθ)T (y − Xθ)



Maximum likelihood for linear regression, cont.

l(θ, σ) = −
n

2
ln(2πσ2) −

1
2σ2 (y − Xθ)T (y − Xθ)

Differentiating w.r.t to paramters and setting equal to 0

∂l(θ, σ)
∂θ

= −
1

2σ2 (−2XT y + 2XT Xθ) = 0

∂l(θ, σ)
∂σ2 = −

n

2σ2 +
1

2σ4 (y − Xθ)T (y − Xθ) = 0

leads to:

θML = (XT X)−1XT y

σ2
ML =

1
n

(y − Xθ)T (y − Xθ) =
1
n

∑
i

(yi − xiθML)2 = MSE



Maximum likelihood for linear regression, cont.

Notice that the maximum likelihood solution coincides with the one we found
minimizing squared error. The squared loss is a consequence of assuming
gaussian noise. Other types of distributions are of course possible, and they
correspond to minimizing other error functions.

So:

least squares linear regression == linear regression with Gaussian noise

and as a bonus, we get an estimate of how confident we can be on our predictions
(given by the MSE)



Bias-Variance decomposition

Tension between two concepts



Bias-Variance decomposition

Assume the following:
▶ let f : Rd → R be the true function that we are trying to approximate
▶ let D be a finite dataset for training D = {(x1, y1), (x2, y2), . . . , (xn, yn)},

where yi = f(xi) + ϵi, and all ϵi are iid according to ϵi ∼ N (0, σ2)
▶ let x ∈ Rd be a test data point
▶ using D, we train a model f̂ ; the prediction according to f̂ is ŷD = f̂(x); here

we add the subscript to emphasize that the prediction depends on the training
dataset D

In this derivation we are going to see that its expected1 squared error (y − ŷD)2 can
be decomposed as a sum of the following:
▶ the irreducible error given by σ2

▶ the (squared) bias of the learning method; this is the systematic limitation
that the modelling assumptions impose (e.g. using linear functions will never
have low error on complex “non-linear” data)

▶ the variance of the learning method; this is how sensitive the modelling is to
small variations of D

1this expectation is taken over the possible choices of D of size n



Bias-Variance decomposition, dartboard intuition



Bias-Variance decomposition, derivation
In the following derivation, we are using basic facts about expectations; for brevity,
we use f for the true value of f(x)

E[(y − ŷD)2] = E[(f + ϵ − ŷD)2]

= E[(f + ϵ − ŷD + E[ŷD] − E[ŷD])2]

= E[((f − E[ŷD])︸ ︷︷ ︸
A

+ ϵ︸︷︷︸
B

+ (E[ŷD] − ŷD)︸ ︷︷ ︸
C

)2]

= E[(f − E[ŷD])2]︸ ︷︷ ︸
A2

+ E[ϵ2]︸︷︷︸
B2

+E[(E[ŷD] − ŷD)2︸ ︷︷ ︸
C2

]

+ 2E[(f − E[ŷD])ϵ]︸ ︷︷ ︸
AB

+ 2E[(f − E[ŷD])(E[ŷD] − ŷD)]︸ ︷︷ ︸
AC

+ 2E[ϵ(E[ŷD] − ŷD)]︸ ︷︷ ︸
BC

= . . .

= E[(f − E[ŷD])2]︸ ︷︷ ︸
A2

+ E[ϵ2]︸︷︷︸
B2

+E[(E[ŷD] − ŷD)2︸ ︷︷ ︸
C2

]

= Bias[ŷD]2 + σ2 + V ar[ŷD]

https://en.wikipedia.org/wiki/Bias\T1\textendash variance_tradeoff


Bias-Variance decomposition, conclusion

For one test example we had that:

E[(f(x) − f̂(x; D))2] = BiasD[f̂(x; D)]2 + V arD[f̂(x; D)] + σ2

So, to take into account the whole space (true error) we integrate over all possible
values of x:

MSEtrue =
∫

x

[
BiasD[f̂(x; D)]2 + V arD[f̂(x; D)] + σ2

]
p(x)dx

= Ex

[
BiasD[f̂(x; D)]2 + V arD[f̂(x; D)]

]
+ σ2

which is the expected true error or expected generalization error



Bias-Variance decomposition, relation to over/underfitting
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Bias, variance of low complexity models (degree 1)
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Bias, variance of high complexity models (degree 7)
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Common error functions used in regression

name abbrev. formula

mean squared error MSE 1
n

∑n

i=1(yi − xiθ)2

root mean squared error RMSE
√

1
n

∑n

i=1(yi − xiθ)2

normalized root mean
squared error

NRMSE

√
MSE

V ar(y)

coefficient of
determination

R2 1 − MSE
V ar(y) = 1 − NRMSE2

mean absolute error MAE 1
n

∑n

i=1|yi − xiθ|



Regularization by Maximum a Posteriori (MAP)
Looking at Bayes for learning

Before proceeding, let us refresh Bayes rule in the context of learning (here, θ are
the parameters and D is the given data):

P (θ|D) =
P (D|θ)P (θ)

P (D)
=

likelihood × prior

evidence
= posterior

And so, maximum likelihood ignores prior information on θ (or equivalently
assumes all θ are equally likely before doing any modelling):

θML
def= arg max

θ

log P (X|θ)

If we do assume some prior distribution over the parameters θ that is we have a
notion of what types of solution we prefer, then we can use maximum a
posteriori estimate for θ:

θMAP
def= arg max

θ

log [P (X|θ)P (θ)]

= arg max
θ

[log P (X|θ) + log P (θ)]



Ridge regression from Gaussian prior on θ

Let us turn to an example; assume Gaussian prior on d-dimensional θ. Here, we use
the special case of an isotropic Gaussian (i.e. Σ = τ2I) and so:
▶ Σ−1 = 1

τ2 I

▶ det Σ = τ2d

θ ∼ N (µ = 0, Σ = τ2I)

And so:

P (θ; µ = 0, Σ = τ2I) =
1

|Σ|
1
2 (2π)

d
2

exp
{

−
1
2

(θ − µ)T Σ−1(θ − µ)
}

=
1

(2πτ2)
d
2

exp
{

−
1

2τ2 θT θ

}
=

1

(2πτ2)
d
2

exp
{

−
∥θ∥2

2τ2

}



Ridge regression from Gaussian prior on θ, cont.

P (θ|y, X) ∝ P (y|X, θ) P (θ)

∝ exp
{

−
1

2σ2 (y − Xθ)T (y − Xθ)
}

exp
{

−
∥θ∥2

2τ2

}
= exp

{
−

1
2σ2 (y − Xθ)T (y − Xθ) −

∥θ∥2

2τ2

}
And so the maximum a posteriori estimate becomes:

θMAP = arg max
θ

log [P (y|X, θ) P (θ)]

= arg max
θ

[
−

1
2σ2 (y − Xθ)T (y − Xθ) −

∥θ∥2

2τ2

]
= arg min

θ

[
(y − Xθ)T (y − Xθ) +

σ2

τ2 ∥θ∥2
]

= arg min
θ

[
(y − Xθ)T (y − Xθ) + λ∥θ∥2

]
which is the ridge regression estimate when λ = σ2

τ2



Ridge regression estimate

As we did with ordinary least squares regression, we differentiate and set to 0 in
order to find the minimum:

∂

∂θ

{
∥y − Xθ∥2 + λ∥θ∥2

}
= (−2XT y + 2XT Xθ) + 2λθ = 0

leading to

θMAP = θridge = (XT X + λI)−1XT y

Observations:
▶ λ controls the complexity of the solution θ (smaller “length” == smaller

coefficients == simpler solution)
▶ XT X + λI is guaranteed to be non-singular and behaves better numerically

than XT X, especially if the columns of X are highly correlated, or if there are
few observations (rows of X) relative to number of predictors (columns of X).

▶ as a general recipe when we have a regularized objective function, is to use
potentially-more-complex-than-needed functions and then adjust λ



Tuning λ

We have a hyper-parameter λ. How do we set it?

1. training/validation split
2. cross-validation
3. leave-one-out-cross-validation (loocv)



Cross-validation



Cross-validation, cont.

1. Decide on a set of values for λ ∈ {λ1, . . . , λl} = Λ
2. Partition training data into K > 1 folds
3. Repeat for k = 1, . . . , K:

▶ use k-th fold for validation
▶ use the remaining K − 1 for training; train with all λ values
▶ estimate generalization on the one validation fold for all λ values

4. Average K generalization estimates, select λ that gives best cross-val estimation

Leave-one-out-cross-val is cross-validation for K = n (one fold per example)

Notice that, in general, we have to train K × |Λ| times, so this may be costly ..



Loocv for ridge

As a particularity of linear and ridge regression, for a given λ value, only one
training is necessary for loocv; so:

1. For each λ ∈ Λ:
▶ compute optimal solution θ̂λ = (ΦT Φ + λI)−1ΦT y
▶ compute “hat” matrix Hλ = Φ(ΦT Φ + λI)−1ΦT

▶ compute loocv directly for each λ (no need to use folds etc.):

loocv(λ) =
1
n

n∑
i=1

(
yi − ϕ(xi)θλ

1 − hii

)2

2. Return λ with minimum loocv



GCV for ridge

The loocv for each λ can be approximated by the (numerically more stable) GCV;
here we have substituted each hii by the average value of the elements in the
diagonal:

GCV (λ) =
1
n

n∑
i=1

(
yi − ϕ(xi)θλ

1 − T r(Hλ)
n

)2

=
MSEλ(

1 − T r(Hλ)
n

)2

where T r(Hλ) is the trace of Hλ (sum of diagonal elements).



LASSO regression

The p-norm of vector θ is:

∥θ∥p
def=

(∑
d

|θd|p
) 1

p

As we have seen, assuming an isotropic Gaussian prior on the parameters leads to
ridge regression, which joinly minimizes the (squared) of the L2-norm of θ (so,
p = 2) and the squared error. Another very common choice is p = 1, which leads to
lasso regression.

So lasso regression minimizes L1-norm of parameters and squared error:

θlasso = arg min
θ

[
∥y − Xθ∥2

2 + λ∥θ∥1
]

Actually, lasso regression arises assuming a Laplace distribution prior over the
parameters.

https://en.wikipedia.org/wiki/Laplace_distribution


LASSO regression, cont.

Lasso regression gives sparse solutions in the sense that many of θ coefficients
might be 0. So, it performs feature selection.

Lasso regularized cost function is no longer quadratic and has no closed solution,
so an approximation procedure is used to optimize it called the least angle
regression. This procedure exploits the special structure of the problem and
provides an efficient way to compute the solutions for a list of possible values for
λ > 0, giving the regularization path.

https://xavierbourretsicotte.github.io/ridge_lasso_visual.html
http://statweb.stanford.edu/~imj/WEBLIST/2004/LarsAnnStat04.pdf
http://statweb.stanford.edu/~imj/WEBLIST/2004/LarsAnnStat04.pdf


Some concepts to remember

▶ Linear regression as an example of learning
▶ Solving using loss minimization
▶ Solving using MLE
▶ Bias and variance tension
▶ Solving tension via regularization
▶ Cross validation to find best regularization parameter



The full-Bayesian perspective



Bayesian linear regression

Both ML and MAP produce point-estimates of the parameters; in contrast in
Bayesian Learning we want the full posterior distribution of the parameters.

The key insight is that if we know the posterior distribution of the parameters (let’s
call it p(θ|D)), then we can do a sort of “infinite weighted averaging” for doing
predictions:

p(y⋆|x⋆, D) =
∫

Θ
p(y⋆|x⋆, θ, D)p(θ|D) dθ

So, instead of just using a single point-estimate θ̂ of the parameters, we use the full
distribution and integrate the predictions. This, in turn, gives us a full distribution
over the predictions as opposed to (again) to a single point-prediction that we get
for ML or MAP.

Typically, computing this integral is going to be intractable and we have to resort
to approximating it. Luckily in the context of linear regression all these expressions
have closed-form formulas. For computational speed however we may use
approximations as well.



Bayesian linear regression vs. ML and MAP

Technically, ML and MAP assume that Y ∼ N (xT θ, σ2) so a prediction for a new
test point x⋆ is going to have distribution N (xT

⋆ θ̂, σ̂2). But note the lack of
flexibility of this since the width of the normal distribution is going to be the same
for any new test point, which may be a dangerous assumption e.g. in a situation as
follows:



Linear regression problem, again

Just as a reminder, we describe the regression problem: we are given a sample
D = {(x1, y1), . . . , (xn, yn)} with xi ∈ Rd and yi ∈ R.

We assume
▶ Y1, . . . , Yn are independent given θ,
▶ Yi ∼ N (xT

i θ, a−1), with a > 0 being the precision of the noise in the
observations (so, a = 1

σ2 )
▶ parameter’s prior p(θ) ∼ N (0, b−1I) with b > 0, i.e., spherical or isotropic

Gaussian
▶ a, b known
▶ the only parameter variables are the coefficients θ = (θ0, . . . , θd)T

The likelihood function is

p(D|θ) ∝ exp
{

−
a

2
(y − Xθ)T (y − Xθ)

}

with X =

 xT
1
...

xT
n

 and y =

y1
...

yn

.



The posterior distribution

Using Bayes as usual, we derive the posterior distribution

p(θ|D) ∝ p(D|θ)p(θ)

∝ exp
{

−
a

2
(y − Xθ)T (y − Xθ)

}
exp
{

−
b

2
θT θ

}
∝ exp

{
−

a

2
(y − Xθ)T (y − Xθ) −

b

2
θT θ

}
It is important to notice that the exponent of the above expression is quadratic on
θ, and so the above expression is going to be a multivariate Gaussian.

We need to turn the above exponent into something resembling (θ − µ)T Q(θ − µ)
(notice how we are using the precision instead of the covariance matrix) so that we
can derive what the mean µ and the precision Q of the posterior density is.



The posterior distribution, cont.

We use the method of completing the square which you may remember from your
school days.

In this method, we are going to “match” terms from our posterior exponent
a(y − Xθ)T (y − Xθ) + bθT θ to the desired form (θ − µ)T Q(θ − µ). Note that we
have divided both by − 1

2 to simplify a little.

So we re-write these expressions so that we can match the terms, starting with the
desired one:

(θ − µ)T Q(θ − µ) = θT Qθ − θT Qµ − µT Qθ + µT µ

= θT Qθ − 2θT Qµ + const.

We do not need to keep track of terms that do not contain θ, because we only care
about proportionality. Now we multiply out the posterior density exponent:

a(y − Xθ)T (y − Xθ) + bθT θ

= a(yT y − 2θT XT y + θT XT Xθ) + bθT θ

= ayT y − 2aθT XT y + θT (aXT X + bI)θ

https://en.wikipedia.org/wiki/Completing_the_square


The posterior distribution, cont.

We need to match terms of
θT Qθ − 2θT Qµ

with terms of
ayT y − 2aθT XT y + θT (aXT X + bI)θ

First, we match θT (aXT X + bI)θ with θT Qθ and obtain Q = aXT X + bI.

Next, we match −2aθT XT y with −2θT Qµ and so2:

aθT XT y = θT Qµ ⇐⇒

aXT y = Qµ ⇐⇒

aQ−1XT y = µ

And so the density of the posterior p(θ|D) ∼ N (µ, Q−1) where
▶ Q = aXT X + bI
▶ µ = aQ−1XT y

2Notice that we can safely invert Q because it is a positive definite matrix (the +bI part
guarantees it even if XT X was PSD only).



The posterior distribution, cont.
MAP estimate

The posterior p(θ|D) ∼ N (µ, Q−1), where
▶ Q = aXT X + bI
▶ µ = aQ−1XT y

We can read the MAP estimate (which we have already derived in previous sections)
directly from this since the maximum density is obtained at the mean in any
Gaussian distribution.

µ = aQ−1XT y = a(aXT X + bI)−1XT y = (XT X +
b

a
I)−1XT y

Additionally, in ridge regression we let λ := b
a

and turn it into a parameter that we
can tune to control complexity vs. training error.



Using the posterior distribution for predictions

Let us know turn to the issue of computing the predictive distribution for our
model. Namely, we want to compute

p(y⋆|x⋆, D) =
∫

Θ
p(y⋆|x⋆, θ, D)p(θ|D) dθ



The predictive distribution

We substitute the densities p(y⋆|x⋆, θ, D) and p(θ|D) in the above expression, and
start to work it out:

p(y⋆|x⋆, D) =
∫

Θ
N (y⋆|xT

⋆ θ, a−1)N (θ|µ, Q−1) dθ

∝
∫

Θ
exp
{

−
a

2
(y⋆ − xT

⋆ θ)2
}

exp
{

−
1
2

(θ − µ)T Q(θ − µ)
}

dθ



The predictive distribution, cont.

We do not include the derivation here, but you can consult it in this video and its
following 3 parts. The proof includes the following steps:

1. Factorizing the above expression into something like
∫

N (θ| . . . )f(y⋆) dθ,
where f(y⋆) does not depend on θ using the complete the squares technique

2. Since f(y⋆) does not depend on θ, we can take it out of the integral and get rid
of it:

∫
N (θ| . . . )f(y⋆) dθ = f(y⋆)

∫
N (θ| . . . ) dθ = f(y⋆)

3. Finally complete the squares (again!) on the remaining f(y⋆) - as it turns out,
f(y⋆) is quadratic on y⋆ - to figure out the parameters for the predictive
distribution.

The result after doing all this is that

p(y⋆|x⋆, D) ∼ N (m, s−1)

where
▶ m = xT

⋆ µ

▶ 1
s

= 1
a

+ xT
⋆ Qx⋆, where

▶ µ = (XT X + b
a

I)−1XT y is the mean of the posterior distribution p(θ|D)
▶ Q is the precision matrix of the posterior distribution

https://www.youtube.com/watch?v=xyuSiKXttxw&list=PLD0F06AA0D2E8FFBA&index=62


The predictive distribution, cont.

As a final note, we see that the predictive distribution’s mean prediction equals the
point-prediction of the MAP. However, the variance of the prediction does depend
on x⋆ which is a good thing, since the uncertainty of our predictions depends on
how far observed examples are, if near, then we should be more certain, but if far
away, then we should be less certain.



The predictive distribution, cont.
Bayesian learning is a very natural form of sequential learning


