
Notes on probability theory, Bayes theorem and Bayesian learning

Marta Arias, Computer Science @ UPC

These notes provide a quick reference to various aspects of probability theory, estimation, Bayesian learning
and related aspects that we are going to use during the course. Make sure that you understand the concepts
and you attempt to solve the exercises proposed.

Disclaimer: these are by no means a complete or mathematically super-rigorous. For that, please consult
proper books.

You can find some nice introductory videos of MIT’s course “Intro to Probability”.

1. Probability theory basics

Let Ω be a set of possible outcomes of an event, and A ⊆ Ω an event. A probability measure P : PΩ → R
assigns a real number to every subset of Ω; namely P (A) represents how likely it is that the experiment’s
outcome falls in A.

Axioms

The three axioms of probability are:

• P (A) ≥ 0 for all events A ⊆ Ω
• P (Ω) = 1
• P (A ∪B) = P (A) + P (B) for disjoint events A and B (i.e. A ∩B = ∅)

Some consequences:

• P (A) def= P (Ω \A) = 1− P (A)
• P (∅) = 0
• If A ⊆ B, then P (A) ≤ P (B)
• P (A ∪B) = P (A) + P (B)− P (A ∩B)
• P (A ∪B) ≤ P (A) + P (B)
• and so on

Oftentimes we are interested in measuring how likely two (or more) events happen simultaneously, in this case
we say that the joint probability of events A and B is P (A,B) def= P (A∩B). Namely we use the “comma” as
an and or intersection.

Sum rule

If A ⊆ B1 ∪ .. ∪Bn, and Bi ∩Bj = ∅ for all 1 ≤ i < j ≤ n, then:

P (A) =
n∑
i=1

P (A,Bi)
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This is also known asmarginalization; when we have a joint probability p(x, y) and want to compute p(x) we
way that we “marginalize out” y, which means applying the sum rule p(x) =

∑
y p(x, y) or p(x) =

∫
y
p(x, y)dy

if y is continuous.

Conditional probability

The conditional probability of B given A (provided P (A) > 0) is given by P (B|A) def= P (A,B)
P (A)

Notice that rearranging terms leads us to the useful product rule which allows us to decompose a joint
probability into a product of conditionals P (A,B) = P (B|A)P (A) = P (A|B)P (B).

General product rule

This rule helps us to break down (i.e. factorize) a (possibly large) joint distribution into the product of
“smaller” conditional distributions.

P (A1, A2, . . . , An) =
n∏
i=1

P (Ai|A1, .., Ai−1)

Exercise 1. Prove that P (A,B,C) = P (A)× P (B|A)× P (C|A,B) = P (C)× P (B|C)× P (A|B,C). Then,
prove the general claim above. You shoud use the simple product rule repeatedly.

You should definitely remember these two rules:

• Sum rule: P (A) =
∑
i P (A,Bi)

• Product rule: P (A,B) = P (A|B)× P (B)

Bayes rule (or theorem)1

P (A|B) = P (B|A)× P (A)
P (B)

Exercise 2. Prove Bayes rule.2

1Look at this for a nice visual explanation of Bayes theorem.
2Solution here
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Example of Bayes rule in action

An English-speaking tourist visits a city whose language is not English. A local friend tells him that 1 in 10
natives speak English, 1 in 5 people in the streets are tourists and that half of the tourists speak English.
Our visitor stops someone in the street and finds that this person speaks English. What is the probability
that this person is a tourist?
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2. Random variables and distributions

A random variable is a variable whose value is determined by chance. A discrete r.v. takes on a countable
number of distinct values, for example the result of tossing a coin or a dice. A continuous r.b. takes on
any value in some continuous interval (from the real line, e.g.); examples of continuous r.v. are typically
measurments such as the height of a person, temperature during the day, etc.

A distribution in statistics is a function that shows the possible values that a random variable can take and
how often they occur. Each probability distribution is associated with a graph describing the likelihood of
occurrence of every event.

Discrete distributions

These are functions describing the distribution governing a discrete random variable. They are also called
probability mass functions (pmf). Typical examples are: Bernoulli, Binomial, Geometric, Categorical,
Multinomial, Poisson, Zeta, etc.

Continuous distributions

These are functions describing the distribution governing a continuous random variable. They are called
probability density functions (pdf). Typical examples are: Normal (Gaussian), Uniform, Beta, Laplace,
Exponential, Student’s t-dist, Dirichlet, Gamma, Wishart, etc.

Expectation, variance and covariance

The expected value of a function g : R → R of a univariate continuous random variable X ∼ p(x) with
support X is given by

EX [g(x)] =
∫
X
g(x)p(x)dx

If X is discrete, then this becomes
EX [g(x)] =

∑
x∈X

g(x)p(x)

As a special case where g is the identity, we get the expectation of a continuous random variable:

E[x] =
∫
X
xp(x)dx

or in the discrete case:
E[x] =

∑
x∈X

xp(x)

The variance of a random variable X is defined as:

V ar[x] = E[(x− E[x])2] = E[x2]− E[x]2

The covariance of two random variables X and Y is:

Cov[x, y] = E[(x− E[x])]E[(y − E[y])] = E[xy]− E[x]E[y]

Useful properties:
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E[ax+ b] = aE[x] + b

E[ax+ b] = aE[x] + b

V ar[x+ y] = V ar[x] + V ar[y] + 2Cov[x, y]
V ar[x− y] = V ar[x] + V ar[y]− 2Cov[x, y]
V ar[ax+ b] = a2V ar[x]

Statistical independence

Two random variables X,Y are statistically independent if and only if
p(x, y) = p(x)p(y)

Intuitively, two random variables X and Y are independent if the value of y (once known) does not add any
additional information about x (and vice versa). If X,Y are (statistically) independent, then:

p(x|y) = p(x)
p(x, y) = p(x)p(y)

V ar[x+ y] = V ar[x] + V ar[y]
Cov[x, y] = 0

2. Bayes rule in the context of learning

Bayes rule allows us to reason about hypotheses (models) from data (observations):

P (hypothesis|data) = P (data|hypothesis)P (hypothesis)
P (data)

In our language of paramters and datasets this is: let θ be a random variable with support Θ, e.g. describing
the parameters of a modelling function and let D be the data that has been observed. Then:

P (θ|D) = P (D|θ)P (θ)
P (D) = P (D|θ)P (θ)∫

Θ P (D|θ)P (θ)dθ
• P (θ): prior distribution of θ, that is, prior to observing D, what values do we think are more plausible
• P (D|θ): likelihood of θ, it is the probability of observing D if parameters are θ. Not a distribution

over θ.
• P (D): evidence or expected likelihood
• P (θ|D): posterior; quantity of interest, expresses what we know about θ after having observed D

The way we are going to use Bayes rule most often is in the context of, given some data D, finding good
values for the unknown parameters θ. In what follows, we have two ways in which we can find (estimate)
such values for the parameters which are maximum likelihood and maximum a posteriori.

Maximum likelihood, as the name suggests, uses the value of θ that maximizes P (D|θ) i.e. the likelihood of θ:

θML = arg max
θ

= P (D|θ)

Maximum a posteriori takes into account a prior distribution for θ and estimates its value using:

θMAP = arg max
θ

= P (D|θ)P (θ)
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Using the posterior

Once we know P (θ|C) we can do a lot of different things of interest, e.g.:

• Compute the credible interval (Bayesian CI)
• Compute the MAP (maximum a posteriori)
• Draw observations from θ
• Compute the expected value of the posterior
• Compute the predictive distribution (predictive posterior)

3. Maximum likelihood estimation

One of the workhorses in classical statistical inference, the maximum likelihood estimation method is a
general principle for estimating parameters.

Given a data sample D = {x1, x2 . . . , xn} where each xi is an independent and identically distributed (iid)
observation from a random variable X ∼ p(X; θ) with θ being the parameters of the distribution. Since all xi
are independent, the probability of obtaining the sample D can be expressed as:

p(D; θ) =
n∏
i=1

p(xi; θ)

The likelihood function is defined as L(θ) = p(D; θ). Notice that the likelihood is a function of the
parameters θ and not a probaability distribution; it assumes the data D is fixed. So, the maximum likelihood
estimator for parameters θ is given by:

θML
def= arg max

θ
L(θ)

Notice that the likelihood is defined as a product of probabilities, and given that they tend to be small
multiplying a large number of them (if we have many observations) this will end up being a tiny number
which may lead to underflows when computing them in a machine. So, it is convenient to work with the
logarithm of the likelihood function, typically taken to be its negative and then maximum likelihood becomes
minimum log likelihood:

θML
def= arg max

θ
L(θ) = arg min

θ
− logL(θ)

Exercise 3. Compute the MLE for univariate Gaussian distribution. That is, assume you are given iid
observations D = {x1, . . . , xn} sampled from X ∼ N (µ, σ2). Your job is to compute the maximum likelihood
estimates µML and σML. For that define the (minus) log likelihood using the Gaussian probability density
function, and find minimums by setting partial derivatives to 0 and solving for µ and σ.

Exercise 4. Compute the MLE for a Bernoulli distribution. Now your observations are the results of n coin
tosses. Here, you need to compute the parameter pML of the Bernoulli random variable. Remember that the
probability function of a Bernoulli r.v. is given by px(1− p)(1−x) for x ∈ {0, 1}.

4. Properties of estimators

Statisticians have defined several desirable properties that good estimators should have. Estimators are
essentially functions of the data sample D, and as such can be seen as random variables that take on different
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values for different D. The following properties essentially define statistics of these functions over the space
of possible D.

Unbiasedness An estimator θ̂ is said to be unbiased if in the long run it takes on the value of the population
(true) parameter.

BiasD[θ̂] = ED[θ̂]− θ

We say that an estimator is unbiased if its Bias is 0, i.e. when BiasD[θ̂] = θ. Notice that the expectation is
taken over all possible choices of samples D of some fixed size.

Variance This essentially tells us how sensitive θ̂ is to variations of input D (on average):

V arD[θ̂] = ED[ (θ̂ − ED[θ̂])2 ] = ED[θ̂2]− ED[θ̂]2

We say that an estimate θ̂1 is more efficient than another estimate θ̂2 if V ar[θ̂1] < V ar[θ̂2]. Efficiency is
obviously a good thing; we want estimators to have small variance (i.e. robustness is desirable).

Cramér-Rao bound gives us a theoretical lower bound on the variance of estimates.

Efficiency An estimator is said to be efficient if in the class of unbiased estimators it has minimum variance

Consistency A sequence of estimators θ̂n is said to be consistent if it converges to the true value of the
parameter:

∀ε > 0 : lim
n→∞

Prob(|θ − θ̂n| < ε) = 1

If the bias and the variance of an estimator tend to 0 when the size (n) tends to ∞, then it is consistent.

Mean squared error (MSE) The mean squared error of an estimator is defined as:

MSE(θ̂) def= ED[(θ − θ̂)2]

Exercise 4. Show that MSE(θ̂) = BiasD[θ̂]2 + V arD[θ̂].

Exercise 5. Compute the bias and the variance of the ML estimates µ, σ of a univariate Gaussian. Show
that σML is biased; we can correct its biasedness by using a different estimator for σ̃2 = n

n−1σML. Compute
the bias and the variance of this new estimator.

5. Maximum a posteriori estimation

Maximum a posteriori estimation generalizes maximum likelihood estimates by taking into account a prior
distribution over the parameters to be estimated. In contexts where data is scarce, this is in fact desirable
because it regularizes the estimation by imposing a prior belief on how likely each θ is. Thus, maximum a
posteriori combines evidence from data as given by the likelihood and prior beliefs using Bayes:

θ̂MAP
def= arg max

θ
P (θ|D) = arg max

θ
P (D|θ)P (θ)

Essentially we can drop the denominator P (D) from the application of Bayes’ rule since it does not depend
on θ so in our maximization context this is a constant and can be ignored.
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Exercise 6: Find the MAP estimate for µ of a univariate Gaussian X ∼ N (µ, σ2) with Gaussian prior
distribution for µ ∼ N (µ0, σ

2
0). Assume that σ, σ0, µ0 are known.

Exercise 7: The maximum likelihood estimate of p for a Bernoulli r.v. X (with possible outcomes being 0
or 1) is given by p̂ML = 1

n

∑n
i=1 xi where each xi ∈ {0, 1} are sampled according to X ∼ B(p). If we have

K > 2 outcomes - e.g. a die with 6 sides – then we have the categorical distribution also known as multinoulli
or generalized Bernoulli which has support {1, . . . ,K}. Its parameters are p = (p1, . . . , pK) representing the
probability of observing each of the possible outcomes (clearly, 0 ≤ pk ≤ 1 for all k, and

∑K
k=1 pk = 1).

It is convenient to use the one-of-K encoding3 for each outcome. So, the pmf of this distribution becomes
p(x) =

∏K
i=1 p

xi
i . Now, given a sample D = {x1, . . . ,xn} of possible outcomes for a multinoulli r.v. X, the

maximum likelihood estimate for p is p̂k = 1
n

∑n
i=1 xik for each k ∈ {1, . . . ,K}. In the previous notation, xik

is the k−th entry of xi, that is, xik = 1 if xi corresponds to outcome k and 0 otherwise. We can write this
more compactly as p̂ML = 1

n

∑
i xi.

If some category k is not present in our sample, then its corresponding ML estimate is going to be 0. These
0-estimates are problematic in predictive applications: just because we have not seen a “head” in our sample,
it is a very strong statement to say that they are impossible to obtain in further trials. To avoid that,
pseudocounts are used instead. Pseudocounts represent prior knowledge in the form of (imagined) counts ck
for each category k. The idea is that we assume that the data is augmented with our pseudocounts, and
then we estimate using maximum likelihood over the augmented data, namely: p̂ = c+

∑
i

xi

n+
∑

k′ ck′
. So, the k’th

parameter is estimated as p̂k = ck+
∑

i
xik

n+
∑

k′ ck′
.

As an example (with 6-sided die, not using one-of-6 encoding but using the digit instead), imagine that we
obtain a sample from a die: {1, 3, 5, 4, 4, 6}. If the vector of pseudocounts is c = (1, 1, 1, 1, 1, 1), then the
estimate p̂1 = “nr. of 1”+1

|D|+6 = 1/6 and p̂2 = “nr. of 2s”+1
|D|+6 = 1/12. Notice that although 2 has not been observed

in D, its probability estimate is not 0 but a small number. This special case where all pseudocounts are 1 is
known as Laplace smoothing.

Prove that using maximum likelihood with pseudocounts corresponds to a MAP estimate with Dirichlet prior
with parameters (c1 + 1, . . . , cK + 1).

6. Bayesian learning

Finally, a glimpse into Bayesian learning. Within this framework, instead of working with point-estimates of
our unkown parameter variables θ, we work with the whole (posterior) distribution P (θ|D).

So we view learning as the process by which starting with some prior belief about the parameters (i.e. prior
P (θ)) and when facing some observations in the form of a dataset D, we update our belief about the
possible values for our parameters in the form of the posterior distribution P (θ|D).

If more data was then given to us, we would continue the process and further update our beliefs about the
parameters. Thus, this could be iterated each time we are given new data, and this can be viewed as a
sequential process, in which we invoke Bayes each time we need to update our beliefs to obtain a new updated
posterior P (θ|D1, D2, . . . ).

In the following figure you can see a sequence of updates for a Gaussian univariate random variable. In each
plot, the red curve shows the prior in red, the true function in green, and the posterior in blue; the data is
given by the two dots sampled from the true Gaussian. The next plot in the series has the last posterior as
the new prior, and the process follows sequentially. Notice that with more iterations the posterior approaches
the true Gaussian.

3For example if K = 3 then using the one-of-three encoding we would use the (1, 0, 0) vector to encode 1, (0, 1, 0) to encode 2,
and (0, 0, 1) to encode 3.
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Predictive posterior

Within bayesian learning, when doing predictions the whole distribution P (θ|D) is used. Namely, we
view a prediction as a (weighted) average of all predictions each value for θ can make, weighted by its
posterior probability (technically its expected value). Contrast this with other frameworks where just a single
point-estimate is used for making predictions (e.g. maximum likelihood or maximum a posteriori):

P (x′|D) = Eθ|D[x] =
∫

Θ
p(x′|θ,D)P (θ|D)dθ

Notice this is a direct application of the product and sum rules.
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