
Radomized Algorithms Exercises 2 Fall 2020.

11. An urn contains 11 balls, 3 white, 3 red, and 5 blue balls. Take out 3 balls
at random, without replacement. You win 1e, for each red ball you select
and lose a 1e, for each white ball you select. Determine the probaility
mass function of the amount you win. Give the value of E [X]

12. (a) Suppose that we roll twice a fair k-sided die with the numbers 1
through k on the die’s faces, obtaining values X1 and X2. What is
E [max(X1, X2)]? What is E [min(X1, X2)]?

(b) Show from your calculation in part (a) that
E [max(X1, X2)] + E [min(X1, X2)] = E [X1] + E [X2]

(c) Explain why the equation in part (b) must be true by using the
linearity of expectations instead of a direct computation.

13. Let X and Y be independent geometric random variables, where X has
parameter p and Y has parameter q.

(a) What is the probability that X = Y ?

(b) What is E [max(X,Y )]?

(c) What is Pr [min(X,Y ) = k]?

(d) What is E [X|X ≤ Y ]?

14. The following approach is often called reservoir sampling. Suppose we
have a sequence of items passing by one at a time. We want to maintain
a sample of one item with the property that it is uniformly distributed
over all the items that we have seen at each step. Moreover, we want to
accomplish this without knowing the total number of items in advance
or storing all of the items that we see. Consider the following algorithm,
which stores just one item in memory at all times. When the first item
appears, it is stored in the memory. When the k-th item appears, it repla-
ces the item in memory with probability 1/k Explain why this algorithm
solves the problem.
The importance of the problem is following : Suppose, you are monito-
ring a twitter feed and you want to generate a perfectly random sample
of k tweets, as that is the maximum you can store in your memory. For
instance, this sample can be used for estimating the percentage of tweets
on a particular subject.

15. Let a1, a2, . . . , an a sequence of n integers without repetitions. We say that
ai i aj are inverted when i < j but ai > aj . The Bubble sort algorithm
interchanges pairs of inverted elements until the sequence became sorted.

Assume that the input to Bubble sort is is a random permutation selected
uar and that X is a random variable counting the number of interchanges
during the execution of the algorithm.



(a) Compute E [X] and Var [X].

(b) X is concentrated around its mean?

16. Let the random variable X be representable as a sum of random variables
X =

∑n
i=1Xi. Show that, if E [XiXj ] = E [Xi]E [Xj ] for every pair of i

and j with 1 ≤ i < j ≤ n, then Var [X] =
∑n

i=1 Var [Xi].

17. Suppose that we flip a fair coin n times to obtain n random bits. Consider
all m =

(
n
2

)
pairs of these bits in some order. Let Yi be the exclusive or ⊕

of the i-th pair of bits, and let Y =
∑m

i=1 Yi the number of Yi that equal
1.

(a) Show that each Yi = 0 with prob = 1/2 (therefore, Yi = 1 with
probability also 1/2)

(b) Show that Yi are not mutually independent.

(c) Show that E [YiYj ] = E [Yi]E [Yj ].

(d) Find Var [Y ].

(e) Use Chebyshev to bound Pr [|Y −E [Y ] | ≥ n].

18. Let us consider a collection of points in the unit square ([0, 1]2). Divide
the unit square into n/ log2 n square boxes. Given ε ∈ (0, 1), we say that
the collection of points is ε-nice if each ox contains at least (1 − ε) log2 n
points and at most (1 + ε) log2 n points. Using Markov’s or Chebyshev’s
inequalites its is possible to show that, for any ε ∈ (0, 1), whp a collection
of n points taken uar in the unit square is ε-nice?

19. Suppose that we can obtain independent samples X1, X2, . . . Xn of a ran-
dom variable X and that we want to use these samples to estimate E [X].
Using t samples, we use (

∑n
i=1Xi/t) for our estimate of E [X]. We want

the estimate to be within εE [X] from the true value of E [X] with proba-
bility ≥ (1− δ).
We develop an alternative approach that requires only having a bound on
the Var [X]. Let r =

√
Var [X]/E [X].

(a) Show using Chebyshev that O(r2/ε2δ) samples are sufficient to solve
the problem.

(b) Suppose that we need only a weak estimate that is within εE [X] of
E [X], with probability at least 3/4. Argue that. O(r2/ε2) samples
are enough for this weak estimate.

(c) Show that, by taking the median of O(lg(1/δ)) weak estimates, we
can obtain an estimate within εE [X] of E [X] with probability at
least (1− δ). Conclude that we need only (r2 lg(1/δ)/ε2) samples.


