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The data

Data arrives as sequence of items.

Sometimes continuously and at high speed.

Can’t store them all in main memory.

Can’t read again; or reading again has a cost.

We abstract the data to a particular feature, the data field of
interest the label.
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The data

We have a set of n labels Σ and our input is a stream
s = x1, x2, x3, . . . xm, where each xi ∈ Σ.

Take into account that some times we do not know in
advance the length of the stream.

Goal Compute a function of stream, e.g., median, number of
distinct elements, longest increasing sequence.
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Why has it become popular?

Practical appeal:

Faster networks, cheaper data storage, ubiquitous data-logging
results in massive amount of data to be processed.
Applications to network monitoring, query planning, I/O
efficiency for massive data, sensor networks aggregation, . . .

Theoretical Appeal:

Easy to state problems but hard to solve.
Links to communication complexity, compressed sensing,
embeddings, pseudo-random generators, approximation,
parallel computation, . . .

Origins in 70’s but has become popular in this century
because of growing theory and very applicable.
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The computational data stream models

Classical streaming model

The data stream is accessed sequentially.
The processing is done sequentially using a small working
memory O(polylog n).
Measures of complexity: number of passes over the data, the
size of the working memory, the per-item processing time.

Semi-streaming model

Usual for graph problems.
Working memory is O(n polylog n), for a graph with n vertices.
Enough space to store vertices but not for storing all the edges.

Streaming with sorting

Allows the creation of intermediate streams.
Streams can be sorted at no cost.
Algorithms run in phases reading and creating a stream
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Algorithmic goals

Data streams are potentially of unbounded size.

As the amount of computation and memory is limited it might
be impossible to provide exact answers.

Algorithms use randomization and seek for an approximate
answer.

Typical approach:

Build up a synopsis data structure
It should be enough to compute answers with a high
confidence level.
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Sampling

Sampling is a general technique for tackling massive amounts
of data.

Example: To compute the median packet size of some IP
packets, we could just sample some and use the median of the
sample as an estimate for the true median. Statistical
arguments relate the size of the sample to the accuracy of the
estimate.

Challenge: But how do you take a sample from a stream of
unknown length or from a sliding window?
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Reservoir Sampling (Vitter 1985)

Problem: Maintain a uniform sample x from a stream of
unknown length.

Algorithm:

Initially x = x1
On seeing the t-th element, x = xt with probability 1/t

Analysis:

1 pass, O(log n) memory (in bits), and O(1) time (in
operations) per item.
Quality?
What is the probability that x = xi at some time t ≥ i?
At any time step t, for i ≤ t, Pr [x = xi ] = 1/t
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Reservoir Sampling II

Problem: Maintain a uniform sample X of size k from a
stream of unknown length.

Algorithm:

Initially X = {x1, . . . , xk}.
On seeing the t-th element, t > k, add xt to X with
probability k/t.
If xt is selected to be added, before adding it, evict a element
from X , selected uniformly at random.

Analysis:

1 pass, O(k log n) memory, and O(1) time per item.
Quality?
What is the probability that xi ∈ X at some time t ≥ i?
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Reservoir Sampling II: Quality

At any time step t, for i ≤ t, Pr [xi ∈ X ] = k/t

The proof is by induction on t.

Base t = k: Pr [xi ∈ X ] = 1, for i = 1, . . . , k .
Induction hypothesis: true for time steps up to t − 1

Pr [xt ∈ X ] = k/t
For i < t, xi ∈ X when xt is not selected and xi was in the
sample at step t − 1, or when xt is selected, xi was in the
sample at step t − 1 and xi is not evicted.

Pr [xi ∈ X ] =
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Reservoir Sampling for Sliding Windows

Problem: Maintain a uniform sample of k items from the last
w items.

Why reservoir sampling does not work?

Suppose an element in the reservoir expires
Need to replace it with a randomly-chosen element from the
current window
However, in the data stream model we have no access to past
data
Could store the entire window but this would require O(w)
memory.
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Sliding Windows: Replace-Sampling algorithm

Algorithm:

Maintain a reservoir sample for the first w items in s.
When the arrival of an item causes an element in the sample
to expire, replace it with the new arrival.

Analysis

The algorithm solves the problem
1 pass, O(k log n) space and O(1) time per item.

Trouble: The sample is highly periodic, this might look as
unfair in many applications.
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Sliding Windows: Backing-Sample algorithm

Algorithm:
Maintain a backing sample B:

Add xt to B with probability 2ck logw/w
Remove from B all the elements that expire at time t.

The sample X of size k is obtained by an uniform sampling of
k items from B.

Analysis

1 pass, O((k + |B|) log n) space and O(k) time per item.
|B|? Should be small compared to w .
Quality? The algorithm might fail if |B| < k at some step.
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Sliding Windows: Backing-Sample size

Exercise Using Chernoff bounds, the size of the backing
sample is between k and 4ck logw with probability c ′w−c .

Selecting the adequate c , with high probability the algorithm
succeeds in keeping a large enough backing sample.

The bound on the space is O(k logw) with high probability.
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Chain-Sampling for Sliding Windows

Algorithm: (k = 1)

Maintain a reservoir sample for the first w items in s, but
whenever an element xi is selected, choose and index j ∈ [w ]
uniformly at random, xi+j will be the replacement for xi .
For t > w , when t = i + j , set x = xi+j (and choose the next
replacement).

Analysis

1 pass, O(log n + logw) space and O(1) time per item (some
better bound?).
Provides a uniform sample.

For higher values of k run k parallel chain samples.
With high probability, for large enough w , such chains will not
intersect.
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For higher values of k run k parallel chain samples.
With high probability, for large enough w , such chains will not
intersect.
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Chain-Sampling: total time

k = 1

The algorithm perform changes only along the chain of
selected items.

the number of possible chains of elements with more than a
data elements is bounded by the number of partitions of m
into a ordered integer parts, which is bounded by

(m
a

)
.

Each such chain has probability at most m−a.

The probability of updating x steps is therefore at most(m
a

)
m−a.

Using Stirling’s approximation we get the bound
(
e
a

)a
.

For a = O(logm) this is less than m−c , for constant c

With high probability the number of updates is O(logm).
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